
OPERATION TRANSFORMATION

Prasun Dewan

Department of Computer Science

University of North Carolina at Chapel Hill

dewan@cs.unc.edu

mailto:dewan@cs.unc.edu

2

IMMEDIATELY DELIVERING CONCURRENT

MESSAGES

 A tree of message paths exist

 Create vector time stamp and buffer for each leaf in

the path

 When a message arrives see if its vector time stamp

> one of the vector time stamps, put in the buffer for

that vector time stamp

 Otherwise create a new vector time stamp and

buffer

(VectorTimeStampCopiedAndNewBufferCreated)

deliver the message after flagging concurrency

3

CONCURRENCY: DIFFERENT SUCCESSOR

0 0 0 0

1 0 0 0 0 0 1 0

1 1 0 0

1 1 1 1

v1 = (a1, .. an)

Not successor!

is a successor of

for all j != i, aj== bj

There exists 1 ≤ i ≤ n, ai == 1 + bi



4

CONCURRENT SUCCESSORS

0 0 0 0

1 0 0 0 0 0 1 0

1 1 0 0

1 1 1 1

v1 = (a1, .. an)

v2 =(b1, .. bn)

is a successor of

for all j != i, aj <= bj

There exists 1 ≤ i ≤ n, ai == 1 + bi



Need to buffer messages
along each path

5

DELIVERING CONCURRENT MESSAGES

 A DAG of message paths exist

 Create buffer for each leaf in the DAG

 When a message arrives find a buffer

 See if a buffer exists in which the head message is not

concurrent with this message

 Otherwise create a new buffer

 Insert message at appropriate position in buffer

 Process buffer as before but now use a different

successor function

 (b1, b2, …. bn) is successor of (a1, a2, … an) if for some j, bj

= aj + 1 and for all i!= j, bi <= ai

 Takes into account that a message on a different path

from an ancestor of the current time stamp node arrived

6

DELIVERING CONCURRENT MESSAGES – FULL

SEARCH

 A DAG of message paths exist

 Create a single buffer for all messages

 When a message arrives put it in the buffer at some

position

 Process buffer as before

 but now use a different successor function

 (b1, b2, …. bn) is successor of (a1, a2, … an) if for some j, bj = aj + 1

and for all i != j, bi <= ai

 Takes into account that a message on a different path from an

ancestor of the current time stamp node arrived

 Search the entire buffer rather than look at the head of

the buffer

7

OPERATION TRANSFORMATION

8

DELIVERING CONCURRENT MESSAGES – FULL

SEARCH

 A DAG of message paths exist

 Create a single buffer for all messages

 When a message arrives put it in the buffer at some

position

 Process buffer as before

 but now use a different successor function

 (b1, b2, …. bn) is successor of (a1, a2, … an) if for some j, bj = aj + 1

and for all i != j, bi <= ai

 Takes into account that a message on a different path from an

ancestor of the current time stamp node arrived

 Search the entire buffer rather than look at the head of

the buffer

Are causality guarantees among concurrent
paths enough?

9

CONCURRENT EDITING: INITIAL STATE

PC

1

PC

2

l n c

1 2 3 4

l n c

1 2 3 4

4 04 0

h h

10

CONCURRENT INSERTIONS

PC

1

PC

2

l u n c

1 2 3 4

l n c

1 2 3 45 5

4 15 0

h h ?

11

IMMEDIATELY DELIVERING CONFLICTING REMOTE

OPERATION

PC

1

PC

2

l u n c

1 2 3 4

l u n c

1 2 3 45 5

5 15 1

? h ?

6

h

6

I,2, u

I,5, ?

12

PARTIALLY ORDERED VECTOR TIME STAMPS

v = (x1, .. xn) at Site Sj
 Site Sj has received xi messages from Site Si for all 1≤

i ≤ n

v1= (a1, .. an)

v2 = (b1, .. bn)

< 

for all 1≤ i ≤ n, ai ≤ bi

for some 1 ≤ i ≤ n, ai < bi

v1= (a1, .. an)

v2 = (b1, .. bn)

==  for all 1≤ i ≤ n, ai == bi

v1= (a1, .. an)

v2 = (b1, .. bn)

|| 

for some 1 ≤ j ≤ n, aj > bj

for some 1 ≤ i ≤ n, ai < bi

Concurrent

Input

13

CONCURRENT INTERACTION

PC

1

PC

2

PC

3

0 0 0

v1

0 0 0

v2

0 0 0

v3

1 0 0 0 1 0

Causal time
stamps allow
computer to
determine
concurrent

actions

Do not impose a
common or total

order, which
inherently does

not exist.

Total order often
important

Broadcast
supporting total

order called
atomic broadcast

14

ASYNCHRONOUS BROADCAST

PC

1

PC

2

1. Perform operation o

2. toOthers send the operation using peer to peer
communication

Done?
PC

3

Done?

3. Perform received operation (in causal order)

Done?

No coordination before
performing operation

Atomic asynchronous,
application-unaware
broadcast impossible

Synchronous and
Coordination?

15

SYNCHRONOUS RELAYED BROADCAST

PC

1

PC

2

1. Perform operation o

2. toAll send the
operation using relayed

communication

Done? PC

3

3. perform operation on its
receipt

Relayer

“Done”

Done?

Done?Each site performs operations in the same
sequence assuming ordered unicast

Delay (extra hop) state of operation
issue not same as state of execution,

though all sites are consistent

16

ORDERING WITH ATOMIC BROADCAST

PC

1

PC

2

l n c

1 2 3 4

l n c

1 2 3 4

h h

I,2, u

I,5, ?

I,2, u

I,5, ?

17

FIRST OPERATION EXECUTES

PC

1

PC

2

l u n

1 2 3 4

l u n

1 2 3 4

c c

5

h

5

h

I,5, ? I,5, ?

18

SECOND OPERATION EXECUTES

PC

1

PC

2

l u n

1 2 3 4

l u n

1 2 3 4

c c

5

?

5

?h

6

h

6

Context of operation not
the same as when it was

issued

Common state but
“intention” violation

Worse outcome than
intention violation?

19

CONCURRENT INTERACTION: DELETE, MODIFY

PC

1

PC

2

l

1

l

1

D,1 M,1, L

20

ATOMIC BROADCAST ORDERING

PC

1

PC

2

l

1

l

1

D,1

M,1, LM,1, L

D,1

21

FIRST OPERATION EXECUTES

PC

1

PC

2

M,1, LM,1, L

22

SECOND OPERATION CAUSES EXCEPTION

PC

1

PC

2

M,1, L

Context of operation not
the same as when it was

issued

Common behavior but
exception

Can concurrency control
explain or fix this?

M,1, L

ArrayIndexOutOfBounds

23

CONCURRENT EDITING: INITIAL STATE (REVIEW)

PC

1

PC

2

l n c

1 2 3 4

l n c

1 2 3 4

4 04 0

h h

24

CONCURRENT INSERTIONS (REVIEW)

PC

1

PC

2

l u n c

1 2 3 4

l n c

1 2 3 45 5

4 15 0

h h ?

25

DELIVERING CONFLICTING REMOTE OPERATION

(REVIEW)

PC

1

PC

2

l u n c

1 2 3 4

l u n c

1 2 3 45 5

5 15 1

? h ?

6

h

6

I,2, u

I,5, ?

26

lnch

lnch

lnch

SYNCHRONOUS RELAYED BROADCAST (REVIEW)

PC

1

PC

2

lunch PC

3

Relayer

I, 2, u

lunch

lunch

Delay (extra hop) state of operation
issue not same as state of execution,

though all sites are consistent

I, 2, u

27

ORDERING WITH ATOMIC BROADCAST (REVIEW)

PC

1

PC

2

l n c

1 2 3 4

l n c

1 2 3 4

h h

I,2, u

I,5, ?

I,2, u

I,5, ?

28

SECOND OPERATION EXECUTES (REVIEW)

PC

1

PC

2

l u n

1 2 3 4

l u n

1 2 3 4

c c

5

?

5

?h

6

h

6

Context of operation not
the same as when it was

issued

Common state but
“intention” violation

29

ATOMIC BROADCAST ORDERING

PC

1

PC

2

l

1

l

1

D,1

M,1, LM,1, L

D,1

30

SECOND OPERATION CAUSES EXCEPTION

PC

1

PC

2

Context of operation not
the same as when it was

issued

Common behavior but
exception

ArrayIndexOutOfBounds ArrayIndexOutOfBounds

31

SINGLE-USER CASE: SELECTIVE UNDO

PC

1

l

1

D, 1

M,1, L

Undoing non last
operation is done

in a context
different from the

one in which it was
executed

L

undo

32

CONCURRENCY CONTROL?

PC

1

PC

2

I,2, u

I,5, ?

I,2, u

I,5, ?
Can concurrency control

explain or fix this?

l u n

1 2 3 4

l u n

1 2 3 4

c c

5

?

5

?h

6

h

6

33

OPTIMISTIC TRANSACTION

PC

1

PC

2

I,2, u

I,5, ?

I,2, u

I,5, ?

W1(Text) R2(Text)

R1(Text)

W2(Text)Validate

Write Validate

Abort

Non serializable
transactions

If we employed optimistic
CC we would abort, but no
CC was employed, hence

divergent statel u n

1 2 3 4

l u n

1 2 3 4

c c

5

?

5

?h

6

h

6

34

VALIDATION/CHECKING TIME (REVIEW)

 Early

 Pessimistic

 Late

 Optimistic

 Merging

35

EARLY VS. LATE VALIDATION (REVIEW)

 Per-operation checking
and communication
overhead

 No compression possible.

 Prevents inconsistency.

 Tight coupling:
incremental results
shared

 Not functional if
disconnected

 Unless we lock very
conservatively, limiting
concurrency.

 No per-operation checking,

communication overhead

 Compression possible.

 Inconsistency possible

resulting in lost work.

 Allows parallel

development.

 Functional when

disconnected.

36

MERGING (REVIEW)

 Like optimistic

 Allow operation to execute without local checks

 But no aborts

 Merge conflicting operations

 E.g. insert 1,a || insert 2, b = insert 1, a; insert 3, b

|| insert 2, b; insert 1, a

 Serializability not guaranteed

 Ignore reads

 New transaction to replace conflicting transactions

 Strange results possible

 E.g. concurrent dragging of an object in whiteboard

 App-specific

37

TRANSFORMING REMOTE OPERATION

PC

1

PC

2

l u n c

1 2 3 4

l u n c

1 2 3 45 5

5 15 1

h h ?

6

?

6

I,2,u

I,6,? Sometimes semantics
can be used to transform
concurrent operations to

give desired result

Bound to text buffer?

38

ASSUME INDEXED SEQUENCE DATA TYPE

Lunch?

Lunch?

No, Yes

I(nsert) (index, element)

Element 1

Element 2

Element 3

Operations

1

2

3

Arbitrary element type

1

2

3

String element type (message sequence)

l u n c h

1 2 3 4 5

char element type (text editors)

D(elete)(index))

39

CONCURRENT INORDER INTERACTION

PC

1

PC

2

Received Buffer1 Received Buffer2

4 15 00

No need for received
buffer

Assume only two sites

Assume messages are
received in order from

other site

Still need time stamp to
discover concurrency

I,2,u

I,6,?

General rule for
transforming operation

l u n c

1 2 3 4

l n c

1 2 3 45 5

h h ?

40

TRANSFORMATION FUNCTION

PC

1

PC

2

4 15 0

Increment index of remote
operation if it has higher

index before processing it

I,2,u

I,6,?

Based on index of
concurrent local operation, L

Remote operation, R
transformed!

RT = Transform (R, L)

Apply RT instead of R at local
site Local Buffer2Local Buffer1

4 1I,5,?5 0I,2,u

R Transformed if RT != R

Need local buffer to store L
rather than remote buffer

l u n c

1 2 3 4

l n c

1 2 3 45 5

h h ?

41

CONTROL ALGORITHM: SINGLE LOCAL

CONCURRENT OPERATION

PC

1

PC

2

4 15 00

I,2,u

I,6,?

Given Remote op R, concurrent with
exactly one local op L

RT = Transform (R, L)

Execute RT

Site.TimeStamp.increment(R.site)

l u n c

1 2 3 4

l n c

1 2 3 45 5

h h ?

42

OT SYSTEM COMPONENTS

Transformation function: Handles single local and concurrent operations

Control algorithm: Calls transformation function, processed buffer and local
time stamps

Both must be correct.

43

INCLUSION TRANSFORMATION

Operation Transform (Operation R, Operation L) {

if (R.type == Insert && L.type == Insert)

return TransformInsertInsert (R,L);

else ….

}

Operation TransformInsertInsert (InsertOperation R, InsertOperation L) {

Operation RT = R.deepCopy();

if (R.index > L.index)

RT.index = R.index + 1

return RT ;

}

Correct?

Correctness
criterion?

Transform includes effect of
second operand on first

operand

Names indicate we include
effect of earlier executed
local operation on later

received concurrent remote
operation

Other uses in which first and
second operands are not

remote and local operations

Called inclusion
transformation

44

CORRECTNESS CRITERION

Operation Transform (Operation R, Operation L) {

if (R.type == Insert && L.type == Insert)

return TransformInsertInsert (R,L);

else ….

}

Operation TransformInsertInsert (InsertOperation R, InsertOperation L) {

Operation RT = R.deepCopy();

if (R.index > L.index)

RT.index = R.index + 1

return RT ;

}

O1 T(O2, O1)

O2 T(O1, O2)

Constraint for Transform

S

S

S12

S12

S12

S1 S2

S

Distributed
Merge

==

==?

45

INITIAL STATE

PC

1

PC

2

0 04 0 5 05 0

l u n c

1 2 3 4

l u n c

1 2 3 45 5

h h

46

INSERTION AT SAME INDEX

PC

1

PC

2

0 04 0 5 16 0

I,6,?

Local Buffer2Local Buffer1

5 1I,6,!6 0I,6,?

I,6,!

l u n c

1 2 3 4

l u n c

1 2 3 45 5

h h

6

?

6

!

47

INSERTION AT SAME INDEX

PC

1

PC

2

0 04 0 5 16 0

I,6,?

Local Buffer2Local Buffer1

5 1I,6,!6 0I,6,?

I,6,!

l u n c

1 2 3 4

l u n c

1 2 3 45 5

h h

6

?

6

!

I,6,!

I,6,?

InsertOperation TransformInsertInsert (InsertOperation Remote, InsertOperation L ocal) {

Operation RemoteT = Remote.clone();

if (Remote.index > Local.index)

RemoteT.index = Remote.index + 1

return RemoteT ;

}

Neither operation is
transformed

48

INSERTION AT SAME INDEX ALGORITHM

PC

1

PC

2

0 04 0 6 16 1

I,6,?

Local Buffer2Local Buffer1

5 1I,6,!6 0I,6,?

I,6,!

l u n c

1 2 3 4

l u n c

1 2 3 45 5

h h

6

!

6

?

I,6,!

I,6,?
Neither operation is

transformed

7

?

7

!

Inconsistency

InsertOperation TransformInsertInsert (InsertOperation Remote, InsertOperation L ocal) {

Operation RemoteT = Remote.clone();

if (Remote.index > Local.index)

RemoteT.index = Remote.index + 1

return RemoteT ;

}

49

INSERTION AT SAME INDEX: ERROR

PC

1

PC

2

0 04 0 5 16 0

I,6,?

Local Buffer2Local Buffer1

5 1I,6,!6 0I,6,?

I,6,!

l u n c

1 2 3 4

l u n c

1 2 3 45 5

h h

6

!

6

?

I,6,!

I,6,?

O1 T(O2, O1)

O2 T(O1, O2)

Constraint for Transform

S

S

S12

S12

==

7

?

7

!

Operation TransformInsertInsert (InsertOperation R, InsertOperation L) {

Operation RT = R.deepCopy();

if (R.index > L.index)

RT.index = R.index + 1

return RT ;

}

50

PRIORITY-BASED

PC

1

PC

2

0 04 0 6 16 1

I,6,?

Local Buffer2Local Buffer1

5 1I,6,!6 0I,6,?

I,6,!

I,6,!

I,7,?

O1 T(O2, O1)

O2 T(O1, O2)

S

S

S12

S12

==

l u n c

1 2 3 4

l u n c

1 2 3 45 5

h h

6

!

6

!

7

?

7

?

Insert concurrent text at
some position in order of

priority

InsertOperation TransformInsertInsert (InsertOperation R, InsertOperation L) {

Operation RT = deepClone();

if ((R.index > L.index) ||

(R.index === L.index && R.id < L.id))

RT.index = R.index + 1;

return RT ;

}

Constraint for Transform

Can two remote operations
be transformed wrt to the

same local operation?

51

CONTROL ALGORITHM: SINGLE LOCAL

CONCURRENT OPERATION

PC

1

PC

2

4 15 00

I,2,u

I,6,?

Given Remote op, R, concurrent with
exactly one local op L

RT = Transform (R, L)

Execute RT

Site.TimeStamp.increment(R.site)

Local Buffer2Local Buffer1

l u n c

1 2 3 4

l n c

1 2 3 45 5

h h ?

52

MULTIPLE TRANSFORMED REMOTE CONCURRENT

OPERATIONS

PC

1

PC

2

0 04 0 4 04 0

l n c h

1 2 3 4

l n c h

1 2 3 4

Local Buffer2Local Buffer1

A remote site can execute multiple
operations that are concurrent wrt to

local buffer

53

MULTIPLE TRANSFORMED REMOTE CONCURRENT

OPERATIONS

PC

1

PC

2

I,5,?

0 04 0 4 25 0

I,2,u

I,6,!

l u n c

1 2 3 4

l n c h

1 2 3 45 5

h ? !

6

Local Buffer2Local Buffer1

4 1I,5,?5 0I,2,u

4 2I,6,!

54

SITE 1 OPERATION ARRIVES AND IS NOT

TRANSFORMED

PC

1

PC

2

I,5,?

0 04 0 5 25 0

I,2,u

I,6,!

l u n c

1 2 3 4

l u n c

1 2 3 45 5

h h ?

6

Local Buffer2Local Buffer1

I,2,u

!

7

4 1I,5,?5 0I,2,u

4 2I,6,!

55

FIRST SITE 2 OPERATION ARRIVES

PC

1

PC

2

I,5,?

0 04 0 5 25 0

I,2,u

I,6,!

l u n c

1 2 3 4

l u n c

1 2 3 45 5

h h ?

6

Local Buffer2Local Buffer1

I,2,u

!

7

I,5,?

4 1I,5,?5 0I,2,u

4 2I,6,!

56

FIRST OPERATION TRANSFORMED

PC

1

PC

2

I,5,?

0 04 0 5 25 1

I,2,u

I,6,!

l u n c

1 2 3 4

l u n c

1 2 3 45 5

h h ?

6

Local Buffer2Local Buffer1

I,2,u

!

7

I,6,?

6

?

4 1I,5,?5 0I,2,u

4 2I,6,!

57

SECOND OPERATION ARRIVES

PC

1

PC

2

I,5,?

0 04 0 5 25 2

I,2,u

I,6,!

l u n c

1 2 3 4

l u n c

1 2 3 45 5

h h ?

6

Local Buffer2Local Buffer1

I,2,u

I,6,?

6

!

I,6,!

4 1I,5,?5 0I,2,u

4 2I,6,!

!

77

?

Multiple remote
operations

transformed with
respect to same local

operation

58

BUFFER CLEANUP

PC

1

PC

2

I,5,?

0 04 0 5 35 3

I,2,u

I,6,!

l u n c

1 2 3 4

l u n c

1 2 3 45 5

h h ?

6

Local Buffer2Local Buffer1

I,2,u

!

7

I,6,!

6

?

I,7,!

7

!

How long should local
buffer be kept?

?

8

I,8,? No need to transform

4 1I,5,?5 0I,2,u

4 2I,6,!

I,8,?

>
If local.timestamp <

msg.timestamp

Each subsequent message
has larger time stamp

Remove all locals from
buffer with time stamp

smaller than time stamp
of received message

?

8

Multiple remote
operations transformed

with respect to same local
operation

59

TRANSFORMING REMOTE OPERATION (REVIEW

START)

PC

1

PC

2

l u n c

1 2 3 4

l u n c

1 2 3 45 5

4 15 0

h h ?

6

?

6

I,2, u

I,6, ? Sometimes semantics
can be used to transform
concurrent operations to

give desired result

60

OT SYSTEM COMPONENTS

Transformation function: Handles single local and concurrent operations

Control algorithm: Calls transformation function, processed buffer and local
time stamps

Both must be correct.

61

PRIORITY-BASED TRANSFORMATION

O1 T(O2, O1)

O2 T(O1, O2)

S

S

S12

S12

==

InsertOperation TransformInsertInsert (InsertOperation R, InsertOperation L) {

Operation RT = deepClone();

if ((R.index > L.index) ||

(R.index === L.index && R.id < L.id))

RT.index = R.index + 1;

return RT ;

}

Constraint for Transform

62

CONTROL ALGORITHM: SINGLE LOCAL

CONCURRENT OPERATION

Given Remote op R, concurrent with
exactly one local op L

RT = Transform (R, L)

Execute RT

Site.TimeStamp.increment(R.site)

63

NEED FOR LOCAL BUFFER

PC

1

PC

2

l u n c

1 2 3 4 5

4 15 0

h ?

6

I,2, u

Local Buffer2

4 1I,5, ?

l u n c

1 2 3 4 5

h ?

6

Local Buffer1

5 0I,2, u

64

BUFFER CLEANUP (REVIEW END)

PC

1

PC

2

I,5, ?

0 04 0 5 35 3

I,2, u

I,6, !

l u n c

1 2 3 4

l u n c

1 2 3 45 5

h h ?

6

Local Buffer2Local Buffer1

I,2, u

!

7

I,6, !

6

?

I,7, !

7

!

How long should local
buffer be kept?

?

8

I,8, ? No need to transform

4 1I,5, ?5 0I,2, u

4 2I,6, !

I,8,?

>
If local.timestamp <

msg.timestamp

Each subsequent message
has larger time stamp

Remove all locals from
buffer with time stamp

smaller than time stamp
of received message

?

8

Multiple remote
operations transformed

with respect to same local
operation

65

DUAL: OPERATION TRANSFORMED MULTIPLE

TIMES

PC

1

PC

2

I,5, !

0 04 0 5 35 3

I,2, u

I,6, !

Local Buffer2Local Buffer1

I,2, u

I,6, !

I,7, !

Dual?

I,8, !

I,8, !

4 1I,5, ?5 0I,2, u

4 2I,6, !

Multiple remote
operations

transformed with
respect to same local

operation

A remote operation
transformed with

respect to multiple
local operations

l u n c

1 2 3 4

l u n c

1 2 3 45 5

h h ?

6

!

76

?

7

! ?

8

?

8

66

INITIAL STATE

PC

1

PC

2

0 04 0 3 03 0

Local Buffer2Local Buffer1

n c h

1 2 3

n c h

1 2 3

67

MULTIPLE CONCURRENT LOCAL OPERATIONS WRT

REMOTE CONFLICTING OPERATION

PC

1

PC

2

I,1,l

0 04 0 3 24 0

I,4, ?

I,2, u

Local Buffer2Local Buffer1

3 1I,1,l4 0I,4, ?

3 2I,2, u

n c h ?

1 2 3 4

l u n c

1 2 3 4 5

h

68

MULTIPLE CONCURRENT LOCAL OPERATIONS WRT

REMOTE CONFLICTING OPERATION

PC

1

PC

2

I,1,l

0 04 0 3 24 0

I,4, ?

Local Buffer2Local Buffer1

I,1,1

4 0I,2, u

n c h ?

1 2 3 4

l u n c

1 2 3 4 5

h

I,2, u

3 1I,1,l

3 2I,2, u

69

MULTIPLE CONCURRENT LOCAL OPERATIONS WRT

REMOTE CONFLICTING OPERATION

PC

1

PC

2

I,1,l

0 04 0 3 24 1

I,4, ?

Local Buffer2Local Buffer1

3 1I,1,l4 0I,4, ?

3 2I,2, u

l n c h

1 2 3 4

l u n c

1 2 3 4 5

h

I,1,1

5

?

I,2, u

70

MULTIPLE CONCURRENT LOCAL OPERATIONS WRT

REMOTE CONFLICTING OPERATION

PC

1

PC

2

I,1,l

0 04 0 3 24 1

I,4, ?

I,2, u

Local Buffer2Local Buffer1

3 1I,1,l4 0I,4, ?

3 2I,2, u

l n c h

1 2 3 4

l u n c

1 2 3 4 5

h

I,2, u

I,1,1

5

?

71

MULTIPLE CONCURRENT LOCAL OPERATIONS WRT

REMOTE CONFLICTING OPERATION

PC

1

PC

2

I,1,l

0 04 0 3 24 2

I,4, ?

Local Buffer2Local Buffer1

3 1I,1,l3 0I,4, ?

3 2I,2, u

l u n c

1 2 3 4

l u n c

1 2 3 4 5

h

I,2, u

I,1,1

5

h ?

6

I,2, u

72

MULTIPLE CONCURRENT LOCAL OPERATIONS WRT

REMOTE CONFLICTING OPERATION

PC

1

PC

2

I,1,l

0 04 0 3 24 2

I,4, ?

Local Buffer2Local Buffer1

3 1I,1,l3 0I,4, ?

3 2I,2, u

l u n c

1 2 3 4

l u n c

1 2 3 4 5

h

I,2, u

I,1,1

5

h ?

6

I,2, u

I,4,?

73

FIRST TRANSFORMATION

PC

1

PC

2

I,1,l

0 04 0 3 24 2

I,4, ?

Local Buffer2Local Buffer1

3 1I,1,l3 0I,4, ?

3 2I,2, u

l u n c

1 2 3 4

l u n c

1 2 3 4 5

h

I,2, u

I,1,1

5

h ?

6

I,2, u

I,5,?

Transform wrt to first
concurrent local operation

74

SECOND TRANSFORMATION/CONTROL ALGORITHM

PC

1

PC

2

I,1,l

0 04 0 4 24 2

I,4, ?

Local Buffer2Local Buffer1

3 1I,1,l3 0I,4, ?

3 2I,2, u

l u n c

1 2 3 4

l u n c

1 2 3 4 5

h

I,2, u

I,1,1

5

h ?

6

I,2, u

I,6,?

?

6

Run transform function with
respect to all concurrent

operations in the local log:
Transform (Transform

(Transform (R, L1), L2) …LN)

A remote operation
transformed with respect to

multiple local operations

Transform wrt to second
concurrent local operation

Control algorithm now
handles multiple

concurrent/local operations
using Transform function

addressing single concurrent
remote/local operation

75

CONTROL ALGORITHM: SINGLE LOCAL

CONCURRENT OPERATION

Given Remote op, R, concurrent with
exactly one local op L

RT = Transform (R, L)

Execute RT

Site.TimeStamp.increment(R.site)

Algorithm for multiple local
concurrent operations?

76

CONTROL ALGORITHM: MULTIPLE CONCURRENT

LOCAL OPERATIONS

Given Remote op, R, concurrent with
local ops L1, L2, .. LN

For each L

R = Transform (R, L)

Execute R

Site.TimeStamp.increment(R.site)

77

SINGLE SITE TRANSFORMATION

All examples so far involved
transformation(s) at one site

Transformation at both sites?

PC

1

PC

2

I,1,l

0 04 0 4 24 2

I,4, ?

Local Buffer2Local Buffer1

3 1I,1,l3 0I,4, ?

3 2I,2, u

l u n c

1 2 3 4

l u n c

1 2 3 4 5

h

I,2, u

I,1,1

5

h ?

6

I,2, u

I,6,?

?

6

78

INITIAL STATE

PC

1

PC

2

0 04 0 4 04 0

Local Buffer2Local Buffer1

u n c h

1 2 3 4

u n c h

1 2 3 4

79

MULTIPLE CONCURRENT REMOTE OPERATIONS

PC

1

PC

2

I,1,l

0 04 0 4 25 0

I,5, ?

I,6, !

Local Buffer2Local Buffer1

4 1I,1,l5 0I,5, ?

4 2I,6, !

u n c h

1 2 3 4

l u n c

1 2 3 45 5

? h !

6

80

ARRIVAL AT SITE 1

PC

1

PC

2

I,1,l

0 04 0 4 25 0

I,5, ?

I,6, !

Local Buffer2Local Buffer1

4 1I,1,l5 0I,5, ?

4 2I,6, !

u n c h

1 2 3 4

l u n c

1 2 3 45 5

? h !

6

I,1,l

81

RESULT OF TRANSFORM

PC

1

PC

2

I,1,l

0 04 0 4 25 0

I,5, ?

I,6, !

Local Buffer2Local Buffer1

4 1I,1,l5 0I,5, ?

4 2I,6, !

u n c h

1 2 3 4

l u n c

1 2 3 45 5

? h !

6

I,1,l

Remote operation
not transformed

82

UNTRANSFORMED APPLICATION

PC

1

PC

2

I,1,l

0 04 0 4 25 1

I,5, ?

I,6, !

Local Buffer2Local Buffer1

4 1I,1,l5 0I,5, ?

4 2I,6, !

l u n c

1 2 3 4 5

h !

6

I,1,l

l u n c

1 2 3 4 5

h

6

?

83

ARRIVAL AT SECOND SITE

PC

1

PC

2

I,1,l

0 04 0 4 25 1

I,5, ?

I,6, !

Local Buffer2Local Buffer1

4 1I,1,l5 0I,5, ?

4 2I,6, !

l u n c

1 2 3 4 5

h !

6

I,1,l

l u n c

1 2 3 4 5

h

6

?

I,5, ?

84

TRANSFORMED WRT TO FIRST LOCAL OPERATION

PC

1

PC

2

I,1,l

0 04 0 4 25 1

I,5, ?

I,6, !

Local Buffer2Local Buffer1

4 1I,1,l5 0I,5, ?

4 2I,6, !

l u n c

1 2 3 4 5

h !

6

I,1,l

l u n c

1 2 3 4 5

h

6

?

I,6, ?

85

EXAMINING SECOND LOCAL OPERATION

PC

1

PC

2

I,1,l

0 04 0 4 25 1

I,5, ?

I,6, !

Local Buffer2Local Buffer1

4 1I,1,l5 0I,5, ?

4 2I,6, !

l u n c

1 2 3 4 5

h !

6

I,1,l

l u n c

1 2 3 4 5

h

6

?

I,6, ?

86

SECOND TRANSFORMATION AND APPLICATION

PC

1

PC

2

I,1,l

0 04 0 5 25 1

I,5, ?

I,6, !

Local Buffer2Local Buffer1

4 1I,1,l5 0I,5, ?

4 2I,6, !

l u n c

1 2 3 4 5

h !

6

I,1,l

l u n c

1 2 3 4 5

h

6

?

I,7, ?

?

7

User 1 < User 2

87

SECOND ARRIVAL AT SITE 1

PC

1

PC

2

I,1,l

0 04 0 5 25 1

I,5, ?

I,6, !

Local Buffer2Local Buffer1

4 1I,1,l5 0I,5, ?

4 2I,6, !

l u n c

1 2 3 4 5

h !

6

I,1,l

l u n c

1 2 3 4 5

h

6

?

I,7, ?

?

7

I,6, !

88

OPERATION TRANSFORMED

PC

1

PC

2

I,1,l

0 04 0 5 25 1

I,5, ?

I,6, !

Local Buffer2Local Buffer1

4 1I,1,l5 0I,5, ?

4 2I,6, !

l u n c

1 2 3 4 5

h !

6

I,1,l

l u n c

1 2 3 4 5

h

6

?

I,7, ?

?

7

I,7, !

89

APPLICATION OF TRANSFORMED OPERATION

PC

1

PC

2

I,1,l

0 04 0 5 25 2

I,5, ?

I,6, !

Local Buffer2Local Buffer1

4 1I,1,l5 0I,5, ?

4 2I,6, !

l u n c

1 2 3 4 5

h !

6

I,1,l

l u n c

1 2 3 4 5

h

6

?

I,7, ?

?

7

I,7, !

Never compared user ids at
site 1

7

!
Inconsistency!

What went wrong?

90

WHAT WENT WRONG?

PC

1

PC

2

I,1,l

0 04 0 5 25 2

I,5, ?

I,6, !

Local Buffer2Local Buffer1

4 1I,1,l5 0I,5, ?

4 2I,6, !

l u n c

1 2 3 4 5

h !

6

I,1,l

l u n c

1 2 3 4 5

h

6

?

I,7, ?

?

7

I,7, !

7

!

Never compared site ids at site 1

Effect of remote I, 1, 1 on local I, 5, ?
not recorded

Must change time stamp and if
necessary operands of local operation

Transform gives effect of an operation
on another

Used it so far to get effect of local
operation on remote operation

Need to also use it to determine
effect of remote operation on local

operation

91

RUNNING TRANSFORM IN PAIRS

PC

1

PC

2

I,1,l

0 04 0 5 25 2

I,5, ?

I,6, !

Local Buffer2Local Buffer1

5 2I,1,l5 2I,6, ?

5 2I,6, !

l u n c

1 2 3 4 5

h !

6

I,1,l

l u n c

1 2 3 4 5

h

6

!

I,7, ?

?

7

I,6, !

7

?

Transform (Insert (1, ‘l’), Insert (5, ‘?’))

Transform (Insert (5, ‘?’), Insert (1, ‘l’))

Time stamps of local operations
changed

Each transformation computed at
both sites !

92

PREVIOUS CONTROL ALGORITHM

PC

1

PC

2

I,1,l

0 04 0 5 25 2

I,5, ?

I,6, !

Local Buffer2Local Buffer1

5 2I,1,l5 2I,6, ?

5 2I,6, !

l u n c

1 2 3 4 5

h !

6

I,1,l

l u n c

1 2 3 4 5

h

6

!

I,7, ?

?

7

I,6, !

7

?

R = Transform (R, L)

Execute R

Site.TimeStamp.increment(R.site)

Effects of L1, L2, .. LN included in R Effects of R must also be included in L1, L2, .. LN

Given Remote op, R, concurrent
with local ops L1, L2, .. LN

For each L

93

NEW CONTROL ALGORITHM

PC

1

PC

2

I,1,l

0 04 0 5 25 2

I,5, ?

I,6, !

Local Buffer2Local Buffer1

5 2I,1,l5 2I,6, ?

5 2I,6, !

l u n c

1 2 3 4 5

h !

6

I,1,l

l u n c

1 2 3 4 5

h

6

!

I,7, ?

?

7

I,6, !

7

?

R = Transform (R, L)

L = Transform (L, R)

Execute R

L.TimeStamp.increment(R.site)

Site.TimeStamp.increment(R.site)

Effects of L1, L2, .. LN included in R Effects of R included in L1, L2, .. LN

Given Remote op, R, concurrent
with local ops L1, L2, .. LN

For each L

94

GEOMETRIC PROOF OF CORRECTNESS

S11,21

S11 S21

S

Distributed Merge

Site1 Site 2

One-step process

Multiple one-step
processes to reach state

Given two sequences of
concurrent ops,

transformation merge
process can be derived

Perpendiculars to two
non dashed lines meet at

a unique point

SW : process
site 1 op

SE: process site
2 op

Local op not changed

Same transformation
computed at both sites

Including effect of multiple
locals on a remote at site 1

Including effect of multiple
remotes on a single local at

site 2

S12

S12, 21

Intermediate state
not reached at

both sites

Without undo

95

GEOMETRIC PROOF OF CORRECTNESS

S11,21

S11 S21

S

Distributed Merge

Site1 Site 2

SW : process
site 1 op

SE: process site
2 op

Including effect of multiple
locals on a remote at site 1

Including effect of multiple
remotes on a single local at

site 2

S12

S12, 21

Given Remote op, R, concurrent
with local ops L1, L2, .. LN

For each L

R = Transform (R, L)

L = Transform (L, R)

Execute R

L.TimeStamp.increment(R.site)

Site.TimeStamp.increment(R.site)

96

RE-RUN WITH TRANSFORMATIONS

PC

1

PC

2

0 04 0 4 04 0

Local Buffer2Local Buffer1

u n c h

1 2 3 4

u n c h

1 2 3 4

97

CONCURRENT INTERACTION

PC

1

PC

2

I,1,l

0 04 0 4 25 0

I,5, ?

I,6, !

Local Buffer2Local Buffer1

4 1I,1,l5 0I,5, ?

4 2I,6, !

u n c h

1 2 3 4

l u n c

1 2 3 45 5

? h !

6

R = Transform (R, L)

L = Transform (L, R)

L.TimeStamp.increment(R.site)

Site.TimeStamp.increment(R.site)

Execute R

Given Remote op, R, concurrent
with local ops L1, L2, .. LN

For each L

98

REMOTE I, 1, L ARRIVES AT SITE 1

PC

1

PC

2

I,1,l

0 04 0 4 25 0

I,5, ?

I,6, !

Local Buffer2Local Buffer1

4 1I,1,l5 0I,5, ?

4 2I,6, !

u n c h

1 2 3 4

l u n c

1 2 3 45 5

? h !

6

I,1,l

R = Transform (R, L)

L = Transform (L, R)

L.TimeStamp.increment(R.site)

Site.TimeStamp.increment(R.site)

Execute R

Given Remote op, R, concurrent
with local ops L1, L2, .. LN

For each L

99

REMOTE NOT TRANSFORMED

PC

1

PC

2

I,1,l

0 04 0 4 25 0

I,5, ?

I,6, !

Local Buffer2Local Buffer1

4 1I,1,l5 0I,5, ?

4 2I,6, !

u n c h

1 2 3 4

l u n c

1 2 3 45 5

? h !

6

I,1,l

Remote not transformed

R = Transform (R, L)

L = Transform (L, R)

L.TimeStamp.increment(R.site)

Site.TimeStamp.increment(R.site)

Execute R

Given Remote op, R, concurrent
with local ops L1, L2, .. LN

For each L

10

0

LOCAL TRANSFORMED

PC

1

PC

2

I,1,l

0 04 0 4 25 0

I,5, ?

I,6, !

Local Buffer2Local Buffer1

4 1I,1,l5 1I,6, ?

4 2I,6, !

u n c h

1 2 3 4

l u n c

1 2 3 45 5

? h !

6

I,1,l

Local transformed

R = Transform (R, L)

L = Transform (L, R)

L.TimeStamp.increment(R.site)

Site.TimeStamp.increment(R.site)

Execute R

Given Remote op, R, concurrent
with local ops L1, L2, .. LN

For each L

10

1

REMOTE APPLIED

PC

1

PC

2

I,1,l

0 04 0 4 25 1

I,5, ?

I,6, !

Local Buffer2Local Buffer1

4 1I,1,l5 1I,6, ?

4 2I,6, !

l u n c

1 2 3 4 5

h !

6

I,1,l

l u n c

1 2 3 4 5

h

6

?

R = Transform (R, L)

L = Transform (L, R)

L.TimeStamp.increment(R.site)

Site.TimeStamp.increment(R.site)

Execute R

Given Remote op, R, concurrent
with local ops L1, L2, .. LN

For each L

10

2

I,5, ? ARRIVES AT SITE 2

PC

1

PC

2

I,1,l

0 04 0 4 25 1

I,5, ?

I,6, !

Local Buffer2Local Buffer1

4 1I,1,l5 1I,6, ?

4 2I,6, !

l u n c

1 2 3 4 5

h !

6

I,1,l

l u n c

1 2 3 4 5

h

6

?

I,5, ? R = Transform (R, L)

L = Transform (L, R)

L.TimeStamp.increment(R.site)

Site.TimeStamp.increment(R.site)

Execute R

Given Remote op, R, concurrent
with local ops L1, L2, .. LN

For each L

10

3

REMOTE TRANSFORMED BUT NOT FIRST LOCAL

PC

1

PC

2

I,1,l

0 04 0 4 25 1

I,5, ?

I,6, !

Local Buffer2Local Buffer1

5 1I,1,l5 1I,6, ?

4 2I,6, !

l u n c

1 2 3 4 5

h !

6

I,1,l

l u n c

1 2 3 4 5

h

6

?

I,6, ? R = Transform (R, L)

L = Transform (L, R)

L.TimeStamp.increment(R.site)

Site.TimeStamp.increment(R.site)

Execute R

Given Remote op, R, concurrent
with local ops L1, L2, .. LN

For each L

10

4

COMPARED WITH SECOND LOCAL (I. 6, !) AT SAME

LOCATION

PC

1

PC

2

I,1,l

0 04 0 4 25 1

I,5, ?

I,6, !

Local Buffer2Local Buffer1

5 1I,1,l5 1I,6, ?

4 2I,6, !

l u n c

1 2 3 4 5

h !

6

I,1,l

l u n c

1 2 3 4 5

h

6

?

I,6, ? R = Transform (R, L)

L = Transform (L, R)

L.TimeStamp.increment(R.site)

Site.TimeStamp.increment(R.site)

Execute R

Given Remote op, R, concurrent
with local ops L1, L2, .. LN

For each L

10

5

TRANSFORMATION AND APPLICATION

PC

1

PC

2

I,1,l

0 04 0 5 25 1

I,5, ?

I,6, !

Local Buffer2Local Buffer1

5 1I,1,l5 1I,6, ?

5 2I,6, !

l u n c

1 2 3 4 5

h !

6

I,1,l

l u n c

1 2 3 4 5

h

6

?

I,7, ? R = Transform (R, L)

L = Transform (L, R)

L.TimeStamp.increment(R.site)

Site.TimeStamp.increment(R.site)

Execute R

Given Remote op, R, concurrent
with local ops L1, L2, .. LN

For each L

?

7

10

6

SECOND REMOTE OPERATION ARRIVES AT SITE 1

PC

1

PC

2

I,1,l

0 04 0 5 25 1

I,5, ?

I,6, !

Local Buffer2Local Buffer1

5 1I,1,l5 1I,6, ?

5 2I,6, !

l u n c

1 2 3 4 5

h !

6

I,1,l

l u n c

1 2 3 4 5

h

6

?

I,7, ?

I,6, !

R = Transform (R, L)

L = Transform (L, R)

L.TimeStamp.increment(R.site)

Site.TimeStamp.increment(R.site)

Execute R

Given Remote op, R, concurrent
with local ops L1, L2, .. LN

For each L

?

7

10

7

LOWER PRIORITY PREVIOUSLY TRANSFORMED

LOCAL TRANSFORMED AGAIN BUT NOT REMOTE

PC

1

PC

2

I,1,l

0 04 0 5 25 0

I,5, ?

I,6, !

Local Buffer2Local Buffer1

5 2I,7, ?

l u n c

1 2 3 4 5

h !

6

I,1,l

l u n c

1 2 3 4 5

h

6

?

I,7, ?

?

7

I,6, !

5 1I,1,l

5 2I,6, !

?

7

R = Transform (R, L)

L = Transform (L, R)

L.TimeStamp.increment(R.site)

Site.TimeStamp.increment(R.site)

Execute R

Given Remote op, R, concurrent
with local ops L1, L2, .. LN

For each L

10

8

UNTRANSFORMED REMOTE APPLIED

PC

1

PC

2

I,1,l

0 04 0 4 24 0

I,5, ?

I,6, !

Local Buffer2Local Buffer1

5 1I,1,l5 2I,7,?

5 2I,6, !

l u n c

1 2 3 4 5

h !

6

I,1,l

l u n c

1 2 3 4 5

h

6

!

I,7, ?

?

7

I,6, !

7

?

Consistency!

N Users?

R = Transform (R, L)

L = Transform (L, R)

L.TimeStamp.increment(R.site)

Site.TimeStamp.increment(R.site)

Execute R

Given Remote op, R, concurrent
with local ops L1, L2, .. LN

For each L

10

9

ALGORITHM AND PROOF OF CORRECTNESS

S11,21

S11 S21

S

Distributed Merge

Site1 Site 2

S12

S12, 21

Consistency!

RT = Transform (R, L)

L = Transform (L R)

L.TimeStamp.increment(R.site)

Site.TimeStamp.increment(R.site)

Execute R

Given Remote op, R, concurrent
with local ops L1, L2, .. LN

For each L

R= RT

N Users?

11

0

3-USER CONCURRENT

PC

1

PC

2

PC

3

1 0 0

v1

0 0 0

v2

0 0 1

v3

Local Buffer1 Local Buffer2 Local Buffer3

0 1 0

a b c

1 0I,1, a 0 0 1I,1, b 0 0 0I,1, c 1

11

1

13

PC

1

PC

2

PC

3

1 0 0

v1

0 0 0

v2

0 0 1

v3

Local Buffer1 Local Buffer2 Local Buffer3

0 1 0

a b c

1 0I,1, a 0 0 1I,1, b 0 0 0I,1, c 1

I,1, a

11

2

TRANSFORM AND APPLY RECEIVED COMMAND

PC

1

PC

2

PC

3

Local Buffer1 Local Buffer2 Local Buffer3

a b c

1 0I,1, a 0 0 1I,1, b 0 0 0I,1, c 1

I,2, a

a

1 0 0

v1

0 0 0

v2

0 0 10 1 0

11

3

TRANSFORM LOCAL COMMAND

PC

1

PC

2

PC

3

Local Buffer1 Local Buffer2 Local Buffer3

a b c

1 0I,1, a 0 0 1I,1, b 0 1 0I,1, c 1

I,2, a

a

1 0 0

v1

0 0 0

v2

0 0 10 1 0

11

4

23

PC

1

PC

2

PC

3

Local Buffer1 Local Buffer2 Local Buffer3

a b c

1 0I,1, a 0 0 1I,1, b 0 1 0I,1, c 1

I,2, a

a

I,1, b

1 0 0

v1

0 0 0

v2

0 0 10 1 0

11

5

TRANSFORM AND APPLY RECEIVED COMMAND

PC

1

PC

2

PC

3

Local Buffer1 Local Buffer2 Local Buffer3

a b c

1 0I,1, a 0 0 1I,1, b 0 1 0I,1, c 1

I,2, a

b

I,2, b

a

1 0 0

v1

0 0 0

v2

0 0 10 1 0

11

6

TRANSFORM LOCAL COMMAND

116

PC

1

PC

2

PC

3

Local Buffer1 Local Buffer2 Local Buffer3

a b c

1 0I,1, a 0 0 1I,1, b 0 1 1I,1, c 1

I,2, a

b

I,2, b

a

1 0 0

v1

0 0 0

v2

0 0 10 1 0

Characters in
descending id

order

But id of 1 and 2
not compared

11

7

DIFFERENT RECEIVE ORDER

PC

1

PC

2

PC

3

Local Buffer1 Local Buffer2 Local Buffer3

a b c

1 0I,1, a 0 0 1I,1, b 0 0 0I,1, c 1

1 0 0

v1

0 0 0

v2

0 0 10 1 0

11

8

23

PC

1

PC

2

PC

3

Local Buffer1 Local Buffer2 Local Buffer3

a b c

1 0I,1, a 0 0 1I,1, b 0 0 0I,1, c 1

I,1, b

1 0 0

v1

0 0 0

v2

0 0 10 1 0

11

9

TRANSFORM AND APPLY RECEIVED COMMAND

PC

1

PC

2

PC

3

Local Buffer1 Local Buffer2 Local Buffer3

a b

1 0I,1, a 0 0 1I,1, b 0 0 0I,1, c 1

I,2, b

1 0 0

v1

0 0 0

v2

0 0 10 1 0

c b

12

0

TRANSFORM LOCAL COMMAND

PC

1

PC

2

PC

3

Local Buffer1 Local Buffer2 Local Buffer3

a b

1 0I,1, a 0 0 1I,1, b 0 0 1I,1, c 1

I,2, b

1 0 0

v1

0 0 0

v2

0 0 10 1 0

c b

12

1

13

PC

1

PC

2

PC

3

Local Buffer1 Local Buffer2 Local Buffer3

a b

1 0I,1, a 0 0 1I,1, b 0 0 1I,1, c 1

I,2, b

1 0 0

v1

0 0 0

v2

0 0 10 1 0

c b

I,1, a

12

2

TRANSFORM AND APPLY RECEIVED COMMAND

PC

1

PC

2

PC

3

Local Buffer1 Local Buffer2 Local Buffer3

a b

1 0I,1, a 0 0 1I,1, b 0 0 1I,1, c 1

I,2, b

1 0 0

v1

0 0 0

v2

0 0 10 1 0

I,2, a

c a b

12

3

TRANSFORM LOCAL COMMAND

PC

1

PC

2

PC

3

Local Buffer1 Local Buffer2 Local Buffer3

a b

1 0I,1, a 0 0 1I,1, b 0 1 1I,1, c 1

I,2, b

1 0 0

v1

0 0 0

v2

0 0 10 1 0

I,2, a

c a b

12

4

PROBLEM WITH 2 USERS

 Order of concurrent messages influences output.

 Same output not guaranteed at a single site.

 Same output not guaranteed at all sites.

 Problem independent of whether local operation is

transformed.

 To understand better, need state transition diagram

12

5

MULTIPLE REMOTE CONCURRENT OPERATIONS

S12

S1 S2

S

Distributed Merge

At Site1 At Site 2

3-User Transition
Diagram?

12

6

N-USERS?
S1

S

O
3

12

7

PATH 1 FOR USER 1
S1

S

O
3

12

8

PATH 2 FOR USER 1
S1

S

O
3

The two paths must
give equivalent results.

In our example, our
transformation

functions did not!

Necessary condition for
new transformation

functions?

Each edge should have
a unique label

Edge can have multiple
labels

12

9

MULTIPLE PATHS AND EDGE LABELS
S1

S

O
3

T
(O

3
,
O

1
)

T
(T

(O
3
,
O

1
),

 T
(O

2
,
O

1
)

)

T(T(O3, O2), T(O1, O2))

T(T(O3, O1), T(O2, O1))

==

O1 T(O2, O1)

O2 T(O1, O2)

Constraints for
Transform

==

TP1

TP2

T
(O

3
,
O

2
)

T
(T

(O
3
,
O

2
),

 T
(O

1
,
O

2
)

)

13

0

LINEAR BUFFER VS INTERACTION MODEL
S1

S

O
3

T
(O

3
,
O

1
)

T
(T

(O
3
,
O

1
),

 T
(O

2
,
O

1
)

)

T(T(O3, O2), T(O1, O2))

T(T(O3, O1), T(O2, O1))

==

O1 T(O2, O1)

O2 T(O1, O2)

==

TP1

TP2

T
(O

3
,
O

2
)

T
(T

(O
3
,
O

2
),

 T
(O

1
,
O

2
)

)

Linear local buffer does not
suffice, local operation wrt

to which a remote
operation is transformed

depends on received
concurrent operations from

other sites

Constraints for
Transform

13

1

LINEAR BUFFER VS INTERACTION MODEL (POST

LECTURE) S1

S

O
3

T
(O

3
,
O

1
)

O1 no longer in buffer to
compute T(O2, O1)

Multiple concurrent paths from
a vertex, must store path

O1

Local Buffer1

T(O1, O3)

13

2

SUFFICIENT CONDITIONS?
S1

S

O
3

T
(O

3
,
O

1
)

T
(T

(O
3
,
O

1
),

 T
(O

2
,
O

1
)

)

T(T(O3, O2), T(O1, O2))

T(T(O3, O1), T(O2, O1))

==

O1 T(O2, O1)

O2 T(O1, O2)

==

TP1

TP2

T
(O

3
,
O

2
)

T
(T

(O
3
,
O

2
),

 T
(O

1
,
O

2
)

)

Creating functions meeting
TP2 has been problematic

Claim: TP1 and TP2
sufficient for N users

Constraints for
Transform

Google implementation?

13

3

lnch

lnch

lnch

SYNCHRONOUS RELAYED BROADCAST (REVIEW)

PC

1

PC

2

lunch PC

3

Relayer

I, 2, u

lunch

lunch

Delay (extra hop) state of operation
issue not same as state of execution,

though all sites are consistent

I, 2, u

13

4

ORDERING WITH ATOMIC BROADCAST (REVIEW)

PC

1

PC

2

l n c

1 2 3 4

l n c

1 2 3 4

h h

I,2, u

I,5, ?

I,2, u

I,5, ?

13

5

SECOND OPERATION EXECUTES (REVIEW)

PC

1

PC

2

l u n

1 2 3 4

l u n

1 2 3 4

c c

5

?

5

?h

6

h

6

Context of operation not
the same as when it was

issued

Common state but
“intention” violation

13

6

lnch

lnch

lnch

SYNCHRONOUS RELAYED BROADCAST

PC

1

PC

2

lunch PC

3

Relayer

I, 2, u

lunch

lunch

I, 2, u

13

7

lnch

lnch

lnch

ASYNCHRONOUS MERGED RELAYED BROADCAST

PC

1

PC

2

lunch PC

3

Relaying

Merger

lunch

lunch

I, 2, u

13

8

2 TO N USERS

 Can do one N-user merge

 Can do N 2-User messages

 Through a server

 Each client is consistent with the server

 Implies each client is consistent with the server

 But server does not issue any operations

 For each client, server operations are those issued by

other clients

13

9

REPLICATED ARCHITECTURE WITH CENTRAL

MERGER : LOCAL, REMOTE TIME STAMP

Replicated Mapping

UI

1

PC

1

UI

2

UI

3

PC

2

PC

3

Merger

Local Buffer2

Local Buffer3Local Buffer1

Local Buffer Local Buffer Local Buffer

#2 #1 +#3

#3#1 +#2#1#2 +#3

#1 #2 +#3 #3 #1 +#2

#2#1 +#3

O

OT

(OT)T
(OT)T

14

0

CLIENT AND SERVER RECEIVE ALGORITHM

For all other sites assume server
executed R

Client
Server

Consistency!

RT = Transform (R, L)

L = Transform (L R)

L.TimeStamp.increment(R.site)

Site.TimeStamp.increment(R.site)

Execute R

Given Remote op, R, concurrent
with local ops L1, L2, .. LN

For each L

R= RT

Consistency!

RT = Transform (R, L)

L = Transform (L R)

L.TimeStamp.increment(R.site)

Site.TimeStamp.increment(R.site)

Given Remote op, R, concurrent
with local ops L1, L2, .. LN

For each L

R= RT

14

1

TRANSFORM OPERATION FOR CLIENT-SERVER

CASE

InsertOperation TransformInsertInsert (InsertOperation R, InsertOperation L) {

Operation RT = deepClone();

if ((R.index > L.index) ||

(R.index === L.index && R.id < L.id))

RT.index = R.index + 1;

return RT ;

}

InsertOperation TransformInsertInsert (InsertOperation R, InsertOperation L) {

Operation RT = deepClone();

if ((R.index > L.index) ||

(R.index === L.index && !R.isServer()))

RT.index = R.index + 1;

return RT ;

}

P2P

Client-Server

14

2

CAUSALITY MANAGER

Causality-unaware

Communication system

Causality –Unaware

Application

Send

Filter

Receive

Filter
Causality

Manager

14

3

CLIENT OT MANAGER

OT-unaware

Communication system

OT –Unaware

Application

Send

Filter

Receive

Filter
OT

Manager

Single OT Manager?

One for each
sequence

14

4

SERVER OT MANAGER

OT-unaware

Communication system

OT –Unaware

Relayer

Send

Filter

Receive

Filter
OT

Manager

Receiver immediately
sends, no execution

14

5

CLIENT OT MANAGER (REVIEW)

OT-unaware

Communication system

OT –Unaware

Application

Send

Filter

Receive

Filter
OT

Manager

Single OT Manager?

One for each
sequence

14

6

SINGLE SERVER FILTER

OT-unaware

Communication system

OT –Unaware

Relayer

Send

Filter

Receive

Filter
OT

Manager

Receiver immediately
sends, no execution

Can use only one filter

Receiver does not
know identities of
destinations but
sender may (in

current
implementation filter

called before
multicasting)

Single send filter
sufficient

14

7

SERVER OT MANAGERS

OT-unaware

Communication system

OT –Unaware

Relayer

Send

Filter

OT

Manager

One OT Manager for
each client and

sequence

How to attach send
filter to server?

14

8

MESSAGE FILTER INTERFACE

public interface MessageFilter<MessageType> {

public void setMessageProcessor (MessageProcessor<MessageType>

newVal;

public void filterMessage(MessageType message);

}

Next stage in pipeline,
processing the filtered

message

ReceivedMessage
or SentMessage

Called by
communication system

when pipeline setup

Called by communication
system when new message

to be filtered available

14

9

SERVER MESSAGE FILTER INTERFACE

public interface ServerMessageFilter extends MessageFilter<SentMessage> {
public void userJoined(String aSessionName, String anApplicationName,

String userName);
public void userLeft(String aSessionName, String anApplicationName,

String userName);

}

15

0

SERVER FACTORY INTERFACE

public interface ServerMessageFilterCreator {
ServerMessageFilter getServerMessageFilter();

}

15

1

SEND FILTER (FACTORY) SELECTOR OR ABSTRACT

FACTORY

public class SentMessageFilterSelector {
static MessageFilterCreator<SentMessage> filterFactory =

new AMessageForwarderCreator<SentMessage>();
public static MessageFilterCreator<SentMessage> getMessageFilterCreator() {

return filterFactory;
}
public static void setMessageFilterCreator(

MessageFilterCreator<SentMessage> theFactory) {
filterFactory = theFactory;

}
}

15

2

SERVER OT MANAGERS

OT-Unaware

communication system

OT –Unaware

Relayer

Send

Filter

OT

Manager

One OT Manager for
each client and

sequence

How to attach send
filter to server?

15

3

CLIENT OT MANAGER

OT-Unaware

communication system

OT –Unaware

Application

Send

Filter

Receive

Filter
OT

Manager

Single OT Manager?

One for each
sequence

15

4

CLIENT INITIALIZATION

Init

For each List, L

Create Client Send and Receive Filter Factories, passing them OTManager so they can
pass them to the two filters

Create <List, OT Manager> Mapping ListOTManager

ListOTManager(L)  new OT Manager (ClientName, Not Server)

15

5

SEND FILTER TRACEABLE STEPS

Send Filter

On each user edit about OT List L

Ask ListOTManager(L) to time stamp edit

OTListEditSend the timestamped edit through message processor

Ask ListOTManager(L) to store copy of sent message

As in causality must ensure changing site time stamp does not change
message time stamp

15

6

RECEIVE FILTER TRACEABLE STEPS

Receive Filter

On each OTListEditReceived for list L received (through server)

OTListEditFlipped time stamp

Ask OTManager(L) to transform received edit

Pass transformed edit to message processor

15

7

OT MANAGER: INIT

Init (User Name, IsServer)

InitialOTTimeStampCreated

15

8

OT MANAGER: SEND STEPS

Store Sent Message

MessageBuffered

Time stamp edit

LocalSiteCountIncremented

Timestamp edit with local time stamp

15

9

OT MANAGER: RECEIVE FILTER COMMUNICATION

Process received timestamped edit

For each local message not concurrent with received edit

Local MessageUnBuffered

For each local buffered concurrent edit L

L= TransformationResult from Transform(L, R)

R= TransformationResult from Transform(R, L)

OTListEditRemoteCountIncremented in L

RemoteSiteCountIncremented

User name in trace step is name of user who executed the operation, for local edit, the
local user, for remote edit, the remote user (exact name, not server)

16

0

CLIENT OT MANAGER

OT-Unaware

communication system

OT –Unaware

Application

Send

Filter

Receive

Filter
OT

Manager

16

1

SERVER OT MANAGERS

OT-Unaware

communication system

OT –Unaware

Relayer

Send

Filter

OT

Manager

One OT Manager for
each client and

sequence

May want to extend
one list

implementation to
multiple lists

16

2

FILTER COMPOSITION

OT-Unaware

communication system

OT –Unaware

Relayer

Master Send

Filter

OT

Manager
List Send

Filter

List Send

Filter
OT

Manager

Could have used this architecture (master/delegate filters) also for clients, but client
filters were simple and there were two of them, so it is not clear creating two

additional master filters for clients is worth it

16

3

SERVER INITIALIZATION

Init

For each List, L

Create Send Filter Factory, passing it ServerFilterMapping

Create <List, ServerFilter> Mapping ServerFilter

ServerFilter(L)  new ServerFilter()

16

4

SERVER MESSAGE FILTER INTERFACE

public interface ServerMessageFilter extends MessageFilter<SentMessage> {
public void userJoined(String aSessionName, String anApplicationName,

String userName);
public void userLeft(String aSessionName, String anApplicationName,

String userName);

}

16

5

MASTER SERVER SEND FILTER: FORWARDING

Join

For each list L

ServerFilter(L).userJoined()

Leave

For each list L

ServerFilter(L).userLeft()

Set Message Processor

For each list L

ServerFilter(L).setMesageProcessor()

16

6

MASTER SERVER SEND FILTER

New Message

On each client edit of list L

ServerFilter(L).filterMessage()

16

7

SERVER SEND FILTER

Init

Create <User, OTManager> Mapping UserOTManager

Join

On join of each user U

UserOTManager(U)  new OTManager(U, Is Server)

16

8

SERVER SEND FILTER

New Message

On each OTListEditReceived from Sending User S

Ask UserOTManager(S) to create transform received edit, OT

Ask UserOTManager(R) to time stamp OTR

OTListEditFlipped time stamp

For each user R in UserOTManager other than S

Create unicast copy of message containing, OTR

By calling ASentMessage.toSpecificUser(message, R)

Send timestamped edit through message processor

Ask ListOTManager(R) to store copy of sent message

16

9

CENTRALIZED ALGORITHM

 Assume all users merge through central server

 Output is produced locally immediately

 Server keeps local buffer and timestamp for each client

 Each client treats server as second user and sends it each
command

 Instead of applying (possibly transformed) command to
its local state server sends time-stamped command to
each remote client

 Client transforms it further if it has executed
concurrently

 Client assumes command executed directly by server

 Each client consistent with server, and thus with each
other client

 Unique ordering of all commands from remote machines

17

0

HISTORY

 dOPT (Distributed Operation Transformation) –

Ellis and Gibbs ’89

 Did not transform local operation

 Had known problem with multiple users

 adOPTed (Ressel et al ‘96)

 Transformed local operation

 Give conditions for N-user replicated merging

 Jupiter (Nichols, Curtis, et al ‘95)

 Centralized merging

 Inventors of LiveMeeting

 Implemented in GoogleWave

