
GROUP COMMUNICATION

(APPLICATION-LEVEL

MULTICAST)

Prasun Dewan

Department of Computer Science

University of North Carolina at Chapel Hill

dewan@cs.unc.edu

Code available at: https://github.com/pdewan/ColabTeaching

mailto:dewan@cs.unc.edu
https://github.com/pdewan/ColabTeaching
https://github.com/pdewan/ColabTeaching

2

PRE-REQUISITES

 Model-Interactor Separation

 Interaction Types

 Model Types

3

FROM 1-USER TO COLLABORATIVE

Collaboration
Functions

4

ECHOER TO IM

5

DISTRIBUTED DEMOERS

public class ALauncherOfIM extends AConsoleModelBasedLauncher
implements LauncherOfIM {
 public Class[] mainClasses() {
 return new Class[] {
 sessionManagerClass(),
 aliceClass(),
 bobClass(),
 cathyClass()
 };
}

Can do executeAll or double click on each class in sequence

Can simply run each class from programming environment

6

ANATOMY /ARCHITECTURE

Model

Interactor/Editor/

View

Architecture = Program

components and their

interaction

Components = objects?

7

U1 U2 U3

DISTRIBUTED PROCESSING

Local

Output

Displaying

Process

Local Input

Intercepting

Process

Local

Output

Displaying

Process

Input Output Output

Direct or indirect distributed comm.

Other

processes

8

VIEWING PROCESSES
A process is created by the

Operating System each

time a program (in Java a

main method) is run

Same program may be

executed multiple times

to create multiple

processes

9

PROCESS VS OBJECT VS DISTRIBUTED

ARCHITECTURE

Process1

Process3

Process2

Computer1 Computer2

Process architecture

describes the

processes that

implement some

potentially

distributed

application and the

communication

among these

processes

Object architecture describes the

objects and the communication

among objects in a process

Distributed

architecture maps

processes to

computers

In our demos and

testing we will map

them all to one

machine

10

SINGLE-USERCOLLABORATIVE ARCHITECTURE

Model

Interactor/Editor/

View

Interactor/Editor/

View

Replace local calls with

“transparent” remote calls?

Remote calls are not trasparent –

must at least deal with

communication errors

Blocking call and round trip delay

to get local feedback

Central bottleneck which may not

always be available

No awareness of others

Sharing at the model level

Architecture is too constrained!

Put the model on one machine

and an interactor of a user on

his/her machine

11

ARBITRARY ARCHITECTURE?

Nothing said about other processes and

the nature of communication

Commonality not exploited

U1 U2 U3

Local

Output

Displaying

Process

Local Input

Intercepting

Process

Local

Output

Displaying

Process

Input Output Output

Other

processes

12

ABSTRACTION LAYERS IN COLLABORATION

TOOLKIT?

???

???

???

13

ABSTRACTION LAYERS IN COLLABORATION

TOOLKIT?

Interprocess Communication

(Sockets, RMI, ..)

???

???

Inter-process communication allows two

processes on different hosts to communicate

with each other

General form: send (host, port, message)

14

PROCESS VS OBJECT VS DISTRIBUTED

ARCHITECTURE (REVIEW)

Process1

Process3

Process2

Computer1 Computer2

Process architecture

describes the

processes that

implement some

potentially

distributed

application and the

communication

among these

processes

Object architecture describes the

objects and the communication

among objects in a process

Distributed

architecture maps

processes to

computers

In our demos and

testing we will map

them all to one

machine

15

ARCHITECTURE VS. DISTRIBUTED ABSTRACTIONS

Interprocess Communication

(Sockets, RMI, ..)

???

???

Inter-process communication allows two

processes on different hosts to communicate

with each other

General form: send (host, port, message)

16

BUILDING IM USING IPC

IM

send(h1, p1, msg) send(h3, p3, msg)

IPC

IM IM

IPC IPC

msg msg msg

U1 U2 U3

How did H2 know about H1 and H3?

Static (hardwired) dynamic “sessions”?

17

DYNAMIC SESSIONS

U1 U2 U3

send(hSM, pSM, h1, p1) send(hSM, pSM, h2, p2) send(hSM, pSM, h3, p3)

send(h1, p1, {h2, p2 })

IM

Session

Manager send(h2, p2, {h1, p1 })

send(h3, p3, {h1, p1}, {h2, p2}) send(h2, p2, {h3, p3 }) send(h1, p1, {u3, p3 })

IM

IPC

IM IM

IPC IPC

18

DYNAMIC P2P

send(h1, p1, msg) send(h3, p3, msg)

msg msg msg

U1 U2 U3

IM

Session

Manager

IM

IPC

IM IM

IPC IPC

19

IPC IPC

U1 U2 U3

DYNAMIC SESSIONS (RELAYED)

msg msg msg

IM

Session

Manager

Many reasons for using relayed

(consistency, security, performance)

Higher-level abstraction than IPC?

IM

IPC

IM IM

send(hSM, pSM, msg)

Why

indirection?

20

ABSTRACTION LAYERS IN COLLABORATION

TOOLKIT?

Interprocess Communication

(Sockets, RMI, ..)

Group Communication

(Multicast)

???

21

APP-SPECIFIC SESSION MANAGER

U1 U2 U3

send(hSM, pSM, h1, p1) send(hSM, pSM, h2, p2) send(hSM, pSM, h3, p3)

send(h1, p1, {h2, p2 })

IM

Session

Manager send(h2, p2, {h1, p1 })

send(h3, p3, {h1, p1}, {h2, p2}) send(h2, p2, {h3, p3 }) send(h1, p1, {h3, p3 })

IM

IPC

IM IM

IPC IPC

22

IPC IPC IPC

APP-SPECIFIC SESSION MANAGER (NO

CALLBACKS)

U1 U2 U3

send(hSM, pSM, h1, p1) send(hSM, pSM, h2, p2)

IM

Session

Manager

send(hSM, pSM, h3, p3)

IM IM IM

23

IPC IPC IPC

GENERIC SESSION MANAGER (ONE PER

COLLABORATIVE “SESSION”)

U1 U2 U3

send(hSM, pSM, h1, p1) send(hSM, pSM, h2, p2) send(hSM, pSM, h3, p3)

Generic

Session

Manager

Should clients have to know about ports or send its host?

IM IM IM

24

Group

Comm.

Group

Comm.

Group

Comm.

GENERIC SESSION MANAGER (CLIENT LIBRARY,

ONE PER COLLABORATIVE SESSION)

U1 U2 U3

join(hSM) join(hSM) join(hSM)

Generic

Session

Manager

Library will have to be told
about session manager host

for this application

IPC send replaced by
group comm. join

Library could fill in port a la Web browser and can
also register own port and send its host

IM IM IM

Local library at
each site

send(h3, p3, {h1, p1}, {h2, p2})

As before session manager
can send host and port
number to applicatiom

25

DYNAMIC P2P, NO MULTICAST

send(h1, p1, msg) send(h3, p3, msg)

msg msg msg

U1 U2 U3

Generic

Session

Manager

IM IM IM

Group

Comm.

Group

Comm.

Group

Comm.

Better
communication

support?

26

DYNAMIC P2P APPLICATION-LEVEL MULTICAST

toOthers(msg)

msg msg msg

U1 U2 U3

Generic

Session

Manager

IM IM IM

Group

Comm.

Group

Comm.

Group

Comm.

Application code does not have to define
a session participant callback and

maintain information about participants

Application code can be unaware of
specific users

Application-level multicast:
Multiple messages delivered to

network layer

Single message delivered to
network layer which can result
in a single message being put

on the wire for multiple
destinations

27

Generic

Session

Manager

Group

Comm.

Group

Comm.

Group

Comm.

U1 U2 U3

DYNAMIC SESSIONS (RELAYED)

msg msg msg

IM IM IM

toOthers(msg)

28

FLEXIBLE GROUP COMMUNICATION

toOthers(msg)

msg msg msg

U1 U2 U3

Generic

Session

Manager

IM IM IM

Group

Comm.

Group

Comm.

Group

Comm.

Same logical call made
in both relayed and p2p

case

Library can support both
forms of communication

It can choose based on
security and performance

characteristics (but not
consistency)

It can let application
choose

29

SPECIFYING ROUTE AT JOIN TIME: P2P

toOthers(msg)

msg msg msg

U1 U2 U3

Generic

Session

Manager

IM IM IM

Group

Comm.

Group

Comm.

Group

Comm.

join(hSM, Direct)

Sent Directly
Each site chooses

independently

30

Generic

Session

Manager

Group

Comm.

Group

Comm.

Group

Comm.

U1 U2 U3

SPECIFYING ROUTE AT JOIN TIME: RELAYED

msg msg msg

IM IM IM

toOthers(msg)

join(hSM, Relayed)

Relayed communication

31

ADDITIONAL MULTICAST GROUPS?

Generic

Session

Manager

Group

Comm.

Group

Comm.

Group

Comm.

U1 U2 U3

msg msg msg

IM IM IM

toOthers(msg)

All session members other
than the caller

32

TOALL

Generic

Session

Manager

Group

Comm.

Group

Comm.

Group

Comm.

U1 U2 U3

msg msg msg

IM IM IM

toAll(msg)

All session members including
the caller

33

MUD (MULTI-USER DUNGEONS): OTHER GROUPS

 say | " your utterance here
 Everyone in the room can 'hear' what you 'say',
or see what you type.

 whisper playername = your whisper here
 ... so only the player(s) named, and in the room,
can hear your whisper.

 mutter player = message
 Mutters message to everyone in the same room
EXCEPT player.

toOthers(msg)

toClient(user, msg)

toClients({u1, .., un}, msg)

join(hSM, u2, Relayed)

Logical user id (credentials) rather than
physical host given as argument

User-aware application
code but not host and

port aware

Curtis, P. (1992), Muddings: Social Phenomena in Text-Based Virtual Reality. 1992: Xerox Palo Alto Research Center.

34

Generic

Session

Manager

Group

Comm.

Group

Comm.

Group

Comm.

U1 U2 U3

SINGLE SESSION PER SESSION MANAGER

msg msg msg

IM IM IM

toOthers(msg)

join(hSM, u2, Relayed)

Multiple sessions?

35

SINGLE SESSION PER SESSION MANAGER

IM IM IM

Generic

Session

Manager

IM IM

Generic

Session

Manager

36

MULTIPLE SESSIONS PER SESSION MANAGER

IM IM IM

Generic

Session

Manager

IM IM

Session members of one IM
should not know or be notified
about members of other IMs

In relayed, messages not relayed
to members of other session

join(hSM, s1, u2, Relayed)

join(hSM, s2, u2, Relayed)

Fewer servers

Shared session
directory

Less setup
overhead

Join now requires access control,
a user may be allowed a subset of

sessions

37

ASYMMETRIC VS. SYMMETRIC JOINS

IM IM IM

Generic

Session

Manager

IM IM

join(hSM, s1, u2, Relayed)

join(hSM, s2, u2, Relayed)
Create call?

Asymmetric or multiple
programs: One user creates and

joins and other users join and
race conditions

Single symmetric program: If
session does not exist, create it,
and join; otherwise simply join

38

MULTIPLE SESSIONS?

39

MULTIPLE SESSIONS?

Are text chat, code share and audio video
separate sessions?

They are different application sub sessions in same session, no access control required to
join applications once user is in session, and each user knows about users of each

application

40

SESSION WITH APPLICATION SUB-SESSIONS

Session

Alice IM Editor Cathy Bob

Alice Bob Cathy Bob Cathy

Need to keep users of applications separate so that
multicast calls can distribute messages correctly, so

users in application sub-sessions

Users in session can interact
with any application in

session – access control done
when user joins session

User notified of all
applications added to session
and all users interacting with

the application

41

MULTIPLE APPLICATIONS PER SESSIONS

IM IM IM

Generic

Session

Manager

Editor Editor

join(hSM, s1, u2, IM, Relayed)

join(hSM, s1, u2 , Editor, Relayed)

If session not created, create it

If application != null and not in
session, add it

If user not in session, add it

If application != null add user to
application sub-session

42

FLAT SESSIONS (REVIEW)

Session

Alice Cathy Bob

join(hSM, s1, Cathy, Relayed)

Some process running on behalf of Cathy
joins the session

Session manager oblivious of application
implemented by process

Session manager oblivious of application
implemented by process

43

MOTIVATING SUB-SESSIONS

Similar sub-sessions supported by Google
Hangout, LiveMeeting, WebEx, ….

44

SESSION WITH APPLICATION SUB-SESSIONS

Session

Alice IM Editor Cathy Bob

Alice Bob Cathy Bob Cathy

join(hSM, s1, Cathy, IM, Relayed)

join(hSM, s1, Cathy, Editor, Relayed)

David

join(hSM, s1, David, null, Relayed)

David’s process cannot send or receive messages and simply listens to
session callbacks, which can inform its user of session activity and join

application sub-sessions

Join session without joining
any subsession?

45

SESSION JOIN SEMANTICS

IM IM IM

Generic

Session

Manager

Editor Editor

join(hSM, s1, u2, IM, Relayed)

join(hSM, s1, u2 , Editor, Relayed)

If session not created, create it

If application not in session, add it

If user not in session, add it

Add user to application sub-session

46

Generic

Session

Manager

Group

Comm.

Group

Comm.

Group

Comm.

U1 U2 U3

SYNCHRONIZATION

msg msg msg

IM IM IM

toOthers(msg)

join(hSM, s1, u2, IM, Relayed)

joined (s1, u2, IM,

newSession?, newApp?) received (u2, msg)

When do these calls/callbacks return:
Synchronous vs. asynchronous?

Semantics specified?

47

SYNCHRONOUS VS. ASYNCHRONOUS

operation(<params>)

Synchronous: Operation invoker waits until the operation “finishes”

Asynchronous: Operation invoker does not wait until completion

Some other operation (e.g. callback) needed to wait for result or
completion status

write(file, data)

toOthers(msg)

48

SYNCHRONOUS VS. ASYNCHRONOUS VS. BLOCKING

OPERATIONS

operation(<params>)

Blocking: Operation invoker waits, unblocking possibly before, until, or
after operation completion (e.g. when data given to local OS)

Synchronous is always blocking

Blocking is not always synchronous

write(file, data)

toOthers(msg)

49

Generic

Session

Manager

Group

Comm.

Group

Comm.

Group

Comm.

U1 U2 U3

OPERATION COMPLETION: CALLS VS. CALLBACKS

msg msg msg

IM IM IM

toOthers(msg)

join(hSM, s1, u2, IM, Relayed)

joined (s1, u2, IM,

newSession?, newApp?) received (u2, msg)

Callback finishes when it finishes
execution (at the other site)

Call finishes when the call and any
associated callbacks finish

50

Generic

Session

Manager

Group

Comm.

Group

Comm.

Group

Comm.

U1 U2 U3

CALLS AND CALLBACKS: SYNC VS ASYNC?

msg msg msg

IM IM IM

toOthers(msg)

join(hSM, s1, u2, IM, Relayed)

joined (s1, u2, IM,

newSession?, newApp?) received (u2, msg)

Synchronous call: Local response effected
Synchronous call/callback: Local and

remote response affected

51

INTER-LAYER DEPENDENCIES

Interprocess Communication

(Sockets, RMI, ..)

Group Communication

(Multicast)

???

If lower-level layer, is asynchronous can we make
higher-level layer synchronous?

Yes, send explicit acks (TCP ~ UDP)

If lower-level layer, is synchronous can we make
higher-level layer asynchronous?

“Yes”, with separate threads

52

MULTIPLE THREADS

msg1 Requesting

Thread 1
msg2

Sending

Thread

Requesting

Thread 1

Sending

Thread

msg3

msg4

Producers Consumers Bounded Buffer

How many consumers?

Consistency constraints?

Requesting thread passes message to
sending thread and does not block

Sending thread invokes synchronous
operation

Communication between the two threads
example of some classical problem?

What if the two threads work at different
rates (expected) – what if more than one

pending message?

53

MULTIPLE THREADS

msg1 Requesting

Thread 1
msg2

Sending

Thread

Requesting

Thread 1

Sending

Thread

msg3

msg4

Producers Consumers Bounded Buffer

msg2

msg1

producers is application specific and
cannot be controlled

> 1 consumers can result in message
reordering

msg1

msg2

54

WHY ORDERING IS IMPORTANT

Generic

Session

Manager

Group

Comm.

Group

Comm.

Group

Comm.

U1 U2 U3

msg msg msg

IM IM IM

toAll(msg)

Only messages within an application sub-
session need to be ordered

55

HOW MANY CONSUMERS

msg1 Requesting

Thread 1
msg2

Sending

Thread

Requesting

Thread 1

msg3

msg4

Bounded Buffer Per
Application Sub-session

One sending thread per application sub session at
both session server and its clients

Multicast layer hides this from client

Asynchronous Synchronous

56

FEEDBACK VS FEEDTHROUGH

msg1 Requesting

Thread 1
msg2

Sending

Thread

Requesting

Thread 1

msg3

msg4

Bounded Buffer Per
Application Sub-session

Requesting thread does not block, so feedback does
involve round trip delay

Asynchronous Synchronous

Messages to server and other clients separated by
round trip delays

57

Generic

Session

Manager

Group

Comm.

Group

Comm.

Group

Comm.

U1 U2 U3

SYNCHRONOUS IPC

msg1

msg1

IM IM IM

ack1

ack1

msg2 ack2

msg2 ack2

Round trip time ~ 100-
2000ms

Time between telepointer
movements: 10 ms

Noticeable (tolerable)
latency: 30ms, 500ms

How bad is this in practice?

msg1 ack1

msg2 ack2

58

Generic

Session

Manager

Group

Comm.

Group

Comm.

Group

Comm.

U1 U2 U3

MESSAGE RECEIPTS?

msg msg msg

IM IM IM

Threads that receive messages?
Group communication layer handles these

threads

59

Generic

Session

Manager

Group

Comm.

Group

Comm.

Group

Comm.

U1 U2 U3

HOW MANY RECEIVING THREADS?

msg msg msg

IM IM IM

How many client and server threads?

Messages received for an app subsession
should be handled by one thread

Client can have one thread per application
subsession

Server can have one thread for all
messages, which orders the messages and

then simply forwards them into the
appropriate sending threads, which does

real work

60

THREADS (CONCRETE EXAMPLE)

Received Message
Consumer in Server

IM Application-session
sender

IM Application-session
sender

IM Application-session
Receiver

61

SENDING THREADS: BOB CLIENT

(RELAYED)

Session

Alice IM Editor Cathy Bob

Alice Bob Cathy Bob Cathy

IM Editor

Application-session threads
send join and leave requests
to session manager and also

relay messages to session
manager, waiting if necessary

based on delay parameters

62

SENDING THREADS: BOB CLIENT (P2P)

Session

Alice IM Editor Cathy Bob

Alice Bob Cathy Bob Cathy

IM Editor

IM

Alice
IM

Cathy

Editor

Cathy

Application-session sending
threads send join and leave
requests to session manager

and also serialize messages of
the session, forwarding them to

peer user threads

Peer sending threads receive
messages from their

application-session threads and
send messages to peers,

delaying messages based on
delay parameters

Could share peer threads
among application-session

threads but more modular to
create new threads

63

SENDING THREADS: SESSION SERVER

Session

Alice IM Editor Cathy Bob

Alice Bob Cathy Bob Cathy

IM Editor

IM

Alice
IM

Cathy

Editor

Cathy

My implementation
does not have per user

thread at server

IM

Bob

IM

Bob

If feedthrough is an
issue, use direct
communication

A server may have
numerous sessions, so
per user thread maybe

too much overhead

Moral: in production
version do not use

blocking IPC such as
RMI

64

CONCRETE THREADS (NEW VERSION)

Received Message
Consumer in Server

IM Application-session
sender

No peer senders for Bob
as it is using relayed

communication

IM Application-session
Receiver

IM Application-session
Sender

IM Application-session,
Peer Senders

65

TOALL (RELAYED)

Generic

Session

Manager

Group

Comm.

Group

Comm.

Group

Comm.

U1 U2 U3

msg msg msg

IM IM IM

toAll(msg)

Do we need toAll() if messages are not
relayed?

66

TOALL(P2)

toAll(msg)

msg msg msg

U1 U2 U3

Generic

Session

Manager

IM IM IM

Group

Comm.

Group

Comm.

Group

Comm.

Both local feedback and
remote feedback in

callbacks

67

THE CONCEPT OF GROUP COMMUNICATION

Interprocess Communication

(Sockets, RMI, ..)

Group Communication

(Multicast)

???

68

GROUP MESSAGES DESIGN

Interprocess Communication

(Sockets, RMI, ..)

GroupMessages

???

Dewan, P. (2014) Programmer-Controlled Application-Level Multicast. in IEEE CollaborateCom. IEEE.

69

GROUP MESSAGES IMPLEMENTATION

RMI

GroupMessages

???

Easier to code as it is RPC, but synchronous, but
feedthrough is an issue

Motivation for asynchronous RPC

70

EXAMPLE (UI)

71

SESSION MANAGER STARTER

@Tags({DistributedTags.SERVER, DistributedTags.SESSION_MANAGER,
ApplicationTags.IM})
public class SessionManagerServerStarter {
 static ASessionManager server;
 public static void main (String[] args) {
 //do tracing
 …
 server = new ASessionManager();
 server.register(); //with RMI server
 }
}

Annotations provide typed comments

like traces but are passive

Generic

Session

Manager

72

ALICE STARTER

@Tags({DistributedTags.CLIENT_1, ApplicationTags.IM})
public class AliceIM implements ExampleIMSession{
public static final String USER_NAME = DistributedTags.CLIENT_1;
public static void main (String[] args) {
 String[] launcherArgs = {SESSION_SERVER_HOST, SESSION_NAME,
 USER_NAME, APPLICATION_NAME, Communicator.DIRECT};
 //do tracing
 …
 (new AnIMClientComposerAndLauncher()).
 composeAndLaunch(launcherArgs);
}
}

join(hSM, s1, u2 , Editor, Direct)

Shared symmetric program

Generic

Session

Manager

IM

Host specification?

73

HOST NAME

public interface ExampleIMSession {
public static final String SESSION_NAME = "FrostySession";
public static final String APPLICATION_NAME = "IM";
public static final String SESSION_SERVER_HOST = "localhost";
}

localHost allows you to test same program on different hosts

74

ERROR CAUSE?

75

ERROR CAUSE?

The local host has a different meaning when you are using Cisco VPN!

Will get “access error” if Cisco VPN is connected

Do not use Cisco VPM if using Cisco VPN!

Giving host name directly does not help

76

ALICE STARTER

@Tags({DistributedTags.CLIENT_1, ApplicationTags.IM})
public class AliceIM implements ExampleIMSession{
public static final String USER_NAME = DistributedTags.CLIENT_1;
public static void main (String[] args) {
 String[] launcherArgs = {SESSION_SERVER_HOST, SESSION_NAME,
 USER_NAME, APPLICATION_NAME, Communicator.DIRECT};
 //do tracing
 …
 (new AnIMClientComposerAndLauncher()).
 composeAndLaunch(launcherArgs);
}
}

Shared symmetric program

Generic

Session

Manager

IM

77

JOIN CALL IN SHARED PROGRAM

public void compose(String[] args) {
 communicator = createCommunicator(args);
 super.compose(args);
 addCollaborationFunctions();
 doJoin();
}
…
protected void doJoin() {
 communicator.join();
}

Should make createCommunicator as

part of library

Instantiate local

group communication

library

Add callbacks, before

connecting to server

Invoke call on server

Generic

Session

Manager

Group

Comm.

IM

78

MULTICAST ARBITRARY SERIALIZABLE OBJECTS

public synchronized void replicatedAdd(ElementType
anElement) {
 int anIndex = size();
 super.observableAdd(anIndex, anElement);
 if (communicator == null) return;
 ListEdit listEdit = new
 AListEdit<ElementType>(OperationName.ADD,
 anIndex, anElement, ApplicationTags.IM);
 communicator.toOthers(listEdit);
}

toOthers(msg)

public interface ListEdit<ElementType> extends Serializable {
 int getIndex();
 void setIndex(int anIndex);
 ElementType getElement();
 void setElement(ElementType anElement);
 …
}

RMI uses Add locking to projectlayer

which requires the communicated objects

to be labelled as Serializable, variables of

only serializable superclasses can be

communicated remotely

79

EXAMPLE (UI) (REVIEW)

80

SESSION MANAGER STARTER (REVIEW)

@Tags({DistributedTags.SERVER, DistributedTags.SESSION_MANAGER,
ApplicationTags.IM})
public class SessionManagerServerStarter {
 static ASessionManager server;
 public static void main (String[] args) {
 //do tracing
 …
 server = new ASessionManager();
 server.register(); //with RMI server
 }
}

Generic

Session

Manager

81

ALICE STARTER (REVIEW)

@Tags({DistributedTags.CLIENT_1, ApplicationTags.IM})
public class AliceIM implements ExampleIMSession{
public static final String USER_NAME = DistributedTags.CLIENT_1;
public static void main (String[] args) {
 String[] launcherArgs = {SESSION_SERVER_HOST, SESSION_NAME,
 USER_NAME, APPLICATION_NAME, Communicator.DIRECT};
 //do tracing
 …
 (new AnIMClientComposerAndLauncher()).
 composeAndLaunch(launcherArgs);
}
}

Generic

Session

Manager

IM

82

JOIN CALL IN SHARED PROGRAM

public void compose(String[] args) {
 communicator = createCommunicator(args);
 super.compose(args);
 addCollaborationFunctions();
 doJoin();
}
…
protected void doJoin() {
 communicator.join();
}

Should make createCommunicator as

part of library

Instantiate local

group communication

library

Add callbacks, before

connecting to server

Invoke call on server

Generic

Session

Manager

Group

Comm.

IM

83

MULTICAST ARBITRARY SERIALIZABLE OBJECTS

public synchronized void replicatedAdd(ElementType
anElement) {
 int anIndex = size();
 super.observableAdd(anIndex, anElement);
 if (communicator == null) return;
 ListEdit listEdit = new
 AListEdit<ElementType>(OperationName.ADD,
 anIndex, anElement, ApplicationTags.IM);
 communicator.toOthers(listEdit);
}

toOthers(msg)

public interface ListEdit<ElementType> extends Serializable {
 int getIndex();
 void setIndex(int anIndex);
 ElementType getElement();
 void setElement(ElementType anElement);
 …
}

RMI uses Add locking to projectlayer

which requires the communicated objects

to be labelled as Serializable, variables of

only serializable superclasses can be

communicated remotely

Add operation marshalled into

serializable object, reverse process at

receiver

Programmer does marshalling and

unmarshalling as multicast RPC

does not exist and is hard to

implement

84

RECEIVE CALLBACK

protected void addHistoryInCoupler() {
 historyInCoupler = new AHistoryInCoupler(history);
 communicator.addPeerMessageListener(historyInCoupler);
}

public class AHistoryInCoupler implements PeerMessageListener {
 protected SimpleList<String> history;
 public AHistoryInCoupler(SimpleList<String> theEchoer) {
 history = theEchoer;
 }
 public void objectReceived(Object message, String userName) {
 if (message instanceof ListEdit)
 processReceivedListEdit(
 (ListEdit<String>) message, userName);
 }

Can have multiple receive listeners
processing different kinds of

messages
Unmarshalling

85

Generic

Session

Manager

Group

Comm.

Group

Comm.

Group

Comm.

U1 U2 U3

CALLS VS CALLBACKS

msg msg msg

IM IM IM

toOthers(msg)

join(hSM, s1, u2, IM, Relayed)

joined (s1, u2, IM,

newSession?, newApp?) received (u2, msg)

Join callback not needed in this application

86

UNAWARE SYMMETRIC JOIN

Somehow all users know when to
join

Could join when we know
someone else has created and

joined session

No awareness of out of band activities

87

SESSION WITH APPLICATION SUB-SESSIONS

Session

Alice IM Editor Cathy Bob

Alice Bob Cathy Bob Cathy

join(hSM, s1, Cathy, IM, Relayed)

join(hSM, s1, Cathy, Editor, Relayed)

David

join(hSM, s1, David, null, Relayed)

David’s process cannot send or receive messages and simply listens to
session callbacks, which can inform its user of session activity and join

application sub-sessions

Join session without joining
any subsession?

88

USER AWARENESS

Alice now joins session when after it has been joined by
some one else (invitation based joining) and is informed

about session activities

89

SERVER AND ALICEIMJOINER

No prompt, this is not the IM
user interface

Session aware
Joiner UI

90

SESSION WITH APPLICATION SUB-SESSIONS

Session

Alice

91

SESSION WITH APPLICATION SUB-SESSIONS

Session

Alice IM Bob

Alice Bob

92

SERVER AND ALICEIMJOINER

Session aware
Joiner UI

93

BOB JOINS

Session aware
Joiner UI

IM UI

94

SESSION MANAGER TRACE

Session

Alice IM Bob

Alice Bob

95

public void addAwareness() {
 sessionJoiner = new ADynamicSessionJoiner
 (sessionServerHost, userName);
 communicator.addSessionMessageListener(sessionJoiner);
}

ALICEIMJOINER

public class AliceIMJoiner extends AliceIM{
public static void main (String[] args) {
 String[] launcherArgs = {SESSION_SERVER_HOST,
 SESSION_NAME, USER_NAME, null, Communicator.DIRECT};
 (new AJoiningIMComposerAndLauncher()).compose(launcherArgs);
}
}

A different program is run by Alice’s session aware joiner

96

RECEIVE CALLBACK AND FORKING JVM
public class ADynamicSessionJoiner implements
SessionMessageListener {
 …
public void clientJoined(
String aUserName, String anApplicationName, String aSessionName,
 boolean aNewSession, boolean aNewApplication, Collection<String>
anAllUsers) {
 printAwarenessMessage(aUserName, anApplicationName,
 aSessionName, aNewSession, aNewApplication, anAllUsers);
 if (aNewApplication && anApplicationName != null &&
 DEFAULT_APPLICATION_NAME.equals(anApplicationName))
 joinSession(anApplicationName, aSessionName);
 }
}
public void joinSession(String anApplicationName, String
aSessionName) {
 String[] launcherArgs = {sessionManagerHost, aSessionName,
 userName, anApplicationName, Communicator.DIRECT};
 OEMisc.runWithObjectEditorConsole
 (AnIMClientComposerAndLauncher.class, launcherArgs);
}

The original program in previous version

97

SESSION MANAGER/COMMUNICATOR STEPS

Not all important steps traced and at

least one step deprecated

98

SESSION MANAGER/COMMUNICATOR STEPS

(CONTD)

99

SUMMARY

 Distributed architecture = process + object architecture

 General and special distributed architectures exists, which depend on
distributed communication layer

 At this point, looking at general architecture

 IPC provides the most general architecture but maybe too general, not
providing support for

 With IPC need to build
 own session manager for dynamic sessions, group multicast, choice between

relayed and direct communication, threading

 Can build group communication automating this

 Session vs. application-session

 Relayed vs direct communication

 All, specific user, all multicast groups

 Synchronous vs. asynchronous

 Threads to balance latency vs. consistency

 Symmetric vs asymmetric join

 Serialization and marshalling

 Session awareness

10

0

NEXT

 How to use group communication for different

classes of applications

 Model-based sharing

 Window-based sharing

 How do build higher level abstractions for these

classes?

