
WYSIWIS AND SHARED

WINDOWS

Prasun Dewan

Department of Computer Science

University of North Carolina at Chapel Hill

dewan@cs.unc.edu

mailto:dewan@cs.unc.edu

2

COUPLING

Issue Description

Session Management How do distributed users create,

destroy, join, and leave collaborative

sessions?

Single-user Interface What are the application semantics if

there is a single user in the session?

Coupling What is the remote feedback of a user

command and when is it given?

Access Control How do we ensure that users do not

execute unauthorized commands?

Concurrency Control How do we ensure that concurrent

users do not enter inconsistent

commands?

3

APPLICATION-SPECIFIC COUPLING

Application-Independent Coupling?

Why?

What?

Coupling depends on model-interactor
division, when changes are announced,
when they are sent, and when they are

applied

4

PROGRAMMER EFFORT: AUTOMATION

Interprocess Communication

(Sockets, RMI, ..)

Group Communication

(Multicast)

Model Sharing

Model is a blackbox and we had

to make assumptions about it to

automate sharing

Not all programmers are aware

of or care about model-

interactor division

5

END-USER

 Easier to understand for the user

 Is synchronization real-time or not real time?

 What changes are sent?

 …..

6

CHALLENGES

 How to define it in application independent fashion.

 Mapping between input and local feedback is application

dependent.

 Implies mapping between input and remote feedback is

also app-dependent.

 Relationship between local and remote feedback may be

app-independent.

7

WYSIWIS: WHAT YOU SEE IS WHAT I SEE

U2 U3

Coupling Coupling
U1

Remote Feedback
=

Local Feedback

Remote User Sees
Everything Local

User Sees

What?

If Interaction Stopped,
Remote User Will

Eventually Get Feedback

When?

Remote User Feels
Collaboration is Real

Time

“Best Effort” to Give
Immediate Feedback

Remote User does not
Notice Delay (<50ms)

Application

Stefik, M., G. Foster, D.G. Bobrow, K. Kahn, S. Lanning, and L. Suchman (January 1987), Beyond the Chalkboard:

Computer Support for Collaboration and Problem Solving in Meetings. CACM, January 1987. 30(1): p. 32-47.

8

Then orange window

scrolls up on user 2’s

screen

STRICT WYSIWIS COUPLING

User 1

User 2

If user 1 moves green

window

Then green window

moves on user 2’s screen

If user 2 scrolls up in

orange window

9

PROS AND CONS

User 1

User 2

Pros

 Easy to understand

 Application-independent

 Automatable

Cons

 Window and scroll wars

 Size and view wars

 Communication overhead

Are some wars worse
than others?

10

NEAR/RELAXED-WYSIWIS

Stefik, M., D.G. Bobrow, G. Foster, S. Lanning, and D. Tatar (April 1987), WYSIWIS Revised: Early Experiences with

Multiuser Interfaces. ACM Transactions on Office Information Systems, April 1987. 5(2): p. 147-167.

How to automate WYSIWIS/near WYSIWIS?

How to point?

Telepointer: A shared shape (possibly per user)
that can be dragged over any part of a top-level

window

Window Positions

Window Size

Screen Pointer

Mouse Move

Window Border

Scroll Positions

Key Click

Mouse Click

Mouse Drag

Different window sizes create ambiguities
(cropping, scaling) and scroll synchronization

creates referential transparency

Screen pointer has not much meaning if some
windows are shared or if windows are moved

independently

May have private windows which
are obscured

11

AUTOMATION & PRE-REQUISITES

 Automation: Some application-independent

infrastructure provides some functionality.

 UI toolkit automates widgets.

 Sync automates model sharing

 Use assumptions to provide the automation.

 Swing and AWT assume applications do not want round

widgets.

 Sync assumes users do not want interactor sharing

 Need to make similar assumptions.

 As not model sharing, assume I/O in interactor instead of

write methods are tapped

12

U2 U3

Application

Coupling Coupling

AUTOMATING CONSTRAINTS

Need access to input
and/or output

Assume certain
properties of I/O

Assume I/O can be
tapped.

U1

Application

13

Collaboration-Unaware
I/O System

Collaboration-Aware
Proxy

Collaboration-Unaware
Application

User

Input/Output

Assume application uses some I/O
system

Will put a proxy module in
between application and I/O

system, if possible

To the application it behaves like
the I/O system

To the I/O system it behaves like
the application

Application and I/O system are
collaboration-unaware

Proxy (infrastructure) is
collaboration-aware

Proxy will distribute I/O

SHARED I/O SYSTEMS

Much line proxies in shared
model systems

14

Toolkit-based

(GUI)

Interactor

I/O ABSTRACTIONS

Windows

Widgets (Text Component,

Button, Slider)

Console Text

Component

Window-

based

(Graphics)

Interactor

Console-based

Interactor

Flexibility vs. Automation

Tradeoff in Abstraction Design

FrameBuffer

15

Collaboration-Unaware
Console Library

Collaboration-Aware
Proxy

Collaboration-Unaware
Application

User

Input/Output

Programming languages and OS’s
provide teletype (console library)

Cannot handle GUIsread(input)

print(output)

CONSOLE I/O

16

Collaboration-Unaware
User-Interface Toolkit

Collaboration-Aware
Proxy

Collaboration-Unaware
Application

User

Input/Output

Toolkit provides widgets such as
text box, slider, and buttons.

Input is notifications about state
changes

textChanged

setText

“Output” sets and gets widget
state

Widget automation bound to
specific toolkit (Swing, AWT)

Toolkits are built on top of
window system

TOOLKIT LIBRARY I/O

press a

Cannot be used to share window
state (e.g. window size)

Cannot be used to share
collaboration-unaware window

apps

17

CUSTOM WIDGET

Neither console nor toolkit sharing can share this
user-interface

18

Collaboration-Unaware
Console Library

Collaboration-Aware
Proxy

Collaboration-Unaware
Application

User

Input: Mouse and character

events with screen

coordinates

Output: Draw pixel images

FRAMEBUFFER I/O

a ^, x, y

drawImage (pixmap)

press a

Forced into WYSWIS

No private windows in pure
FrameBuffer

Commercial systems combine
shared window and framebuffer

(later)

19

Collaboration-Unaware
Window System

Collaboration-Aware
Proxy

Collaboration-Unaware
Application

User

Input/Output

Windows are untyped rectangular
screen areas in which point is a

pixel

Input indicates keyboard and
mouse operations with window

relative coordinates

a ^, w1, x, y

draw a, w1, x, y

Output draws text, shapes

Application = programmer-
defined code + toolkit

Window-level automation
accommodates all toolkits and

allows private and public windows

press a

Architecture with N users?

WINDOW SYSTEM (SIMPLE MODEL)

20

WINDOW SYSTEM I/O?

Window Positions

Window Size

Screen Pointer

Mouse Move

Window Border

Scroll Positions

Key Click

Window Manager

Toolkit

Window Manager

Window Manager

Scrolling is just mouse clicks processed by a scroll widget

(Top-Level) window moves, resizes and mouse clicks
processed by window manager

Mouse Click

Mouse Drag

Input indicates keyboard and
mouse operations with window

relative coordinates

21

WINDOW MANAGER

Window Manager

Window Client

Win1, x, y Move window x, y

Window
moved

“Input”: Window move, resize user
operations

“Output”: Window move, resize

Window manager separate from
window system

Window moves

Can change window manager for a
window system

Window manager is a separate
module/process

Puts decorations on window for moving
resizing

22

WINDOW MANAGER VS. SYSTEM

Window Manager

Window Client

win1, x, y Move window x, y

Window System

a ^, win1, x, y

draw a, win1, x, y

press a a drawnWindow
moved

Window moves

Client receives events from both and can invoke actions on both

23

Collaboration-Unaware
Window System

Collaboration-Aware
Proxy

Collaboration-Unaware
Application

User

Input/Outputa ^, w1, x, y

draw a, w1, x, y

press a

PROXY-BASED INJECTION AND INTERCEPTION

24

Collaboration-Unaware
Window System

Input Distributor

Collaboration-Unaware
Application

User 1

REPLICATED WINDOW SYSTEM

Collaboration-Unaware
Window System

Input Distributor

User 2

Collaboration-Unaware
Application

Collaboration-Unaware
Window System

Input Distributor

User 2

Collaboration-Unaware
Application

press a

a^, w2, x, y

a^, wi, x, y a^, w3, x, y

a^, w3, x, ya^, w2, x, ya^, w1, x, y

draw a, w1, x, y draw a, w2, x, y draw a, w3, x, y

25

Window

CONNECTING REPLICA WINDOWS

How are corresponding
windows found?

Window

Window Window

Replicated shared window
systems assumes same
sequence of windows.

Can use names of Java
windows

26

REPLICATED MODEL ALGORITHM

For each input I

I should be followed by matching EditInput, EditMade, EditNotified, EditObserved,
EditDisplayed

For each replica, I should be followed by matching EditSent to Others

For each EditReceived R

R should be followed by matching EditMade, EditNotified, EditObserved, EditDisplayed

For each replica, R should be followed by matching EditSent

How to change to replicated
window system

27

User 1

REPLICATED WINDOW SYSTEM (REVIEW)

User 2 User 2

Collaboration-Unaware
Window System

Input Distributor

Collaboration-Unaware
Application

Collaboration-Unaware
Window System

Input Distributor

Collaboration-Unaware
Application

Collaboration-Unaware
Window System

Input Distributor

Collaboration-Unaware
Application

press a

a^, w2, x, y

a^, wi, x, y a^, w3, x, y

a^, w3, x, ya^, w2, x, ya^, w1, x, y

draw a, w1, x, y draw a, w2, x, y draw a, w3, x, y

28

REPLICATED MODEL ALGORITHM

For each input I

I should be followed by matching EditInput, EditMade, EditNotified, EditObserved,
EditDisplayed

For each replica, I should be followed by matching EditSent to Others

For each EditReceived R

R should be followed by matching EditMade, EditNotified, EditObserved, EditDisplayed

For each replica, R should be followed by matching EditSent

How to change to replicated
window

29

REPLICATED WINDOW ALGORITHM

For each Window (including Telepointer) Input I

I should be followed by matching WindowEventDispatched

For each replica, if Transmit(I) then I should be followed by matching
WindowEventSent

For each WindowEventReceived R

R should be followed by matching WIndowEventDispatched

For each replica, R should be followed by matching WindowEventSent

For each Window w, create Telepointer wt

Dispatching means giving it to
appropriate (sub) window listeners to

process

Window system can only guarantee
delivery not processing

Not all events may be sent
(relaxed WYSIWIS)

30

TRANSMIT FUNCTION

Filter by Event Type

Send all mouse drags (of Telepointer)?

Filter by Event Time

Desired (actual) Time between drags
< 30 ms (10ms)

Send actions of all windows?

Not locking window, mail window

Filter by Window Name

Window Manager
State

Window Size

Screen Pointer

Mouse Move

Scroll Positions

Key Click

Mouse Click

Mouse Drag

Telepointer Drag

31

SYSTEM-SPECIFIC ISSUES

For each Window (including Telepointer) Input I

I should be followed by matching WindowEventDispatched

For each replica, if Transmit(I) then I should be followed by matching
WindowEventSent

For each WindowEventReceived R

R should be followed by matching WIndowEventDispatched

For each replica, R should be followed by matching WindowEventSent

For each Window w, create Telepointer wt

How to intercept I?

How to inject I?

How to create telepointer?

How to translate window IDs?How to filter events?

32

CONCRETE JAVA-BASED WINDOW SYSTEM

Discussion so far fairly abstract

Need real window system to make it concrete

Will use Java as language for exercises and class
examples

33

CASE STUDY: JAVA AWT

Hides the underlying window system from programmer

Portability

34

WINDOW SYSTEM CLASSES

Window1 Window2

Window12 Window12

Window121 Window122

Top Level

Sub Windows

Sub Windows

35

AWT/SWING WINDOW SYSTEM CLASSES

Window1 (J)Frame2

Container12 (J)Panel12

(J)Component121 Canvas122

Top Level

Sub Windows

Sub Windows

36

AWT/SWING LAYERING

OS WindowsAWT Windows

All OS events forwarded to AWT can
be intercepted and injected

All Swing events may not be
interceptable/injectable

Could not intercept/inject caret
position in text components

Some OS events may not be correctly
interceptable/injectable

Seem to inject two events for AWT
checkbox

Which layer is more sharable:
AWT/Swing?

Telepointer possible over Swing
but not less controllable AWT

windows

Swing Windows

37

CLASS AWT/SWING LIBRARY

OS WindowsAWT Windows

Swing Windows

(Easily)

Sharable

AWT/Swing

Library provided to make hide messy
details of AWT/Swing

38

WINDOW I/O: OUTPUT

Window System

Window Client

a ^, win1, x, y draw a, win1, x, y

press a a

Target of draw in Java, on what kind of object is
it invoked?

39

JAVA HELPER CLASS: GRAPHICS(2D) CONTEXT

Graphics(2D)

setColor()

fillOval()

fillLine ()

drawString()

drawOval()

drawLine()

drawRect() fillRect()

40

EXAMPLE GRAPHICS CALLS

g.drawOval(charX - X_OFFSET, charY - Y_OFFSET, DIAMETER,
DIAMETER);
g.drawLine(charX, charY, charX, charY - CARAT_LENGTH);
g.drawString("" + lastChar, charX, charY);

Called when?

When input is given

When output is required

What if window is
hidden?

0 to N times for each
input

While the component is unexposed, the

drawing might have changed, so system copy

might not be current

Who repaints the window when it is

exposed: window system or

application

So, in general the application must redraw it.

41

EXPOSE EVENTS

Window Manager

Window Client

Window
moved

Window System

expose win, rect(s) draw complete
win

draw exposed
win

OR

Window
resized

Application can
requests

expose event

When a window is resized, or
(un) obscured expose event is

sent to it with exposed region(s)

Application can draw only
exposed region(s)

Or may draw complete window

Window system clips in case app
draws outside window bounds

42

OVERLAPPING WINDOWS

Exposed rectangle

43

OVERLAPPING WINDOWS (VERTICAL WINDOW ON

TOP)

Multiple exposed

rectangles

44

SINGLE EXPOSED

Single exposed rectangle

Drawing outside exposed

region will be clipped

Window system could also

keep last drawn pixels of

each window as backing

store

Repainting trades off time

efficiency for space

Important if windows are

lightweight and nested

45

CALLING PAINTING CODE

How to

accommodate both?

g.drawOval(charX - X_OFFSET, charY - Y_OFFSET, DIAMETER,
DIAMETER);
g.drawLine(charX, charY, charX, charY - CARAT_LENGTH);
g.drawString("" + lastChar, charX, charY);

Called when?
When what is to be

drawn changes

lastChar, charX, charY

When exposed area

changes?

What is the Java
API for receiving
expose events?

46

AWT BASED EXPOSE EVENT PROCESSING

Window Class

(JPanel)

Window Client Class

IS-A

paint

(Graphics)

repaint()
paint

(Graphics)

Call

Processing queue results in

(paint event) in paint method of

window to be called

Repaint method can be called by

application to queue an expose

event for window

Window manager queues

paint/expose event for window

Application can override paint to

draw

47

OVERRIDING PAINT METHOD

public class ACircledCharacterDrawer extends JFrame implements
MouseListener, KeyListener {
…
// called when an enqueued paint event for this component is dequeued
public void paint (Graphics g) {
super.paint(g); // clears the window
// better to use FontMetrics to center circle
g.drawOval(charX - X_OFFSET, charY - Y_OFFSET, DIAMETER, DIAMETER);
g.drawLine(charX, charY, charX, charY - CARAT_LENGTH);
g.drawString("" + lastChar, charX, charY);

}
public void keyTyped(KeyEvent event) {
setChar(event.getKeyChar());

}
public void setChar(char newValue) {
lastChar = newValue;
repaint();// enqueues a paint event

}
public void mousePressed(MouseEvent event) {
charX = event.getX();
charY = event.getY();
repaint(); // enqueues a paint event

}

48

WINDOW I/O: INPUT



Window System

Window Client

a ^, win1, x, y draw a, win1, x, y

press a a

49

JAVA INHERITANCE BASED INPUT EVENT

PROCESSING

Window Class

(JPanel)

Window Client Class

IS-A

processEvent

(AWTEvent)

dispatchEvent

(AWTEvent)

processEvent

(AWTEvent)

dispatchEvent() calls protected

processEvent

processEvent can be overridden

by application subclasses

This was the approach used in

Java 1.0

public final dispatchEvent() in

window called in response to

input event in that window

50

SINGLE-INHERITANCE PROBLEM

Window Class

(JPanel)

Window Client Class

IS-A

Client Class
IS-A

51

CONCEPTUAL PROBLEM WITH INHERITANCE

Window Class

(JPanel)

Window Client Class

IS-A

Client Class
IS-A

Window input processor (or

drawer) is not a window

52

DELEGATING TO WINDOW SYSTEM

Window Class

(JPanel)

Window Client Class

HAS-A

Client Class
IS-A

53

JAVA COARSE-GRAINED DELEGATION-BASED

INPUT EVENT PROCESSING

Window Class

(JPanel)

Window Client Class

HAS-A

processEvent

(AWTEvent)

eventDispatched

(AWTEvent)

dispatchEvent

(AWTEvent)

ToolkitaddAWTListener()

Must distinguish between mouse

and event and key pressed, key

typed, mousepressed,

mousedragged, and other actions

Single way to get all events and

then possibly dispatch them –

useful for sharing events and

telepointer

54

HIGHER-LEVEL, PER-WINDOW LISTENERS

Window Class

(JPanel)

Window Client Class

HAS-A

processEvent

(AWTEvent)

mousePressed

(MouseEvent)

addMouseListener()

addKeyListener()

addMouseMotion

Listener()

KeyPressed

(MouseEvent)

55

FINE-GRAINED DELEGATION MODEL

public class ACircledCharacterDrawer extends JFrame implements
MouseListener, KeyListener {
public ACircledCharacterDrawer() {
addMouseListener(this);
addKeyListener(this);

}
public void keyTyped(KeyEvent event) {
setChar(event.getKeyChar());

}
public void mousePressed(MouseEvent event) {
charX = event.getX();
charY = event.getY();
repaint(); // enqueues a paint event

}

56

FINE-GRAINED IMPLEMENTATION

Window Class

(JPanel)

Window Client Class

HAS-A

processEvent

(AWTEvent)

mousePressed

(MouseEvent)

addMouseListener()

addKeyListener()

addMouseMotion

Listener()

KeyPressed

(MouseEvent)

57

OUTPUT PROCESSING: INHERITANCE

Window Class

(JPanel)

Window Client Class

IS-A

paint

(Graphics)

repaint()
paint

(Graphics)

Call

58

OUTPUT PROCESSING: DELEGATION

Window Class

(DelegateJPanel)

Window Client Class

HAS-A

addPaintListener()

SWT supports delegation

model in toolkit

Delegate classes not related

by subtype relationship

!(DelegateContainer IS-A

DelegateComponent)

paint

(Graphics)

paint

(Graphics)

As does Shareable

AWT/Swing Library

The paint method of library

classes will call paint

methods in delegates

59

UNDERSTANDING JAVA WINDOW SYSTEM

public class ACircledCharacterDrawer extends JFrame implements
MouseListener, KeyListener {
…
// called when an enqueued paint event for this component is dequeued
public void paint (Graphics g) {
super.paint(g); // clears the window
// better to use FontMetrics to center circle
g.drawOval(charX - X_OFFSET, charY - Y_OFFSET, DIAMETER, DIAMETER);
g.drawLine(charX, charY, charX, charY - CARAT_LENGTH);
g.drawString("" + lastChar, charX, charY);

}
public void keyTyped(KeyEvent event) {
setChar(event.getKeyChar());

}
public void setChar(char newValue) {
lastChar = newValue;
repaint();// enqueues a paint event

}
public void mousePressed(MouseEvent event) {
charX = event.getX();
charY = event.getY();
repaint(); // enqueues a paint event

}

60

SYSTEM-SPECIFIC ISSUES

How to inject received input?

How to create a telepointer?

How to intercept input for broadcast?

How to translate window IDs?

How to filter events?

61

HOW TO CREATE A WINDOW TELEPOINTER

(J)Frame paint (Graphics)

TelePointerFrame paint (Graphics)

IS-A

(J)Panel

HAS-A

(J)TextArea

paint (Graphics)

paint (Graphics)

A component can be painted by it
and all of its ancestors

A key or mouse event in a
component is also an event in all

of its ancestors

Nesting: smaller component overrides

drawing and input processing of enclosing

static components

Cannot use nesting to

draw telepointer

Cannot share existing

user interfaces

HAS-A

62

HOW TO CREATE A WINDOW TELEPOINTER?

Replace the top-level frame’s window with one that

draws movable telepointer shape?

Cannot use nesting to draw telepointer

Even if we could, cannot share existing user

interfaces

63

LAYERING VS. NESTING

Frame and

components

Glass Pane

Frame

setGlassPane()

Nesting: smaller component overrides drawing and input

processing of enclosing static components

Layering: Higher dynamic layer overrides drawing and

input processing of lower, possibly smaller components.

Can simulate dynamic multiple parents of a child

Type based vs. structure based overriding

64

HOW TO CREATE A WINDOW TELEPOINTER

(J)Frame paint (Graphics)

GlassPane paint (Graphics)

HAS-A

(J)Panel

HAS-A

(J)TextArea

paint (Graphics)

paint (Graphics)

Layering: Higher dynamic layer

overrides drawing and input

processing of lower, possibly smaller

components. Can simulate dynamic

multiple parents of a child

How do children components get

events?

Glass pane will consume its events

(drag of telepointer) and re-dispatch

others to deepest children

Tricky and my solution does not

always work (menus) – based on

code found on the web

65

HOW TO CREATE A WINDOW TELEPOINTER

ABSTRACTION?

Cannot draw our own shape

TelepointerUtility attach(Frame)

AnExtendible

TelePointer

GlassPane

addPainter

(GraphicsPainter)

AnExtendibleTele

PointerGlassPane

(Frame)

GraphicsPainter paint (Graphics)

GlassPaneController

getGlassPaneController()

getPointerX/Y()

66

ATTACHING A TELEPOINTER AND PAINTER

public interface GraphicsPainter {
void paint(Graphics g);

}

glassPane = new AnExtendibleTelePointerGlassPane(telePointedFrame);
glassPane.addPainter(createTelePointerPainter());

public interface GlassPaneController {
int getPointerSize();
void setPointerSize(int aSize);
int getPointerWidth();
void setPointerWidth(int aWidth);
int getPointerHeight();
void setPointerHeight(int aHeight);
boolean isShowTelePointer();
void setShowTelePointer(boolean showTelePointer);

}

Painter should use the dimensions in controller to draw shape

67

HOW TO CREATE A TELEPOINTER

Implement a telepointer painter

Instantiate a telepointer glasspane, passing it a JFrame

Painter should reference the telepointer glass pane to get
paint position

Painter should reference the telepointer controller to get
paint dimensions

68

SYSTEM-SPECIFIC ISSUES



How to inject received input?

How to create a telepointer?

How to intercept input for broadcast?

How to translate window IDs?

How to filter events?

69

GENERAL MODEL OF SINGLE-USER WINDOW

SYSTEM

User 2

Collaboration-Unaware
Window System

Collaboration-Unaware
Application

press a

a^, w2, x, y

70

GENERAL MODEL OF REPLICATED WINDOW

SYSTEM

User 2

Collaboration-Unaware
Window System

Input Distributor

Collaboration-Unaware
Application

press a

a^, w2, x, y

a^, w2, x, y

71

GENERAL MODEL OF SINGLE-USER WINDOW

SYSTEM AGAIN

User 2

Collaboration-Unaware
Window System

Collaboration-Unaware
Application

press a

a^, w2, x, y

a^, w2, x, y

Hot to tap and inject input
in Java

72

JAVA COARSE-GRAINED DELEGATION-BASED

INPUT EVENT PROCESSING

No direct way to inject or stop

events – need to inspect event and

send it to appropriate component

Can intercept events at the

same time they are dispatched

to local components

Window Class

(JPanel)

Window Client Class

HAS-A

processEvent

(AWTEvent)

eventDispatched

(AWTEvent)

dispatchEvent

(AWTEvent)

ToolkitaddAWTListener()

73

JAVA INPUT QUEUE

User 2

Collaboration-Unaware
Window System

EventQueue

Collaboration-Unaware
Application

press a

a^, w2, x, y

a^, w2, x, y

74

REPLACING QUEUE

User 2

Collaboration-Unaware
Window System

InputDistributerQueue

Collaboration-Unaware
Application

press a

a^, w2, x, y

a^, w2, x, y

Toolkit.getDefaultToolkit().getSystemEventQueue().push(
new InputDistributingQueue()) ;

Must remember to
forward to application

Must prevent cycles

Must filter uncoupled
events

Can intercept events

before they are

dispatched to

application

75

LIBRARY LISTENABLE EVENT QUEUE

User 2

Collaboration-Unaware
Window System

Collaboration-Unaware
Application

press a

a^, w2, x, y

a^, w2, x, y

AnExtendible
AWTEventQueue

Toolkit.getDefaultToolkit().getSystemEventQueue().push(
this)

ListeningInput
Distributer

a^, w2, x, y

AnExtendibleAWTEventQueue.getEventQueue().
addEventQueueHandler(new ListentingInputDistributer());

76

HOW TO INTERCEPT AND INJECT WINDOW

EVENTS

AnExtendible

AWTEventQueue

static

getEventQueue()
addEventQueueHandler

(AWTEventQueueHandler)

AWTEventQueue

Handler

newEvent

(AWTEvent)

Will define a listener to get filtered events

Singleton class, invoke
static method in it to

get global queue
Inject event?

dispatchReceivedEvent

(AWTEvent)

Does not fire new event

getCommunication

EventSupport()

Window Manager
State

Window Size

Screen Pointer

Mouse Move

Key Click

Mouse Click

Mouse Drag

Will convert serializable event
to local event

77

LISTENABLE, INJECTABLE EVENT QUEUE

package util.awt;
public interface ExtendibleAWTEventQueue extends
PropertyVetoerRegistrar {
public void addEventQueueHandler(AWTEventQueueHandler listener);
public void removeEventQueueHandler(AWTEventQueueHandler listener);
public void clearEventQueuehandlers();
public void dispatchEvent(AWTEvent event);
void dispatchReceivedEvent(AWTEvent anEvent);

}

dispatchEvent vs. dispatchReceivedEvent ~ replicatedAdd vs. observableAdd

78

SYSTEM-SPECIFIC ISSUES






How to inject received input?

How to create a telepointer?

How to intercept input for broadcast?

How to translate window IDs?

How to filter events?

79

TRANSLATE WINDOW IDS

How to find corresponding windows in different replicas?

80

Collaboration-Unaware
Window System

Input Distributor

Collaboration-Unaware
Application

User 1

TRANSLATING WINDOW IDS

Collaboration-Unaware
Window System

Input Distributor

User 2

Collaboration-Unaware
Application

Collaboration-Unaware
Window System

Input Distributor

User 2

Collaboration-Unaware
Application

press a

a^, w2, x, y

a^, wi, x, y a^, w3, x, y

a^, w3, x, ya^, w2, x, ya^, w1, x, y

draw a, w1, x, y draw a, w2, x, y draw a, w3, x, y

81

Window

CONNECTING REPLICA WINDOWS

Window

Window Window

Replicated shared window
systems can assume same

sequence of windows.

Can use names of Java
windows

How to replace local window ids (Component instances) in events with global
ids (integer, string) and global ids in events with local ids?

82

TRANSLATION

ASerializable

AWTEvent (AWTEvent, String)

ASerializable

AWTEvent

CommunicatedAWT

EventSupport

AWTEvent

toDispatchedEvent(SerializableAWTEvent ,

Component component);

Given AWTEvent e, component c Send ASerializableAWTEvent (e, toID(c))

Given SerializableAWTEvent (event e, id i)
Dispatch toDispatchedEvent(e ,

toComponent(i)) to
AnExtendibleAWTEventQueue

AnExtendibleAWTEventQueue.getEventQueue().getCommunicatedEventSupport()

83

SERIALIZABLE EVENT  LOCAL EVENT

package util.awt;
public class ASerializableAWTEvent implements SerializableAWTEvent {
public ASerializableAWTEvent(AWTEvent theEvent, String theComponentId) {
…
}

}

toComponent() written by programmer to translate
between global id and local component

SerializableAWTEvent serializableEvent (SerializableAWTEvent) aMessage;
AWTEvent aDispatchedEvent =

AnExtendibleAWTEventQueue.getEventQueue().
getCommunicatedEventSupport().toDispatchedEvent(

serializableEvent, toComponent(serializableEvent));
AnExtendibleAWTEventQueue.getEventQueue().dispatchReceivedEvent

(aDispatchedEvent)

84

TRANSLATE WINDOW IDS

How to find corresponding windows in different replicas?

How to find the windows and creation sequence in each replica?

85

WINDOW CREATION EVENT  REGISTER

SUBTREE

Once we find a window, we can recursively find all of its
descendants

((Container) component).getComponents();

Resize event sent to EventQueue when it is created

If E is window creation (resize) event then register the global ids of its subtree if the
subtree has not already been registered

AWTMisc.isResizeEvent(event);

86

A TALE OF TWO RESIZE EVENTS

Resize event sent both when window resized and it is created.

Want to dispatch normal received resize events but not creation
events

Connect queue listener before window tree created to get resize
events

To prevent window creation events remotely broadcast

broadcaster can be attached after window tree is created,
which means two different listeners

receive listener can be attached after local window tree
created

broadcaster can have a special mode to separate the two
phases

87

SYSTEM-SPECIFIC ISSUES



How to inject received input?

How to create a telepointer?

How to intercept input for broadcast?

How to translate window IDs?

How to filter events?







88

TRANSMIT FUNCTION

Filter by Event Type
Filter by Event Time

Filter by (Top) Window Name

Mouse Drag

Done by library

System.currentTimeMillis();

AWTMisc.isMouseDragged
Event(event);

Need to ensure that last
mouse drag event is sent

SwingUtilities.getRoot
(Component)

Object event.getSource();

Need to cast source as
Component

Window Manager
Events

89

Collaboration-Unaware
Window System

Input Distributor

Collaboration-Unaware
Application

User 1

REPLICATED VS. CENTRALIZED WINDOW

SYSTEM

Collaboration-Unaware
Window System

Input Distributor

User 2

Collaboration-Unaware
Application

Collaboration-Unaware
Window System

Input Distributor

User 2

Collaboration-Unaware
Application

press a

a^, w2, x, y

a^, wi, x, y a^, w3, x, y

a^, w3, x, ya^, w2, x, ya^, w1, x, y

draw a, w1, x, y draw a, w2, x, y draw a, w3, x, y

Centralized?

90

Collaboration-Unaware
Window System

Collaboration-Aware
Proxy

Collaboration-Unaware
Application

User 1

Input/Output

Master
Computer

CENTRALIZED SHARED WINDOW SYSTEM

Collaboration-Unaware
Window System

Collaboration-Aware
Proxy

User 2

Slave
Computer

The shared application runs on
the (master) computer of only

one of the collaborators

The shared application runs on
the (master) computer of only

one of the collaborators

Each user’s input relayed to
application through proxies

Each output of application
broadcast to all users through

proxies

91

Window System

I/O Relayer & Output
Broadcaster

Window Application

User 1

PROXY FUNCTIONS

Window System

I/O Relayer

User 2

Window System

I/O Relayer

User 3

a ^, w1, x, y
draw a, w1, x, y

press a

a ^, w2, x, ydraw a, w1, x, y draw a, w2, x, y draw a, w3, x, y

a ^, wi, x, y draw a, wi, x, ydraw a, wi, x, y

Slave proxy relays input to app
through master proxy

Master proxy broadcasts output
to all slave proxies, which relay

to local window system

Proxies translate window ids

92

REPLICATED WINDOW ALGORITHM

For each Window (including Telepointer) Input I

I should be followed by matching WindowEventDispatched

For each replica, if Transmit(I) then I should be followed by matching
WindowEventSent

For each WindowEventReceived R

R should be followed by matching WIndowEventDispatched

For each replica, R should be followed by matching WindowEventSent

For each Window w, create Telepointer wt

How to change it to centralized?

93

CENTRALIZED WINDOW ALGORITHM

For each Window (including Telepointer) Event I

I should be followed by matching WindowEventDispatched (including Telepointer)

If isSlave() and Transmit(I) then I should be followed by matching WindowEventSent to
Master

For each WindowEventReceived R at Master, R should be followed by matching
WindowEventDispatched

For each output call O, O should be followed by WindowRequestMade and
WindowRequestSent to all Slaves

For each Window w, create Telepointer wt

For each WindowRequestReceived R at Slave, R should be followed by
WindowRequestMade

Slave Receiver

Master Receiver

Master and Slave

94

CENTRALIZED VS. REPLICATED WINDOW SYSTEMS

Centralized vs. Replicated Shared Window Systems

~ Centralized vs. Replicated Shared Model Systems

95

REPLICATED MODEL: ISSUES

Model

Interactor

Model

Interactor

Consistency issues of causality and concurrent

operations (to be addressed later)

Correctness and performance issues when

model is non deterministic, accesses central

resources, and has side effects

All of these problems
still occur in replicated

window systems

96

Collaboration-Unaware
Window System

Proxy Window System

Collaboration-Unaware
Application

User 1

EXAMPLE OF NON DETERMINISM AND OTHER

REPLICATION PROBLEMS (REVIEW)

Collaboration-Unaware
Window System

Proxy Window System

User 2

Collaboration-Unaware
Application

display
random
number

display
random
number

Different users will see
different output

Behavior of centralized
and replicated different

Assumption:
Output should be only a

function of input

Non determinism!

97

DISTINGUISHED “REPLICA” MODEL SOLUTION

Model

Interactor

Model

Interactor

A central model executes

operations that are expensive,

non-idempotent, or access

central resources

Model’

Cannot use application-

specific solution if

supporting collaboration-

unaware applications

98

CENTRALIZED VS. REPLICATED MODEL

None of the replication issues

Feedback times involve round trip delays

Feed through incurs extra hop (beyond

relaying)

Refresh and query operations also involve

round trip delays (e.g. searching history)

Can we fix the last problem?

Caching!

Model

Interactor

Interactor

Cannot use caching of high-

level state, no local non

window state

Refresh, scrolling involves

round trips

99

SHARED WINDOW SYSTEMS

Problems of centralization and replication get aggravated

Plus other problems

Collaboration-awareness required for distinguished process in

replicated systems

In central systems, round trip for readable model state

100

Window System

I/O Relayer & Output
Broadcaster

Window Application

User 1

CONCURRENT/INTERLEAVED INTERACTION

Window System

I/O Relayer

User 2

Window System

I/O Relayer

User 3

a , w1, x1, y1

Type b

User inputs can get (un)
desirably mixed

Can multiple users generate a
stream not creatable by one

user?

Type a

b, w1, x2, y2

101

Window System

I/O Relayer & Output
Broadcaster

Window Application

User 1

EXPLICIT FLOOR CONTROL

Window System

I/O Relayer

User 2

Window System

I/O Relayer

User 3

leftButton ^, w1, x1, y1

press leftButton

Multiple users can indeed generate input
sequence that cannot be generated by single user

press leftButton

leftButton ^, w1, x2, y2

Can break (explicit/implicit) assertions of
collaboration-unaware code

Solution: Explicit Floor Control

One user interacts at a time and explicitly gives
floor to another

Floor control is application-independent and
hence automatable

Problem occurs in both centralized and replicated
shared window systems

102

SHARED WINDOW SYSTEMS

Problems of centralization and replication get aggravated

Plus other problems

Collaboration-awareness required for distinguished process in

replicated systems

In central systems, round trip for readable state

Invalid window sequences possible in shared (centralized and

replicated) window systems because intra-sequence constraints

in window system events

103

PROBLEM WITH RELAXED WYSIWIS IN

CENTRALIZED SYSTEMS

Window Manager
State

Window Size

Screen Pointer

Mouse Move

Key Click

Mouse Click

Mouse Drag

104

Window System

I/O Relayer & Output
Broadcaster

Window Application

User 1

SHARING WINDOW MANAGER STATE

Window System

I/O Relayer

User 2

Window System

I/O Relayer

User 3

move w2

move w2

window moves window moves

move wi

Not broadcasting can prevent
window wars

Not all systems couple window
manipulation events (XTV)

move w1

window moves

move w3

move wi

105

RELAXED WYSIWIS COUPLING

Implemented in XTV

Independent Window
Positions

Independent Window
Minimization

106

POP-UP MENUS PROBLEM WITH UNCOUPLED

WINDOW STATE

Pop-up menus are top-
level windows drawn at

absolute positions by
application.

Inner windows drawn
relative to containing

window.

107

CORRECT POP-UP MENUS

Proxy keeps track of
root window and

translates.

More than a proxy –
understands underlying

window system.

Not uncommon in
proxies.

108

SEMANTIC ISSUE

 Should window state be coupled?

 Coupled  window wars (Stefik et al ’85)

 Uncoupled  no referential transparency

 Cannot refer to the “upper left” shared window

 Problems in centralized systems

 Compromise for centralized system

 Create a virtual desktop on a slave computer for
physical desktop of the master user

109

VIRTUAL DESKTOP Privately
scrollable ,
movable
window

representing
master screen

Nested, shared
, WYSIWIS

master
window

Pop up menus not a
problem

But slave system has to
create a virtual desktop,
much more than a proxy,

a window manager

110

ANOTHER ISSUE: COUPLING OF

UNEXPOSED REGIONS?

Real desktop Virtual desktop

111

Collaboration-Unaware
Window System

Input Distributor

Collaboration-Unaware
Application

User 1

REPLICATED SYSTEMS (REVIEW)

Collaboration-Unaware
Window System

Input Distributor

User 2

Collaboration-Unaware
Application

Collaboration-Unaware
Window System

Input Distributor

User 2

Collaboration-Unaware
Application

press a

a^, w2, x, y

a^, wi, x, y a^, w3, x, y

a^, w3, x, ya^, w2, x, ya^, w1, x, y

draw a, w1, x, y draw a, w2, x, y draw a, w3, x, y

Centralized?

112

Window System

I/O Relayer & Output
Broadcaster

Window Application

User 1

CENTRALIZED SYSTEMS (REVIEW)

Window System

I/O Relayer

User 2

Window System

I/O Relayer

User 3

a ^, w1, x, y
draw a, w1, x, y

press a

a ^, w2, x, ydraw a, w1, x, y draw a, w2, x, y draw a, w3, x, y

a ^, wi, x, y draw a, wi, x, ydraw a, wi, x, y

Slave proxy relays input to app
through master proxy

Master proxy broadcasts output
to all slave proxies, which relay

to local window system

Proxies translate window ids

113

SHARED WINDOW SYSTEMS

Problems of centralization and replication get aggravated

Plus other problems

Collaboration-awareness required for distinguished process in

replicated systems

In central systems, round trip for readable state

Invalid window sequences possible in shared (centralized and

replicated) window systems because intra-sequence constraints

in window system events

In centralized systems with relaxed WYSIWIS, pop up menus

and obscured master windows can create problems

114

RELAXED WYSIWIS COUPLING (FIRST-CLASS

REMOTE WINDOWS))

Implemented in XTV

Independent Window
Positions

Independent Window
Minimization

115

VIRTUAL DESKTOP

Real desktop Virtual desktop

Corresponding windows in first-class remote windows and

virtual desktops may be exposed differently

116

EXPOSE EVENTS

Window System

Collaboration-Unaware
Application

User

resize,
(un)obscure w

expose w,
rects

draw complete w

clip w

draw exposed w

OR

When a window is resized, or
(un) obscured expose event is
sent to it with exposed regions

Application is expected to draw
only exposed regions

May draw complete window

Window system clips in case it
app. drawn outside window

bounds

117

APPLICATION DRAWS EXPOSED WINDOWS

Window System

I/O Relayer & Output
Broadcaster

Window Application

User 1

Window System

I/O Relayer

User 2

Window System

I/O Relayer

User 3

clip w2 clip w3

expose w1,
rects

clip w1

expose w1,
rects draw exposed w1

draw exposed wi

draw exposed w2 draw exposed w3

Each computer shows only
regions exposed in master

Slave shows old contents or black
holes

Expose events not sent from
slaves

Window may be exposed
differently on different computers

resize,
(un)obscure w1

draw exposed w1

118

APPLICATION DRAWS COMPLETE WINDOW

Window System

I/O Relayer & Output
Broadcaster

Window Application

User 1

Window System

I/O Relayer

User 2

Window System

I/O Relayer

User 3

clip w2 clip w3

expose w1,
rects

clip w1

expose w1,
rects draw w1

draw w1

draw wi

draw w2 draw w3

Slave shows obscured contents in
master

resize,
(un)obscure w1

Slave shows contents not seen in
master

How to overcome problem?

119

PREVENTING PRIVACY ISSUES: EXPOSE

COUPLING

Window System

I/O Relayer & Output
Broadcaster

Window Application

User 1

Window System

I/O Relayer

User 2

Window System

I/O Relayer

User 3

clip w2 clip w3

expose w1,
rects

clip w1

expose w1,
rects draw w1

draw w1

draw wi

clipdraw rects, w2 clipdraw rects, w2

Send expose event to all proxies

They can then filter draw requests
to show only exposed regions

resize,
(un)obscure w

expose wi,
rects

120

WINDOW-BASED COUPLING

Mandatory
 Window sizes
 Window contents

Optional
 Window positions
 Window stacking order
 Window exposed regions

Optional can be done with or without virtual
desktop
 Without virtual desktop, problems of pop up

menus
 In both cases, expose events are an issue

that proxies must address

121

"OUTPUT" CALLS WITH RETURN VALUES

Window System

Collaboration-Unaware
Application

User

press a

expose w,
rects

move wa ^, w1, x, y

move w
resize,

(un)obscure w

draw a, w1, x, y move w
draw in

exposed w

Input/Event: Transfer
info to App Output/Request/Call:

Transfer Info from App

Fonts listFonts

"Output"/Request/Call:
Transfer Info to App

122

UNICASTING TO MASTER

Window System

I/O Relayer & Output
Broadcaster

Window Application

User 1

Window System

I/O Relayer

User 2

Window System

I/O Relayer

User 3

5, 9, 11

5, 9, 11
listFonts()

listFonts()

A call with return value may be
unicast to master window system

123

BROADCASTING CALLS WITH RETURN

VALUES

Window System

I/O Relayer & Output
Broadcaster

Window Application

User 1

Window System

I/O Relayer

User 2

Window System

I/O Relayer

User 3

3, 9, 11

9, 11
listFonts()

A call with return value may be
broadcast to all window systems

listFonts()

Master proxy combines replies

listFonts()listFonts()
3, 9, 11

5, 9, 11

1, 9, 11

1, 9, 11

124

UNICAST TO SOME SLAVE

Window System

I/O Relayer & Output
Broadcaster

Window Application

User 1

Window System

I/O Relayer

User 2

Window System

I/O Relayer

User 3

3, 9, 11

3, 9, 11
listFonts()

listFonts()

A call with return value may be
unicast to any window system

3, 9, 11
listFonts()

Unicast to slave involves network
delay and translation

125

UNICAST TO ACTIVE SLAVE

Window System

I/O Relayer & Output
Broadcaster

Window Application

User 1

Window System

I/O Relayer

User 2

Window System

I/O Relayer

User 3

queryPointer()

Application may draw at pointer location

A call with return value may need to be
unicast to window system with floor

queryPointer()

Has Floor

w1, x, y,
leftButton ^

w1, x, y,
leftButton ^

w2, x, y,
leftButton ^

Should really listen to event than poll

Some window systems are more
conducive to sharing

126

SHARED WINDOW SYSTEMS

Problems of centralization and replication get aggravated

Plus other problems

Collaboration-awareness required for distinguished process in

replicated systems

In central systems, round trip for readable state

Invalid window sequences possible in shared (centralized and

replicated) window systems because intra-sequence constraints

in window system events

In centralized systems with relaxed WYSIWIS, pop up menus

and obscured master windows can create problems

In centralized systems with query calls, the target of these calls

is an issue

127

REPLICATED VS. CENTRALIZED

INFRASTRUCTURES

Replicated

Centralized

VConf (Lantz ’86, Stanford)

Rapport (Ahuja ’89, Bell Labs)

XTV (Abdel-Wahab ’91, UNC/ODU)

Research systems tried both
architectures.

Commercial ones implement
centralized

Meeting Space (Vista)

LiveMeeting (Microsoft)

MeetingPlace (Cisco)

CollaborateNow (IBM)

Webex

128

CASE STUDY: JAVA AWT

Why is centralized harder based on what you know
about Java?

129

Window System

I/O Relayer & Output
Broadcaster

Window Application

User 1

INTERCEPTION DIFFERENCES

Window System

I/O Relayer

User 2

Window System

I/O Relayer

User 3

a ^, w1, x, y
draw a, w1, x, y

press a

a ^, w2, x, ydraw a, w1, x, y draw a, w2, x, y draw a, w3, x, y

a ^, wi, x, y draw a, wi, x, ydraw a, wi, x, y

In replicated architecture, must intercept
and inject input

In centralized architecture, must intercept
input and output, and inject both

130

INPUT VS. OUTPUT DIFFERENCES

User 2

Collaboration-Unaware
Window System

EventQueue

Collaboration-Unaware
Application

press a

a^, w2, x, y

a^, w2, x, y

All input defined by a single event type

Funneled through a single replaceable object

131

HOW TO INTERCEPT OUTPUT CALLS?

paint(Graphics)

Graphics

Frame

Window App

draw ()

setSize()

Calls to both frame and graphics must be intercepted

Java not designed to allow output interception

Calls are made by making different invocations, not passing a unifying
data structure

How to change AWT/Swing?

repaint()

132

LIBRARY GLOBAL QUEUE

paint(ListenableGraphics)

ListenableGraphics

ADelegateFrame

Window App

setSize()

repaint()

draw ()

AnOutputQueue

notifyListeners

(Serializable

GraphicsRequest)

addOutputListener()

notifyListeners

(Serializable

FrameRequest)

AnOutputQueue.addOutputListener(this);

133

GLOBAL QUEUE

All frame calls and listenable graphics calls sent to output queue

AnOutputQueue, like AnExtendibleAWTQueue, allows listeners

134

public class AListenableCharacterDrawer

extends ACursorTrackerOfDelegateFrame

implements ListenablePainter {

final static int CARAT_LENGTH = 10;

public AListenableCharacterDrawer(ADelegateFrame theDelegateFrame) {

super(theDelegateFrame);

delegateFrame.addPainter(this);

}

public void paint(

ADelegateFrame theDelegateFrame, ListenableGraphics g) {

g.drawLine(charX, charY, charX, charY - CARAT_LENGTH);

g.drawString("" + lastChar, charX, charY);

}

public void mousePressed(MouseEvent event) {

super.mousePressed(event);

delegateFrame.repaint();

}

public void keyTyped(KeyEvent event) {

super.keyTyped(event);

delegateFrame.repaint();

}

}

MASTER PAINTER

For each frame, need to track graphics requests issued in last paint call so
we can make transactions at the other end

For each frame, need to track graphics requests issued in last paint call

135

SERIALIZABLEREQUEST

public interface SerializableRequest extends Serializable {

public int getFrameId();

public String getName();

public Object[] getArgs();

}

136

public interface SerializableGraphicsRequest extends SerializableRequest{

public static final String DRAW_OVAL = "drawOval";

public static final String DRAW_RECT = "drawRect";

public static final String DRAW_STRING = "drawString";

public static final String DRAW_LINE = "drawLine";

public static final String PAINT_START = "paintStart";

public static final String PAINT_END = "paintEnd";

public Rectangle getClipBounds();

public void setClipBounds(Rectangle theRectangle);

}

SERIALIZABLEGRAPHICSREQUEST

137

SERIALIZABLEFRAMEREQUEST

public interface SerializableFrameRequest extends SerializableRequest{

public static final String CREATE_FRAME = "createFrame";

public static final String SET_SIZE = "setSize";

}

138

INTERCEPTING OUTPUT IN REAL WORLD

Call in the window system/widget usually
does not result in notifications

Local infrastructure module can send screen
diffs to other computers

draw pixrect1, pixrectn

Must poll and send periodically

Intercepting output needed only in
centralized architectures

Collaboration-Unaware
Window System

Input Distributor

Collaboration-Unaware
Application

a^, w1, x, y

draw a, w1, x, y

139

WINDOW SYSTEM AS A LIBRARY

Collaboration-Unaware
Window System

Collaboration-Aware
Proxy

Collaboration-Unaware
Application

Window App and System run in
same process

Microsoft Windows

Library proxy possible but not
common, have to run proxy code

for some compiled process

In Java window system is a library
and not a separate process

140

WINDOW SYSTEM PROXY

Collaboration-Unaware
Window System

Collaboration-Unaware
Application

Collaboration-Aware
Proxy

Window Sharing
System

(e.g., Live Meeting,
Webex)

Possible for remote process to get
input, polling for output

141

PROXY ADDITION IN CLIENT-SERVER

ARCHITECTURE

Collaboration-Unaware
Window System

Collaboration-Unaware
Application

Collaboration-Aware
Proxy

Collaboration-Unaware
Window System

Collaboration-Unaware
Application

setenv hostid:port

setenv hostid:port’

setenv hostid:port

Window system is Window Server
Window App and System run in different

processes

X Window
System

142

SHARED WINDOW SYSTEMS
 Coupling

 WYSIWIS, Relaxed WYSIWIS

 Shared Window Systems
 Constraints on input sequences can be violated

 Layering for telepointers

 Replicated
 Input broadcast

 Input interception, injection

 All problems of replicated models and no awareness

 Centralized
 Input relay and output broadcast

 Input interception, injection

 Output interception, injection

 All problems of centralized plus pop up menus, different exposed areas, output
query calls

 Virtual desktop solves problem of referential transparency vs. per user window
configuration

 Java Implementation
 Input interception and injection possible

 Implementation problems as demo shows

 Output interception and injection not directly supported

 Address space of proxies
 Different from shared application in reality

 Easier to attach proxies if distributed window systems such as X

