
REPLICATED VS. CENTRALIZED

MODEL SHARING

Prasun Dewan

Department of Computer Science

University of North Carolina at Chapel Hill

dewan@cs.unc.edu

Code available at: https://github.com/pdewan/ColabTeaching

mailto:dewan@cs.unc.edu
https://github.com/pdewan/ColabTeaching

2

NEXT

 How to implement model-based sharing?

 How do build higher level abstractions for model-

based sharing?

3

ECHOER TO IM

More than one architecture to implement

this user interface

4

SINGLE-USER ARCHITECTURE

Model

Interactor

5

COLLABORATIVE ARCHITECTURES: CENTRALIZED

VS REPLICATED

Model

Interactor

Model

Interactor

Model

Interactor

Interactor

What are these architectures, what are their

pros and cons?

6

REPLICATED

Model

Interactor

Model

Interactor

7

SINGLE-USER VS REPLICATED ALGORITHM:

RUNNING EXAMPLE

For each input I

I should be followed by matching ListEditInput, ListEditMade, ListEditNotified,
ListEditObserved, ListEditDisplayed

For each replica, I should be followed by matching ListEditSent to Others

For each ListEditReceived R

R should be followed by matching ListEditMade, ListEditNotified, ListEditObserved,
ListEditDisplayed

For each replica, R should be followed by matching ListEditSent

UI Thread

Receiving Thread

8

GENERAL MODEL-INTERACTOR PATTERN: FROM

LISTEDIT OPS TO EDIT OPS

For each input I

I should be followed by matching EditInput, EditMade, EditNotified, EditObserved,
EditDisplayed

For each replica, I should be followed by matching EditSent to Others

For each EditReceived R

R should be followed by matching EditMade, EditNotified, EditObserved, EditDisplayed

For each replica, R should be followed by matching EditSent

UI Thread

Receiving Thread

9

SINGLE-USER VS REPLICATED (CYCLES)

elementAdded

History

EchoerInteractor

observableAdd

IMInteractor

Replicated

History

toOthers
Communicator

observableAdd objectReceived

IMCouplerinput

input

toOthers

10

SINGLE-USER VS REPLICATED: REPLICATED AND

NON REPLICATED WRITE METHODS

elementAdded

History

EchoerInteractor

observableAdd

IMInteractor

toOthers
Communicator

replicatedAdd objectReceived

IMCouplerinput

Each write method has a
single-user and replicated

version

Both notify observers

Local input triggers
replicated version

Remote input triggers single-
user version

Multiple write methods setP(),
replicatedSetP()

Replicated

History

11

SINGLE-USER VS REPLICATED: CAN DETECT IF

INCOMING EVENT HAS BEEN PROCESSED BEFORE

elementAdded

History

EchoerInteractor

observableAdd

Notification has information
about old state of changed

object

Can determine if this object
is at old state or new state

Write method not called if
object is at new state

IMInteractor

toOthers
Communicator

observableAdd objectReceived

IMCouplerinput

toOthers

objectReceived

Replicated

History

12

MODELS VS. NOTIFICATIONS

 Beans

 Property collections

 Differ in properties

 Lists

 Variable length indexed lists

 Differ based on subsets of list operations exposed

 Table model is another important kind not needed in

this course

If new property value same as
current property value, do not call

write method

Received message contains new
property value

If new key value same as old, do not
call write method

Received message contains new key
value

Assuming no side effects

Received message can contain new
size

If object is of new size, do not call
write method

13

SINGLE-USER VS. MULTI-USER STEPS

14

GENERAL MODEL-INTERACTOR PATTERN: FROM

LISTEDIT OPS TO EDIT OPS

For each input I

I should be followed by matching EditInput, EditMade, EditNotified, EditObserved,
EditDisplayed

For each replica, I should be followed by matching EditSent to Others

For each EditReceived R

R should be followed by matching EditMade, EditNotified, EditObserved, EditDisplayed

UI Thread

Receiving Thread

15

REPLICATED MODEL: ISSUES

Model

Interactor

Model

Interactor

Consistency issues of causality and concurrent

operations (to be addressed later)

16

REPLICATED ARCHITECTURE (REVIEW)

Model

Interactor

Model

Interactor

Multiple physical models represent a single logical model

17

REPLICATED MODEL-INTERACTOR ALGORITHM

For each input I

I should be followed by matching EditInput, EditMade, EditNotified, EditObserved,
EditDisplayed

For each replica, I should be followed by matching EditSent

For each EditReceived R

R should be followed by matching EditMade, EditNotified, EditObserved, EditDisplayed

UI Thread

Receiving Thread

Problems?

18

REPLICATION GUARANTEE

For each input I

I should be followed by matching EditInput, EditMade, EditNotified, EditObserved,
EditDisplayed

For each replica, I should be followed by matching EditSent

For each EditReceived R

R should be followed by matching EditMade, EditNotified, EditObserved, EditDisplayed

UI Thread

Receiving Thread

Each model executes the same

set of operations
Not the same sequence!

Consistency issues of causality and concurrent

operations (to be addressed later)

19

ASSUME STRONGER GUARANTEE

For each input I

I should be followed by matching EditInput, EditMade, EditNotified, EditObserved,
EditDisplayed

For each replica, I should be followed by matching EditSent

For each EditReceived R

R should be followed by matching EditMade, EditNotified, EditObserved, EditDisplayed

UI Thread

Receiving Thread

Assume that each model executes the same sequence of operations

Performance issues? Correctness issues?

20

PERFORMANCE

Model

Interactor

Model

Interactor

Find
prime
factors

Find
prime
factors

Computation vs.
communication costs

Inefficient replicated
computations!

Input n

21

READING A CENTRALIZED EXTERNAL RESOURCE

Model

Interactor

Model

Interactor

a

read fread f

File f

Bottleneck!

Input load

22

PROBLEMS

For each input I

I should be followed by matching EditInput, EditMade, EditNotified, EditObserved,
EditDisplayed

For each replica, I should be followed by matching EditSent

For each EditReceived R

R should be followed by matching EditMade, EditNotified, EditObserved, EditDisplayed

UI Thread

Receiving Thread

Assume that each model executes the same sequence of operations

Multiple computations

and bottlenecks
Correctness issues?

23

PROBLEMS

Is executing the same operation multiple times equivalent

to executing the operation a single time?

24

READING A CENTRALIZED EXTERNAL RESOURCE

Model

Interactor

Model

Interactor

a

read fread f

File f

Change read to write?

25

WRITING TO A CENTRALIZED EXTERNAL

RESOURCE

Model

Interactor

Model

Interactor

write f, bwrite f, b

File f

Each replica writes to
the file!

Write is not idempotent

Executing idempotent
operations once is the

same as executing them
multiple times,

operation is a function
of only its arguments

Input b

aab

Assumption:
Only idempotent

operations

Behavior of centralized
and replicated different

abb

26

REPLICATE EXTERNAL RESOURCES

Model

Interactor

Model

Interactor

write f, awrite f, a

Input a

ab ab

Other examples of idempotent operations
in practice?

27

SENDING MAIL TOGETHER

Model

Interactor

Model

Interactor

mail msgmail msg

Mail msg

Mail Server

Do not always have the option of
replicating resources

Assumption:
Only idempotent

operations

28

REPLICATED MODEL: ISSUES

Model

Interactor

Model

Interactor

Consistency issues of causality and concurrent

operations (to be addressed later)

Correctness and performance issues when

model is non deterministic, accesses central

resources, and has side effects

29

REPLICATED VS CENTRALIZED

Model

Interactor

Model

Interactor

Model

Interactor

Interactor



30

CENTRALIZED SESSION MEMBER TYPES

Model

Interactor

Interactor

Slave

Slave

Master

31

SINGLE-USER VS CENTRALZED ALGORITHM:

RUNNING EXAMPLE

For each input I

I should be followed by matching ListEditInput, ListEditMade, ListEditNotified,
ListEditObserved, ListEditDisplayed

For each ListEditReceived R

R should be followed by matching ListEditDisplayed

Slave UI Thread

Slave Receiving Thread

For each ListEditReceived R

R should be followed by matching ListEditMade, ListEditSent to Others

Master Receiving Thread

I should be followed by matching ListEditInput and ListEditSent to Master

32

CENTRALIZED ARCHITECTURE

None of the replication issues

Feedback times involve round trip delays

Feed through incurs extra hop (beyond

relaying)

Refresh and query operations also involve

round trip delays (e.g. searching history)

Can we fix the last problem?

Caching!

Model

Interactor

Interactor

33

CACHING VS. REPLICA

Model

Interactor
Model

Cache

Model cache is data repository

without side effects

Like real model it fires events

to local observers

Updated in response to

distributed messages from

real central model

No divergence of caches, real

model has the real state

Write operations require

round trip
Read operations access local

data

34

DISTRIBUTION/COLLABORATION AWARENESS IN

CLASSES

Each interactor is distribution

and collaboration aware: it

sends messages to central

model

Model

Interactor
Model

Cache

As is model cache, it receives

messages form central model

35

DISTRIBUTION UNAWARE INTERACTOR WITH

MODEL CACHE/PROXY

Model

Interactor
Model

Cache

Model cache is a proxy that

forwards interactor operation

without changing is data

Less distribution awareness

and more automation

Model cache is still

distribution aware, both

sending and receiving

messages

Some distribution awareness is necessary in

application if we use general purpose group

communication layer

36

EXAMPLE CENTRALIZED ALGORITHM (NO

CACHING)

For each input I

For each ListEditReceived R

R should be followed by matching ListEditDisplayed

Slave UI Thread

Slave Receiving Thread

For each ListEditReceived R

R should be followed by matching ListEditMade, ListEditSent to Others

Master Receiving Thread

I should be followed by matching ListEditInput and ListEditSent to Master

37

EXAMPLE CENTRALIZED ALGORITHM (CACHING)

For each input I

I should be followed by matching ListEditInput, ListEditForwarded to Slave Proxy and
ListEditSent to Master via Slave

For each ListEditReceived R

R should be followed by matching ListEditMade, ListEditNotified in Slave and
ListEditDisplayed

Slave UI Thread

Slave Receiving Thread

For each ListEditReceived R

R should be followed by matching ListEditMade, ListEditSent to Others

Master Receiving Thread

38

GENERAL CENTRALIZED ALGORITHM: LISTEDIT 

EDIT

For each input I

I should be followed by matching EditInput, EditForwarded and EditSent to Master via
Slave

For each EditReceived R

R should be followed by matching EditMade, EditNotified in Slave and EditDisplayed

Slave UI Thread

Slave Receiving Thread

For each EditReceived R

R should be followed by matching EditMade, EditSent to Others

Master Receiving Thread

39

CENTRALIZED ARCHITECTURE

40

CACHING WITH GROUPMESSAGES

SlaveInteractor

Slave History

objectReceived

Communicator

SlaveCoupler

toClient

input

Master History Communicator

MasterCoupler

centralizedAdd objectReceived

toOthers

elementAdded

History

EchoerInteractor

observableAdd

input

Source is

master

rather than

peer

Master puts name of

original sender in

marshalled edit

operation used my

slave coupler to

compose new

element value

proxyAdd

41

REPLICATED ADD: SIMPLE MARSHALLING

public synchronized void replicatedAdd(ElementType
anElement) {
int anIndex = size();
super.observableAdd(anIndex, anElement);
if (communicator == null) return;
ListEdit listEdit = new

AListEdit<ElementType>(OperationName.ADD,
anIndex, anElement, ApplicationTags.IM);

communicator.toOthers(listEdit);
}

toOthers(msg)

public interface ListEdit<ElementType> extends Serializable {
int getIndex();
void setIndex(int anIndex);
ElementType getElement();
void setElement(ElementType anElement);
…

}

42

public interface UserEdit<ElementType> extends
ListEdit<ElementType>{
public String getUserName();
public void setUserName(String userName) ;

}

CENTRALIZED ADD: AWARE MARSHALLING

public synchronized void centralizedAdd(ElementType anInput,
String aClientName) {
int anIndex = size();
super.add(anIndex, anInput);
UserEdit<ElementType> userEdit = new

AUserEdit<ElementType>(OperationName.ADD, anIndex,
anInput, ApplicationTags.IM, aClientName);

communicator.toOthers(userEdit);
}

43

MOTIVATING UNICAST IN MULTICAST LAYER

 whisper playername = your whisper here

... so only the player(s) named, and in the room,

can hear your whisper.
toClient(client, msg)

public class ASlaveSimpleList<ElementType>
extends ASimpleList<ElementType>
implements SlaveSimpleList<ElementType> {

…
public synchronized void proxyAdd(ElementType anElement) {
int anIndex = size();
ListEdit listEdit = new AListEdit<ElementType>

(OperationName.ADD, anIndex, anElement,
ApplicationTags.IM);

communicator.toClient(MasterIMModelLauncher.CLIENT_NAME,
listEdit);

}
}

44

REPLICATED MODEL

Model

Interactor

Model

Interactor

Consistency issues of causality and concurrent

operations (to be addressed later)

Correctness and performance issues when

model accesses central resources, is non

deterministic, and has side effects

45

CENTRALIZED MODEL

Model

Interactor

Interactor

Round trip delay to get local

feedback

Central bottleneck which may not

always be available

All updates routed through central model and

local cache’s guaranteed to be consistent

Each operation executed only once, so no

problems of non idempotent operations,

central bottlenecks, and expensive operations

Combine the

advantages?

Causal multicast and

OT for consistency

Multi operation

execution?

46

DISTINGUISHED “REPLICA” MODEL

Model’

Interactor

Model

Interactor

A distinguished model executes

operations that are expensive,

non-idempotent, or access

central resources

47

DISTINGUISHED “REPLICA” MODEL

Model

Interactor

Model

Interactor

A central model executes

operations that are expensive,

non-idempotent, or access

central resources

Model’

Both solutions are

application-specific

48

APPLICATION-INDEPENDENT ARCHITECTURES

Model

Interactor

Model

Interactor

Model

Interactor

Interactor

Can we automate these

architectures?

49

GENERAL REPLICATED ALGORITHM

For each input I

I should be followed by matching EditInput, EditMade, EditNotified, EditObserved,
EditDisplayed

For each replica, I should be followed by matching EditSent to Others

For each EditReceived R

R should be followed by matching EditMade, EditNotified, EditObserved, EditDisplayed

For each replica, R should be followed by matching EditSent

UI Thread

Receiving Thread

50

AUTOMATIC GENERAL CENTRALIZED ALGORITHM

For each input I

I should be followed by matching EditInput, EditForwarded and EditSent to Master via
Slave

For each EditReceived R

R should be followed by matching EditMade, EditNotified in Slave and EditDisplayed

Slave UI Thread

Slave Receiving Thread

For each EditReceived R

R should be followed by matching to Others

Master Receiving Thread

51

CENTRALIZED AND REPLICATED MODEL SHARING

Interprocess Communication

(Sockets, RMI, ..)

Group Communication

(Multicast)

Model Sharing

Can assume language/compiler

support

Goal is to reduce/eliminate the

collaboration awareness in

application code

52

CENTRALIZED AND REPLICATED MODEL SHARING

(REVIEW)

Interprocess Communication

(Sockets, RMI, ..)

Group Communication

(Multicast)

Model Sharing

Can assume language/compiler

support

Goal is to reduce/eliminate the

collaboration awareness in

application code

53

ORIGINAL EXAMPLE

54

ANOTHER EXAMPLE

public class AConcertExpense implements ConcertExpense {

float unitCost = 0;

int numberOfAttendees = 0;

public float getTicketPrice() { return unitCost; }

public void setTicketPrice(float newVal) {

unitCost = newVal;

}

public int getNumberOfAttendees() { return numberOfAttendees; }

public void setNumberOfAttendees(int newVal) {

numberOfAttendees = newVal;

}

public float getTotal() {

return unitCost*numberOfAttendees;

}

}

55

AUTOMATING GENERAL REPLICATED ALGORITHM

For each input I

I should be followed by matching EditInput, EditMade, EditNotified, EditObserved,
EditDisplayed

For each replica, I should be followed by matching EditSent to Others

For each EditReceived R

R should be followed by matching EditMade, EditNotified, EditObserved, EditDisplayed

For each replica, R should be followed by matching EditSent

UI Thread

Receiving Thread

Interception of operations and

proxy generation possible with

language/compiler support

Somehow need to distinguish

between edit and non edit

model methods

Operations to be

automated

56

AUTOMATIC GENERAL CENTRALIZED ALGORITHM

For each input I

I should be followed by matching EditInput, EditForwarded and EditSent to Master via
Slave

For each EditReceived R

R should be followed by matching EditMade, EditNotified in Slave and EditDisplayed

Slave UI Thread

Slave Receiving Thread

For each EditReceived R

R should be followed by matching to Others

Master Receiving Thread

Somehow need to distinguish

between edit and non edit

model methods

Proxy generation possible

with language/compiler

support

Operations to be

automated

57

WRITE VS NON WRITE METHODS

Replica

Collaboration-aware

Proxies

Collaboration-aware

Proxies

Need a way to select
methods that are broadcast.

void setTicketPrice (float)float getTicketPrice ()

Replica void setTicketPrice (float)float getTicketPrice ()

58

PROGRAMMER-SPECIFIED BROADCAST METHODS

Replica (Model or

Interactor)

Collaboration-aware

Proxies

Collaboration-aware

Proxies

Cycles within the same
method stopped by Colab

void broadcast

setTicketPrice (float)
float getTicketPrice ()

Replica (Model or

Interactor)
void broadcast

setTicketPrice (float)
float getTicketPrice ()

Stefik, M., G. Foster, D.G. Bobrow, K. Kahn, S. Lanning, and L. Suchman (January 1987), Beyond the Chalkboard:

Computer Support for Collaboration and Problem Solving in Meetings. CACM, January 1987. 30(1): p. 32-47.

59

Replica

Collaboration-aware

Language Runtime

Collaboration-aware

Language Runtime

void broadcast

notify ()

POTENTIAL FOR SPURIOUS BROADCASTS

Replica
void broadcast

notify ()

void broadcast

setTicketPrice (float)

void broadcast

setTicketPrice (float)

Must carefully choose which
methods are broadcast

60

BROADCAST METHOD IN INTERACTOR

Interactorvoid broadcast textChanged (evt)

Can broadcast methods in any
object, not just model.

In Xerox Colab applications,
interactor methods were broadcast

61

MULTI-LAYER BROADCAST INCREASE SPURIOUS

BROADCAST PROBLEM

Interactor

Model

void broadcast textChanged (evt)

void broadcast setTicketPrice(float)

Must consider all calls to a
method before making it

broadcast.

Another solution to select
methods to broadcast?

62

MODEL-BASED SOLUTION

Somehow need to distinguish between edit and non edit

model methods

In general an object is a blackbox and we do not know its write
methods without explicit programmer specification

63

RESTRICT MODEL TYPES

 Lists

 Variable length indexed lists

 Differ based on subsets of list operations exposed

 Beans

 Property collections

 Differ in properties

 Table model

 Key, Value Collections

Can provide replicated lists and tables

Beans? Programmer-defined lists and
tables

Works for a very restricted set of model
types

Munson, J. and P. Dewan (1997), Sync: A Java Framework for Mobile Collaborative Applications. IEEE Computer,

1997. 30(6): p. 59-66..

64

BEAN PATTERN/CONVENTIONS

public class C

{

}

public T getP() {

...

}

public void setP(T newValue) {

...

}

Typed, Named Unit of Exported Object State

Name P

Type T

Read-only

Editable

Getter method

Setter method

newPobtainP
Violates Bean

convention

Bean

Bean

convention:

For humans

and tools

65

RESTRICT MODEL PATTERNS

 Lists

 Variable length indexed lists

 Differ based on subsets of list operations exposed

 Beans

 Property collections

 Differ in properties

 Table model

 Key, Value Collections

Can assume certain programming
conventions for l such as for getters and

setters to extract write methods

Reflection, introspection and proxy
generation can then be used to

broadcast/forward write methods and
generate proxies and replicas

Works for a theoretically restricted set of
model types

http://www.cs.unc.edu/~dewan/sync/, https://github.com/pdewan/Sync

http://www.cs.unc.edu/~dewan/sync/
https://github.com/pdewan/Sync

66

ISSUES

How to determine methods to be broadcast?

How to find corresponding replicas?

67

CONNECTING REPLICAS?

Replica

Collaboration-aware

Proxies

Collaboration-aware

Proxies

void setTicketPrice (float)float getTicketPrice ()

Replica void setTicketPrice (float)float getTicketPrice ()

How are corresponding
replicas found?

Assume model classes are
singletons.

Assume replica programs
instantiate the same
sequence of objects.

Replicated shared window
systems assumes same
sequence of windows.

Can use names of Java
windows

Register and lookup of
names

68

CONNECTING REPLICAS

 Order of object instantiation

 Names of objects

 Works for AWT windows every window has a name

 If two windows have the same name, assume they are

the same

 Explicit remote lookup and register

 Central registry used to connect objects with names

 A la session manager and RMI registry

69

CENTRALIZED: CONNECTING PROXIES

Master

m(…)

m(…)

Proxy

Proxy

m(…)

Registry

Owner

User

70

REPLICATED: CONNECTING REPLICAS

Replica

m(…)

m(…)

Replica

Replica/Proxy

m(…)

Sharing
Server and

Registry

Owner

User
If already registered, no-op to allow symmetric programs

Registry replica can be kept consistent and
execute operations that need to be centralized

(send mail, access file)

71

public class CounterServer {

public static void main (String[] args) {

try {

Registry rmiRegistry = LocateRegistry.getRegistry();

ConcertExpense concertExpense= new

AConcertExpense ();

UnicastRemoteObject.exportObject(concertExpense, 0);

rmiRegistry.rebind(ConcertExpense.class.getName(), counter);

);

} catch (Exception e) {

e.printStackTrace();

}

}

}

RMI REGISTRATION

72

RMI LOOKUP

public class CounterClient {

public static void main (String[] args) {

try {

Registry rmiRegistry = LocateRegistry.getRegistry();

ConcertExpense concertExpense= (ConcertExpense)

rmiRegistry.lookup(ConcertExepnse.class.getName());

} catch (Exception e) {

e. printStackTrace();

}

RMI does not support centralized model sharing as it creates

a pure proxy and not cache of model object and does not
distinguish between read and write methods

73

SYNC SYMMETRIC REPLICA PROGRAM

package budget;

import bus.uigen.ObjectEditor;

import edu.unc.sync.Sync;

public class SyncBudgetSymmetric {

static String SERVER_NAME = "localhost/A";

static String MODEL_NAME = "demoBudget";

public static void main(String[] args) {

String[] syncArgs = {"--oe"};

Object model = Sync.replicateOrLookup(

SERVER_NAME,

MODEL_NAME,

AConcertExpense.class,

args[0],

syncArgs);

ObjectEditor.edit(model);

}

}

System
instantiates if

replicate

74

SERVER UI AFTER REPLICATE

75

ALICE UI AFTER REPLICATE

76

BOB UI AFTER BOB’S LOOKUP

77

ALICE UI AFTER BOB’S LOOKUP

78

ISSUES

How to determine methods to be broadcast?

How to find corresponding replicas?

When should write methods be called on corresponding
replicas?

79

WHEN TO SYNCHRONIZE

When both the sending and receiving application say synchronize

Sending site can say real-time synchronize to execute synchronize operation
when a write method is executed at the sending site

Receiving site can say real-time synchronize to execute synchronize operation
when a write method is received

Integrates synchronous and asynchronous (Dropbox, GoogleDrive, OneDrive)
sharing

80

ONE SITE DISCONNECTED: IT SYNCS

81

RECEIVER IMMEDIATELY UPDATES

82

BOTH SITES DISCONNECTED AND CHANGE

83

TOP USER SYNCS

84

NO UPDATE IN BOTTOM USER

85

BOTTOM USER SYNCS

86

BOTTOM USER HAS BOTH CHANGES

87

TOP USER SYNCS

88

BOTH USERS IN SYNC

89

SUMMARY

 Two ways to share a logical model among multiple users

 Both involve local interactor at each user site

 In replicated, symmetric models at each site

 They service read and write methods for local interactors

 Send updates to other models without necessarily waiting for
them to be made.

 Side effects can be executed multiple times and concurrent
operations can lead to inconsistent

 In centralized a centralized model at special (possibly
user) site

 Each site can cache the model for reads.

 Writes wait until central model updates and are then cached at
local site.

 Cache stores only data and has no side effects

 Indirection may require user-aware marshalling

90

SUMMARY

 Can automate model sharing

 Identifying methods to be broadcast

 Broadcast keyword or annotation

 Cascaded broadcasts

 Fixed types

 No programmer-defined types such as beans

 Using conventions or patterns for describing models

 Restricted models

 Tradeoff: Cycles vs. restricted models

 Connecting corresponding objects

 Sequence of objects instantiated

 Singleton objects

 Register/lookup

 When to broadcast

 In general on Explicit/Implicit Sync

91

ABSTRACTIONS IN ACTUAL IMPLEMENTATION

 Xerox Colab

 Broadcast methods, immediate execution, implicit replica

binding

 Sync

 Patterns and predefined shared string, record, sequence,

explicit/implicit sync, register/lookup

 LiveMeeting

 Predefined shared int, string, real

 Google Hangout

 Single shared table

Munson, J. and P. Dewan (1997), Sync: A Java Framework for Mobile Collaborative Applications. IEEE Computer,

1997. 30(6): p. 59-66..

Stefik, M., G. Foster, D.G. Bobrow, K. Kahn, S. Lanning, and L. Suchman (January 1987), Beyond the Chalkboard:

Computer Support for Collaboration and Problem Solving in Meetings. CACM, January 1987. 30(1): p. 32-47.

http://www.cs.unc.edu/~dewan/sync/, https://github.com/pdewan/Sync

http://www.cs.unc.edu/~dewan/sync/
https://github.com/pdewan/Sync

92

NEXT

Interprocess Communication

(Sockets, RMI, ..)

Group Communication

(Multicast)

Model Sharing

Non model sharing?

