
TYPES OF INTERACTORS 

Prasun Dewan 

Department of Computer Science 

University of North Carolina at Chapel Hill 

dewan@cs.unc.edu 

Code available at: https://github.com/pdewan/ColabTeaching 

 

mailto:dewan@cs.unc.edu
https://github.com/pdewan/ColabTeaching
https://github.com/pdewan/ColabTeaching


2 

PRE-REQUISITES 

 Model-Interactor Separation 



3 

INTERACTOR TYPES 

Model 

Interactor UI Code 

Computation 

Code 

Types of interactors? 



4 

TYPES OF INTERACTORS 

Console-based UI 

GUI 

Graphics 

Three levels of abstraction 



5 

Toolkit-based 

(GUI) 

Interactor 

ABSTRACTION LAYERS 

Windows 

Widgets (Text Component, 

Button, Slider) 

Console Text 

Component  

Window-

based 

(Graphics) 

Interactor 

Console-based 

Inetractor 

Flexibility vs. Automation 

Tradeoff in Abstraction Design 



6 

Toolkit-based 

(GUI) 

Interactor 

ABSTRACTION LAYERS (REVIEW) 

Windows 

Widgets (Text Component, 

Button, Slider) 

Console Text 

Component  

Window-

based 

(Graphics) 

Interactor 

Console-based 

Inetractor 

Flexibility vs. Automation 

Tradeoff in Abstraction Design 



7 

RELATIONSHIP BETWEEN INTERACTOR AND 

DIFFERENT KINDS OF OBJECTS 

Model 

Interactor/Editor/

View 

Helper UI-

Specific Objects 

Helper objects can 

be at varying levels 

of abstraction 



8 

Window System 

Window Client 

User 

Window are untyped rectangular 
screen areas in  which each point 

is a pixel 

Input indicates keyboard and/or 
mouse operations 

‘a’ ^, w1, x, y 

draw ‘a’, w1, x, y 

Output draws text, shapes 

user presses 
‘a’ 

WINDOWS 

draws ‘a’ at  cursor 
position 



9 

EXAMPLE 

Draws the last character entered at the last 
position at which the mouse was clicked 

Draws a carat next to the character and a 
circle around it 



10 

USING JAVA WINDOW TO DEFINE A WIDGET  

public class ACircledCharacterDrawer extends JFrame implements 
MouseListener, KeyListener  { 
… 
// called when an enqueued paint event for this component is dequeued 
public void paint (Graphics g) { 
  super.paint(g); // clears the window 
  // better to use FontMetrics to center circle 
  g.drawOval(charX - X_OFFSET, charY - Y_OFFSET, DIAMETER, DIAMETER); 
  g.drawLine(charX, charY, charX, charY - CARAT_LENGTH);   
  g.drawString("" + lastChar, charX, charY); 
} 
public void keyTyped(KeyEvent event) { 
  setChar(event.getKeyChar()); 
} 
public void setChar(char newValue) { 
  lastChar = newValue; 
  repaint();// enqueues a paint event 
} 
public void mousePressed(MouseEvent event) { 
  charX = event.getX(); 
  charY = event.getY(); 
  repaint(); // enqueues a paint event 
}   

Window 
Widget = Window +  

reusable functionality 

Reusable 
functionality 

In Java >= 1.1 input is provided through the 
observer pattern 

Input notification 
method 

Notification method called by a lower-level 
abstraction == callback 

Output painter 

This subclass of a window is listening to its 
own  window events (registration methods 

in constructor not shown) 



11 

Widget 

Widget Client 

User 

Widgets are typed windows 

Input callbacks are widget specific 
(e.g. slider moved, text changed, 

text inserted) 

textEntered() 

setText() 

Output and other calls are widget 
specific (change text or slider 

position) 

User enter a 
line of text 

WIDGETS AND TOOLKIT 

Toolkit = Set of all Widgets 

e.g. AWT, Swing 
Updates text 

getText() 



12 

WIDGET USE EXAMPLE 

JTextField jTextField = new JTextField("JTextField: Edit me"); 
AJTextFieldListener jTextFieldListener = new 
AJTextFieldListener(jTextField); 
jTextField.addActionListener(jTextFieldListener); 
jTextField.getDocument().addDocumentListener(jTextFieldListener); 

public class AJTextFieldListener implements ActionListener, 
DocumentListener{ 
  JTextField jTextField; 
  public AJTextFieldListener(JTextField aJTextField) { 
    jTextField = aJTextField; 
  } 
  public void actionPerformed(ActionEvent e) { 
    System.out.println("New text entered:"  + jTextField.getText()); 
  } 
  public void insertUpdate(DocumentEvent e) { 
    int newPos = e.getOffset(); 
    char newChar = jTextField.getText().charAt(newPos); 
    System.out.println("Character " + newChar + "  inserted at " + 
newPos); 
  } 
   … 

Notification of new 
line entered 

Notification of new 
character insertion 

Widget creation and 
observer registration 



13 

ATOMIC VS COMPOSITE WIDGETS/WINDOWS 

Atomic window (JFrame) 

Atomic component of a 

widget/window tree 

Root component is top-

special level window (Frame 

or JFrame) JFrame 

JTextField 

Top-level window 

manipulated by 

(customizable) window 

manager which puts border 

and provides operations to 

move, resize, iconify it 



14 

CREATING, LAYING-OUT AND DISPLAYING A 

HIERARCHY 

JFrame frame = new JFrame(theTitle); 
frame.setLayout(new GridLayout(5, 2)); 
JTextField jTextField = new JTextField("JTextField: Edit me"); 
… 
frame.add(jTextField); 
… 
frame.setSize(300, 300); 
frame.setVisible(true); 
… 

Link creation 

Parent node 

Child node 

(Sub)tree 
layout 

Display Tree 

In some systems a child is created as part of a 

parent: parent specified when child created 

Here child created independent of parent and 

can be re-parented 



15 

DIFFERENT KINDS OF (PREDEFINED) HELPER UI 

ABSTRACTIONS 

Interactor 
System.out, 

System.in 

Interactor 
Widget 

Hierarchies 

Interactor 
Window 

Hierarchies 

Interactor parses input 

unparses output 

Interactor creates widget 

hierarchies, defines widget 

callbacks and invokes widget 

calls 

Interactor creates windows 

hierarchies, processes mouse 

and key events, and draws 

shapes 

Additional programmer-defined objects can and should 

be defined (e.g. different classes of widget  listeners) 



16 

INTERACTOR-UI ABSTRACTION DECOUPLING 

Interactor 
System.out, 

System.in 

Interactor 
Widget 

Hierarchies 

Interactor 
Window 

Hierarchies 

Interactor’ 

Interactor 

Interactor 

An interactor can be bound to different kinds of UI 

abstractions 

A UI abstraction can be bound to different  kinds of 

interactors 



17 

SEPARATION IN CONSOLE-BASED UIS 

Interactor 
System.out, 

System.in 
Interactor’ 

Eclipse 
Interactor 

Custom interactor for 
launching multiple 

processes 



18 

INTERACTORS CAN BE STRUCTURED 

Interactor 

Interactor 

When user interfaces are composed 

Interactor 

Subinteractors can intract directly with 

models or through parent interactoes  



19 

SUMMARY OF CONCEPTS IN INTERACTORS 

 Window, Widget, and Console Layers 

 Calls (callbacks) invoked by higher (lower) layer on lower 
(higher) layer 

 Window: Rectangular Area  
 Input (callbacks): Key, Mouse Events 

 Output (calls) : shape draw calls (drawLine, …) 

 Widget: Window embellished with higher-level behavior 
 Input (calls): arbitrary (e.g. new text changed) 

 Output (callbacks): arbitrary (e.g. change text) 

 Console: a text widget used to enter and display text lines 

 Window/Widget Hierarchies: 
 Trees associated with layouts 

 Usually made visible after they have been created 

 An interactor uses one of more of the UI abstractions above as 
helper objects 

 Interactor and the UI abstraction objects are decoupled 
 System.in, System.out used in different kinds of interactors 

 

 



20 

MODEL/INTERACTOR PATTERN 

Model 

Interactor UI Code 

Computation 

Code 

Types of interactors? 

Types of models? 

 


