
MERGE POLICIES 

Prasun Dewan 

Department of Computer Science 

University of North Carolina at Chapel Hill 

dewan@cs.unc.edu 

mailto:dewan@cs.unc.edu


2 

CONCURRENT INTERACTION 

PC 

1 

PC 

2 

0 0 4 0 5 0 5 0 

I,6, ? 

I,6, ? 

l u n c 

1 2 3 4 5 

h ? 

6 

l u n c 

1 2 3 4 5 

h 

6 

? 

Insert same 
character at 

same position? 



3 

CONCURRENT INTERACTION 

PC 

1 

PC 

2 

0 0 4 0 5 0 5 0 

I,6, ? 

I,6, ? 

l u n c 

1 2 3 4 5 

h ? 

6 

l u n c 

1 2 3 4 5 

h 

6 

? ? 

7 7 

? 

Insert same 
character at 

same position? 

Duplicate 
character! 

I,6, ? 

I,7, ? 

Work 
preserving 

Does not meet 
“user intention” 



4 

CONCURRENT INTERACTION 

PC 

1 

PC 

2 

0 0 4 0 5 0 5 0 

I,6, ? 

I,6, ? 

l u n c 

1 2 3 4 5 

h ? 

6 

l u n c 

1 2 3 4 5 

h 

6 

? 

InsertOperation TransformInsertInsert (InsertOperation Remote, InsertOperation L ocal)  { 

 Operation RemoteT = Remote.clone(); 

 if (Remote.index  == Local.index  && Remote.element.equal(Local.element)) 

   return NullOperation  

 if (Remote.index > Local.index ||  

                      (Remote.index === Local.index  &&  Remote.id  < Local.id))  

   RemoteT.index = Remote.index + 1;  

 return RemoteT ; 

}  

Meets “user intention” 



5 

GOAL OF CONSISTENCY 

 At quiescence (no user interacting) all displays are 

the same 

 When concurrent command is executed, could ignore it 

and clear object 

 Meets TP1 (and TP2!) 

 Meets user intention 

 How to describe what it is? 

 Even if we cannot describe it, how to describe what 

algorithm does 

 More than one “reasonable” merge acceptable 

 Application-specific  merger 

 Application-specific merge procedure 

 Declarative scheme? 

 

 



6 

ASSUMPTIONS AND INTENTION ISSUE 

One-level sequence with inserts only. 

Inserts at different positions are both 
accepted  (as define by initial 

transformation functions). 

If both users insert the same element at 
the same position,  only one is executed. 

What happens when both users insert 
different elements at the same position?  



7 

MERGE MATRIX FOR INSERTABLE SEQUENCES 

Sequence Insert(#) 

Insert(#) 

Server Operation at  
Same index  

Client operation 
at same index 

Cell Choices? 

A particular algorithm can 
give the application and/or 
user a subset of choices in 

the merge matrix 

Describes merge 
semantics of different 

insert operations at 
same index 

Default value for 
flexible algorithm? 

Merge matrix not 
relevant when indices 

are different or 
insertions are the same 



8 

CONCURRENT OPERATION 

h 

hi h1 

??? 

User intention? 

Conflict! 



9 

ACCEPT BOTH 

Accept both as they 
can resolve  the  

conflict 

h 

hi h1 

h1i 



10 

ACCEPT NONE 

Accept none as 
there is a conflict 

and cannot  afford a 
wrong merge 

h 

hi h1 

h 



11 

ACCEPT SERVER 

Accept earlier  
(server) so later 

person can see it 
and correct it 

h 

hi h1 

hi 



12 

ACCEPT CLIENT 

Accept  later (client) 
as more recent 

information  
available 

h 

hi h1 

h1 



13 

MERGE MATRIX FOR INSERTABLE SEQUENCES 

Sequence Insert(#) 

Insert(#) 

Server Operation at  
Same index  

Client operation 
at same index 

Server 

Client 

None 

Both 

Cell Choices 

A particular algorithm can 
give the application and/or 
user a subset of choices in 

the merge matrix 

Describes merge 
semantics of different 

insert operations at 
same index 

Default value for 
flexible algorithm? 

Merge matrix not 
relevant when indices 

are different or 
insertions are the same 



14 

DEFAULT FOR INSERTABLE SEQUENCES 

Sequence Insert(#) 

Insert(#) Both 

Default value for 
flexible algorithm 

Delete and Modify 
Operations? 

Server 

Client 

None 

Both 



15 

MERGE MATRIX FOR INSERTABLE SEQUENCES 

Sequence Insert(#) Delete(#) Replace(#) 

Insert(#) 

Delete(#) 

Replace(#) 

Server 

Client 

None 

Both 

Describes merge semantics of different 
sequence operations at same index 

Default values for 
flexible algorithm? 



16 

DEFAULTS FOR GENERAL SEQUENCES 

Deletes at the same 
index always the same 
operation and hence 

NoOp 

Sequence Insert(#, a) Delete(#) Replace(#) 

Insert(#, b) Both Both Both 

Delete(#) Both NoOp Server 

Replace(#) Both Client Server 

Server 

Client 

None 

Both 

Replacement means it 
is relevant and perhaps 
should not be deleted Tables? 



17 

GENERAL SEQUENCES AND REPLACE/DELETE 

bat 

cat at 

Replace(1, “c’) Delete(1, “c’) 

cat 



18 

TABLE MATRIX 

Table Put (key) Delete(key) 

Put (key) 

Delete(key) 

Server 

Client 

None 

Both 

Describes merge 
semantics of different 
table operations at key 

Default values? 

Assume operations at 
different keys are non 

conflicting 



19 

DEFAULTS FOR GENERAL TABLES 

Putting the same value 
at the same key is a 

NoOP 

Table Put (key) Delete(key) 

Put (key) Server Client 

Delete(key) Server NoOp 

Server 

Client 

None 

Both 



20 

TABLES 

put (“bob, false) remove (“bob”) 



21 

RECORD MATRIX 

Putting the same value 
at the same property is 

a NoOP 

Record Set (Property) 

Set (Property) 
Server 

Client 

None 

Both 

Describes merge 
semantics of different 
record operations at 

same property 

Default value? 



22 

DEFAULTS FOR RECORD 

Record Set (Property) 

Set (Property) Server 
Server 

Client 

None 

Both 

Accept earlier  (server) 
so later person can see 

it and correct it 



23 

BEANS/RECORDS 

set (“ticketPrice”, 24.0) set (“ticketPrice”, 24.1) 



24 

ATOMIC OBJECTS 

Accept earlier  
(server) so later 

person can see it 
and correct it 

23.5 

24 24.1 

24.1 

set (24.0) 
set (24.1) 



25 

ATOMIC MATRIX 

Atomic Set () 

Set () Server 



26 

GENERAL MERGE MATRIX 

Type Operation1 … OperationN 

Operation1 Default11 ... Default1N 

… … … … 

OperationN DefaultN1 … DefaultNN 

Some type-specific operand 
(index, key, value) whose value 

determines when two 
dissimilar operations are 

compared 

Server 

Client 

None 

Both 



27 

ASYNCHRONOUS BUFFERED CHANGES 

Joe UNC 

Joe UNC- 

Joe UNC-C 

Joe UNC-CH 

Joe UNCC 

Joe UNCC-CH 

Can we extend model to add 
the option of  accepting  all of 

server or client changes to 
affiliation? 

“Joe” and “UNC” are 
sequences in a record 

with name and affiliation 
properties 

Need to capture 
multiple levels of 

changes 



28 

HIERARCHICAL DOCUMENT 

Record 

J o e U N C 

Sequence 

Set(Affiliation) 

I(4, ‘-’) 

Name Affiliation 

Sequence 

Record 

J o e U N C 

Sequence 

Name Affiliation 

Sequence 

Record 

J o e U N C 

Sequence 

Name Affiliation 

Sequence 

- C H C 

I(5, ‘C’) I(6, ‘H’) 

Set(Affiliation) 

I(4, ‘C’) 



29 

LEVEL 1 STEP 

Record 

J o e U N C 

Sequence 

Set(Affiliation) 

I(4, ‘-’) 

Name Affiliation 

Sequence 

Record 

J o e U N C 

Sequence 

Name Affiliation 

Sequence 

Record 

J o e U N C 

Sequence 

Name Affiliation 

Sequence 

C C H C 

I(5, ‘C’) I(6, ‘H’) 

Set(Affiliation) 

I(4, ‘C’) 

U N C C 

Hot to go to next 
level? 

Record Set (Property) 

Set (Property) Server 



30 

MERGE NEXT LEVEL OPTION 

Type Operation1 … OperationN 

Operation1 Default11 ... Default1N 

… … … … 

OperationN DefaultN1 … DefaultNN 

Server 

Client 

None 

Both 

Merge 



31 

LEVEL 1 STEP 

Record 

J o e U N C 

Sequence 

Set(Affiliation) 

I(4, ‘-’) 

Name Affiliation 

Sequence 

Record 

J o e U N C 

Sequence 

Name Affiliation 

Sequence 

Record 

J o e U N C 

Sequence 

Name Affiliation 

Sequence 

- C H C 

I(5, ‘C’) I(6, ‘H’) 

Set(Affiliation) 

I(4, ‘C’) 

Record Set (Property) 

Set (Property) Merge 

U N C C 



32 

LEVEL 2 STEP 

Record 

J o e U N C 

Sequence 

Set(Affiliation) 

I(4, ‘-’) 

Name Affiliation 

Sequence 

Record 

J o e U N C 

Sequence 

Name Affiliation 

Sequence 

Record 

J o e U N C 

Sequence 

Name Affiliation 

Sequence 

- C H C 

I(5, ‘C’) I(6, ‘H’) 

Set(Affiliation) 

I(4, ‘C’) 

U N C C 

Hot to go to next 
level? 

Sequence Insert(#) Delete(#) Replace(#) 

Insert(#) Both Both Both 

Delete(#) Both NoOp Server 

Replace(#) Both Client Server 

- C H 



33 

InsertOperation TransformInsertInsert (InsertOperation R, InsertOperation L)  { 

 Operation RT = deepClone(); 

 if ((R.index > L.index) ||  

                      (R.index === L.index  &&  R.isServer()))  

   RT.index = R.index + 1;  

 return RT ; 

}  

MERGE MATRIX VS. MERGE PROCEDURES 

InsertOperation TransformInsertInsert (InsertOperation R, InsertOperation L)  { 

 Operation RT = deepClone(); 

 if ((R.index > L.index) ||  

                      (R.index === L.index  &&  !R.isServer()))  

   RT.index = R.index + 1;  

 return RT ; 

}  

Sequence Insert(#) Delete(#) Replace(#) 

Insert(#) 

Delete(#) 

Replace(#) 

Server 

Client 

None 

Both 

P
ro

ced
u

ral 

Declarative 

Declarative  is higher level 
allows easy customization 

But it is less expressive 



34 

MERGE MATRIX 

Covered all asynchronous merge policies known in 94-97 

Had mechanisms to extend the default matrix 



35 

REFERENCE FOR MERGE MATRIX 

 Munson and Dewan ‘94, ’97 

 Showed that all merge procedures at that 

time for spreadsheets, file systems, 

databases, .. could be supported using the 

merge matrix 

 Merge matrix entry could itself have merge 

procedures in it for a specific combination of 

operations or level  

 

 


