
CONCURRENCY CONTROL 

Prasun Dewan 

Department of Computer Science 

University of North Carolina at Chapel Hill 

dewan@cs.unc.edu 

mailto:dewan@cs.unc.edu


2 

CONCURRENCY CONTROL 

Issue Description 

Session Management How do distributed users create, 

destroy, join, and leave collaborative 

sessions? 

Single-user Interface What are the application semantics if 

there is a single user in the session? 

Coupling What is the remote feedback of a user 

command and when is it given? 

Access Control How do we ensure that users do not 

execute unauthorized commands? 

Concurrency Control How do we ensure that concurrent 

users do not execute inconsistent 

commands? 



3 

Window System 

I/O Relayer & Output 
Broadcaster 

Window Application 

User 1 

PROBLEM IN SHARED WINDOW SYSTEMS 

Window System 

I/O Relayer 

User 2 

Window System 

I/O Relayer 

User 3 

leftButton ^, w1, x1, y1 

press leftButton 

Multiple users can  indeed generate input 
sequence that cannot be generated by single user 

press leftButton 

leftButton ^, w1, x2, y2 

Can break (explicit/implicit) assertions of 
collaboration-unaware code 

Problem occurs because of interleaved execution 



4 

PROBLEM IN SHARED MODEL SYTEMS 

 



5 

PROBLEM IN SHARED MODEL SYSTEMS 

 



6 

SYNCHRONIZATION MODEL 

6 

Shared 

data 

User 1 User 2 

Synchronization logic 

(BeginTransaction Operation* EndTransaction)* 

Users submit operations in transactions 

Operations are 
validated w.r.t.  

concurrent  
operations Schedules 

(interleaved transactions) 



7 

TRADITIONAL CORRECTNESS CRITERIA: 

SERIALIZABILITY 

 Concurrent transactions execute as if they were 

submitted one after the other. 

7 

serializable 

schedules 

all possible 

schedules 



8 

SERIALIZABILITY: DIFFERENT ITEMS 

8 

T1 

R1(d1) 

W1(d1) 

T2 

R2(d2) 

W2(d2) 

R1(d1) R2(d2) W2(d2) W1(d1) 

Commuting operations 
can be reordered 

Serializable!  

Serializable?  

R2(d2) R1(d1) W2(d2) W1(d1) 

R2(d2) W2(d2) R1(d1) W1(d1) 

T2 T1 

T1T2 



9 

DIFFERENT ITEMS 

 



10 

SERIALIZABILITY: SAME ITEMS 

10 

T1 

R1(d1) 

W1(d1) 

T2 

R2(d1) 

R1(d1) R2(d1) W1(d1) 

Serializable?  

R2(d1) R1(d1) W1(d2) 

T2 T1 

T1T2 

Serializable!  

T2 should precede T1 

No dependencies 
between commuting 

operations 



11 

SERIALIZABILITY: SAME ITEMS 

11 

T1 

R1(d1) 

W1(d1) 

T2 

R2(d1) 

W2(d1) 
T2 should precede T1 

Serializable?  

T1 should precede T2 

Not serializable!  

Cycle in the transaction 
graph! 

Reverse reads and 
writes? 



12 

SERIALIZABILITY: SAME ITEMS 

12 

T1 

W1(d1) 

R1(d1) 

T2 

W2(d1) 

R2(d1) 
T2 should precede T1 

Serializable?  

T1 should precede T2 

Not serializable!  



13 

SERIALIZABILITY: MULTIPLE ITEMS 

13 

T1 

W1(d1) 

W1(d2) 

T2 

W2(d1) 

W2(d2) 
T2 should follow T1 

Serializable?  

T1 should follow T2 

Not serializable!  



14 

SERIALIZABILITY: MULTIPLE ITEMS 

14 

T1 

W1(d1) 

W1(d2) 

T2 

W2(d1) 

W2(d2) 

T2 should follow T1 

Serializable?  

T2 should follow T1 

Serializable!  



15 

SERIALIZABILITY 

 R-W Serializability 

 R-R operations (on same item) commute and hence can 

be reordered. 

 R-W and W-W do not commute and hence cannot be 

reordered. Cause R-W and  W-W conflicts in non-

serializable transactions 

 

15 



16 

Window System 

I/O Relayer & Output 
Broadcaster 

Window Application 

User 1 

SHARED WINDOW SYSTEMS 

Window System 

I/O Relayer 

User 2 

Window System 

I/O Relayer 

User 3 

leftButtond, w1, x1, y1 

press leftButton press leftButton 

leftButtond, w1, x2, y2 

T1 

W1(LB) 

W1(LB) 

T2 

W2(LB) 

W2(LB) 

leftButtonu, w1, x1, y1 

leftButtonu, w1, x2, y2 

release leftButton release leftButton 



17 

SHARED MODEL SYSTEMS 



18 

SHARED MODEL SYSTEMS 

W1(Price) 

R2(Price) 

R1(Price) 

W2(Price) 

Not serializable!  



19 

CONCURRENT DRAWING: INITIAL STATE 



20 

USER1 CHANGE NOT SEEN BY USER2 



21 

MODELING CONCURRENT DRAWING 



22 

FINE-GRAINED MODELING OF READ 

W1(Line.Color) 

R2(Line.Size) 

R1(Line.Color) 

W2(Line.Size) 

Serializable!  



23 

COARSE-GRAINED READ MODELING 

W1(Line.Color) 

R2(Line) 

R1(Line) 

W2(Line.Size) 

Assuming whole line read 

Not Serializable!  



24 

CONCURRENT DRAWING 



25 

CONCURRENT DRAWING 



26 

CONCURRENT DRAWING 



27 

FINE-GRAINED MODELING 

W1(Rectangle) 

R2(Line) 

R1(Rectangle) 

W2(Line) 

Serializable!  



28 

COARSE-GRAINED MODELING 

W1(Rectangle) 

R2(Drawing) 

R1(Drawing) 

W2(Line) 

Assuming whole drawing read 

Not Serializable!  



29 29 

THE PROBLEM OF TRACING READS 

 In interactive application, not clear what user has 
read. 

 Many collaborative systems take liberal approach, 
not tracking them. 

 Strict serializability would require conservative 
approach of assuming everything on the display is 
read 

 Eye and scroll tracking would help narrow down the 
read data 



30 

R/W VS. TYPE-SPECIFIC SERIALIZABILITY 

30 

T1 

ls project/README 

edit project/README  

T2 

mkdir project/src 

ls project/src 

T1 

R(project) 

W(project) 

T2 

W(project) 

R(project) 

Set operations: serializable 

R/W operations: not serializable 



31 31 

SERIALIZABILITY 

 Modeling ls as read and mkdir as write leads to directory-

independent, non-serializable  case 

 Using type-specific semantics leads to serializable case 



32 

SYNCHRONIZATION SYSTEMS 

 Provide synchronization on behalf of 

applications 

32 

Shared 

data 

Application 

User 1 User 2 

Synchronization system 

Consistency requirements 

Consistency criteria 



33 

CONSISTENCY CRITERIA VS. REQUIREMENTS 

33 

consistency 

requirements 

consistency 

criteria 

all possible 

schedules 



34 

CONSISTENCY CRITERIA VS. REQUIREMENTS 

34 

Type specific 

Serializability 

R/W 

Serializability 

all possible 

schedules 



35 

CONSISTENCY REQUIREMENTS & CRITERIA 

 Consistency requirements: 

 specify the set of ideally allowable schedules. 

 “Users may concurrently add room reservations (that 

don’t overlap), but may not concurrently change the same 

reservation.” 

 Consistency criteria: 

 specify the set of actually allowed schedules. 

 “Users must access the set of reservations one at a time.” 

35 



36 

SYNCHRONIZATION SYSTEMS 

 Provide synchronization on behalf of 

applications 

36 

Shared 

data 

Application 

User 1 User 2 

Synchronization system 

Consistency requirements 

Consistency criteria 

Given some  consistency criteria 
how should the synchronization 

system check transactions for 
serializability? 



37 

VALIDATION/CHECKING TIME 

 Pessimistic 

 Early 

 Failure => block 

 Optimistic 

 Late 

 Failure => abort 

 Interactive transaction? 

 Wasted human work not redoable perhaps 

 Merging 

 Late, not serializable 

 Merging, new transaction to replace conflicting 

transactions 

37 



38 

LOCKING: ONE ITEM 

38 

T1 

W1(d1) 

R1(d1) 

T2 

W2(d1) 

R2(d1) 

T1 

W1(d1) 

R1(d1) 

T2 

W2(d1) 

R2(d1) 

L1(d1) 

F1(d1) 

L2(d1) 

F1(d1) 



39 

SYNCHRONIZATION MODEL (REVIEW) 

39 

Shared 

data 

User 1 User 2 

Synchronization logic 

(BeginTransaction Operation* EndTransaction)* 

Users submit operations in transactions 

Operations are 
validated w.r.t.  

concurrent  
operations Schedules 

(interleaved transactions) 



40 

TRANSACTIONS (REVIEW) 

 A (tomic) 

 Either all action of a transaction occur or none 

 C (onsistent) 

 Each transaction leaves shared state in a consistent 

state, where consistency is application-defined 

 I (solation) 

 Actions of concurrent transactions are isolated so that 

together they leave the shared state in a consistent state 

 D (urability) 

 Actions of a transaction persist – written to stable 

storage) vs. persistent storage 

 Stable – atomic write no errors; 

 Persistent – errors possible 

 



41 

TRADITIONAL ISOLATION CRITERIA: 

SERIALIZABILITY (REVIEW) 

 Concurrent transactions execute as if they were 

submitted one after the other, leaving data in 

consistent state 

41 

serializable 

schedules 

all possible 

schedules 



42 

VALIDATION/CHECKING TIME (REVIEW) 

 Pessimistic 

 Early 

 Failure => block 

 Optimistic 

 Late 

 Failure => abort 

 Interactive transaction? 

 Wasted human work not redoable perhaps 

 Merging 

 Late, not serializable 

 Merging, new transaction to replace conflicting 

transactions 

42 



43 

LOCKING: ONE ITEM (REVIEW) 

43 

T1 

W1(d1) 

R1(d1) 

T2 

W2(d1) 

R2(d1) 

T1 

W1(d1) 

R1(d1) 

T2 

W2(d1) 

R2(d1) 

L1(d1) 

F1(d1) 

L2(d1) 

F1(d1) 



44 

SYNCHRONIZATION MODEL (REVIEW) 

44 

Shared 

data 

User 1 User 2 

Synchronization logic 

(BeginTransaction Operation* EndTransaction)* 

Users submit operations in transactions 

Operations are 
validated w.r.t.  

concurrent  
operations Schedules 

(interleaved transactions) 



45 

TRANSACTIONS (REVIEW) 

 A (tomic) 

 Either all action of a transaction occur or none 

 C (onsistent) 

 Each transaction leaves shared state in a consistent 

state, where consistency is application-defined 

 I (solation) 

 Actions of concurrent transactions are isolated so that 

together they leave the shared state in a consistent state 

 D (urability) 

 Actions of a transaction persist – written to stable 

storage) vs. persistent storage 

 Stable – atomic write no errors; 

 Persistent – errors possible 

 



46 

TRADITIONAL ISOLATION CRITERIA: 

SERIALIZABILITY (REVIEW) 

 Concurrent transactions execute as if they were 

submitted one after the other, leaving data in 

consistent state 

46 

serializable 

schedules 

all possible 

schedules 



47 

VALIDATION/CHECKING TIME (REVIEW) 

 Pessimistic 

 Early 

 Failure => block 

 Optimistic 

 Late 

 Failure => abort 

 Interactive transaction? 

 Wasted human work not redoable perhaps 

 Merging 

 Late, not serializable 

 Merging, new transaction to replace conflicting 

transactions 

47 



48 

LOCKING: ONE ITEM (REVIEW) 

48 

T1 

W1(d1) 

R1(d1) 

T2 

W2(d1) 

R2(d1) 

T1 

W1(d1) 

R1(d1) 

T2 

W2(d1) 

R2(d1) 

L1(d1) 

F1(d1) 

L2(d1) 

F1(d1) 



49 

LOCK COMPATIBILITY MATRIX 

Data Item D Locked Unlocked 

Lock No Yes 

Issues (in collaborative systems)? 



50 

LOCK COMPATIBILITY MATRIX (REVIEW) 

Data Item D Locked Unlocked 

Lock No Yes 

Issues (in collaborative systems)? 



51 

ISSUES 

User Interface for Locking and Unlocking?  

Implementation of locking in a distributed collaborative 
environment? 

Lock Denial Semantics? 



52 

LOCK DENIAL 

Synchronous with timeout:  Like synchronous but timeout 
returns false 

Non blocking: Callback when lock available, try again  

Synchronous: Programmed blocked until lock given 

Non blocking: No callback, polling 

Asynchronous:  Callback when lock given 

UI Thread should not 
block 



53 

ISSUES 

User Interface for Locking and Unlocking?  

Implementation of locking in a collaborative environment? 

Lock Denial Semantics? 

 



54 

USER-INTERFACE 

Explicit/Implicit Locking 

Explicit/Implicit Unlocking 



55 

UI: EXPLICIT/IMPLICIT LOCKING 

Explicit 

Selection-implied 

Lock O 

Append O, E1 

Delete O, E2 

Select Object  Lock Object + Select Object 

Key-implied Press Key  Lock Buffer + Process Key 

Dragging-implied Start Dragging  Lock Object + Start Dragging 



56 

EXPLICIT/IMPLICIT UNLOCKING 

Explicit 

Selection-implied 

Append O, E1 

Delete O, E2 

Unlock O 

Unselect Object  Unselect object + Unlock 

object 

Key-implied Release Key  Unlock Buffer + Unlock object 

Dragging-implied 
Stop Dragging  Stop Dragging + Unlock 

Object 

Analogues of explicit/implicit locking 



57 

IMPLICIT UNLOCKING 

Tickle locks Timeout Unlock Object 

Preemptive locks Lock Object Unlock Object + Lock Object 

Tickle + 

Preemptive 
Timeout + Lock Object Unlock Object + Lock 

Object 

Unlocked object may not be consistent! 

Unlocking user may be able to restore consistency of 
another user to essentially do a joint (nested) transaction 



58 

Pro: Forgetting to 

unlock 

Pro: Low Wait Time 

Pro: Priority 
Pro: Consistency 

Lock O 

Insert O, E1 

Delete O, D1 

Unlock O 

 

Lock O 

Insert O, E2 

… 

Lock O 

Insert O, E1 

 

Lock O 

Insert O, E2 

… 

Lock O 

Insert O, E1 

 

Lock O 

Insert O, E2 

… 

CONSISTENCY VS CONCURRENCY 

Non-Preemptive Preemptive Tickle-Locks 

t > T 



59 

ISSUES 

User Interface for Locking and Unlocking?  

Implementation of locking in a collaborative environment? 

Lock Denial Semantics? 

 

 



60 

IMPLEMENTATION 

Already know how to share an object 

Need to share a locking model among multiple users 



61 

REPLICATED VS CENTRALIZED 

Model 

Interactor 

Model 

Interactor 

Model 

Interactor 

Interactor 



62 

REPLICATED VS CENTRALIZED 

Lock Model 

Lock 

Interactor 

Lock Model 

Lock 

Interactor 

Lock Model 

Lock 

Interactor 

Lock 

Interactor 



63 

REPLICATED MODEL: ISSUES 

Lock Model 

Lock 

Interactor 

Lock Model 

Lock 

Interactor 

Who solves the consistency problems of the 

consistency enforcer! 

Consistency issues of causality and concurrent 

operations (to be addressed later) 

Correctness and performance issues when 

model is non deterministic, accesses central 

resources, and has side effects 



64 

DISTRIBUTED CONSENSUS PROBLEM 

A set of processes have to agree on a common value 

(Byzantine generals) 

There may be failures in machines and 

communication 

Some processes may be malicious  

2 Phase Commit : Coordinator takes vote in first 

phase and reports majority outcome in second 

Not to be confused with 2 Phase Locking (later) 

Will simply use the centralized cache solutions 

assuming no faults 



65 

DISTRIBUTION UNAWARE INTERACTOR WITH 

MODEL CACHE/PROXY 

Lock Model 

Interactor 
Lock Model 

Cache 

Model cache is a proxy that 

forwards write (lock, release) 

operation without changing 

its data 

Read operations (checking 

lock) access cached data 



66 

REQUEST FOR LOCKED RESOURCE 

Locked(I2) 

I1 Locked(I2) 

I2 Locked(I2) 

L 



67 

REQUEST FOR UNLOCKED RESOURCE 

Free 

I1 Free 

I2 Free 

L 

Locked(I1) 

Locked(I1) 

Locked(I1) 



68 

FREE REQUEST FOR LOCKED RESOURCE 

Locked(I2) 

I1 Locked(I1) 

I2 Locked(I2) 

F 

Free 

Free 

Free 



69 

DISTRIBUTION UNAWARE INTERACTOR WITH 

MODEL CACHE/PROXY 

Lock Model 

Interactor 
Lock Model 

Cache 

Model cache is a proxy that 

forwards write (lock, release) 

operation without changing 

its data 

Works? 

What if a message takes a 

long time to reach its 

destination? 

Acquire (L) and Release(F) 

Messages 

Read operations (checking 

lock) access cached data 



70 

CONCURRENT LOCK REQUEST: MESSAGE TO 

SECOND LOCKER DELAYED 

Free 

I1 Free 

I2 Free 

L 

Locked(I1) 

Locked(I1) 

Locked(I1) 

L 



71 

CONCURRENT LOCK REQUEST : MESSAGE TO 

FIRST LOCKER DELAYED 

Free 

I1 Free 

I2 Free 

L 

Locked(I1) 

Locked(I1) 

Locked(I1) 

L 

At most one cache will make 

transition from free to locked 



72 

CONCURRENT FREE/LOCK REQUEST 

Locked(I2) 

I1 Locked(I1) 

I2 Locked(I2) 

F 

Free 

L 

L 

Free 

Free 

Locked(I2) 

Caches are not consistent! 

Conservative: Local cache 

needs to be invalidated after 

each write 

Using application semantics 

for more concurrency? 

Locked(I2) 



73 

IMMEDIATE FREEING (APPLICATION SEMANTICS) 

Locked(I1) 

I1 Locked(I1) 

I2 Locked(I2) 

F 

Free 

L 

L 

Free 

Free 

Model cache is a proxy that 

forwards write (lock, release) 

operation without changing 

its data 

Release requests cause 

immediate freeing 



74 

IMMEDIATE LOCKING? 

Free 

I1 Free 

I2 Free 

L 

Locked(I1) 

Locked(I1) 

Locked(I2) 

L 

Weak/eventual consistency: 

pay the price 

Optimistic locks: undo 

changes if lock request denied 

Others may have seen 

changes – must do distributed 

undo if changes sent 

May have received changes 

from others, must undo non 

last changes or block them 

Locked(I1) 



75 

OPTIMISTIC LOCKING 

e 75 

1. Perform operation o and put it 
in undo log 

3. Undo if lock request fails, 
and perform deferred 

received actions 
2. Send permission to perform 

operation and defer performing 
received operations 

PC 

1 

drag O 
PC 

3 

PC 

2 

Lock 

Manager 

Better response time 

4. Othewrise, toOthers() 
send operation and 

perform deferred receive 
operations 

drag O 

Undo Log Received 

Log 

color O 



76 

DISTRIBUTION UNAWARE INTERACTOR WITH 

MODEL CACHE/PROXY 

Lock Model 

Interactor 
Lock Model 

Cache 

Model cache is a proxy that 

forwards lock operation 

without changing its data and 

forwards release request after 

changing its data 

Read operations (checking 

lock) access cached data 

Distributed vs software 

architecture 



77 

SINGLE-USER PATTERN 

I1 Free 

L 

Lockable 

Model 

Put locking semantics in 

model? 

May have more than one kind 

of concurrency controller 

(optimistic, pessimistic) 

May have more than one 

controller (access, 

concurrency) 



78 

VETOERS VS OBSERVERS 

Observer 

(Listener) 

Observable 

(Listenable) 

Model 

Interactor 1 

Interactor 2 

Interactor 3 

Interactor 4 
Change 

Announced 

write 

method 

Vetoer 

Vetoer 1 

Vetoer 2 

Vetoer 3 

Vetoer 4 Permission 
Sought 



79 

OBSERVER VS. VETOER 

Observable 

Observer 1 

register() 

register() 

Observer 2 

operation 

operation 

Observers notified 

after event processing 

done 



80 

OBSERVER VS. VETOER 

Vetoeable 

Vetoer 1 

register() 

register() 

Vetoer 2 

Vetoers checked with before 

event processing done 

Feedback, so notifier must 

wait in distributed 

implementation 

operation 

operation 



81 

VETOERS 

 Like an observer, a vetoer can be registered with an 

object 

 The object checks with each vetoer before making 

and announcing change 

 If a singe vetoer rejects change, then it is not made 

or announced 

 Java Beans comes with standard Vetoer interface 



82 

VETOERS  (REVIEW) 

 Like an observer, a vetoer can be registered with an 

object 

 The object checks with each vetoer before making 

and announcing change 

 If a singe vetoer rejects change, then it is not made 

or announced 

 Java Beans comes with standard Vetoer interface 



83 

STANDARD JAVA VETOER INTERFACE 

public interface VetoableChangeListener { 

   public void vetoableChange(PropertyChangeEvent evt)  

 throws PropertyVetoException  

} 

Vetoing is not an exception (error)! 

Better to return a Boolean value 



84 

CONTROLLED REPLICATED HISTORY 

public class AControlledReplicatedHistory<ElementType>  
     extends AReplicatedSimpleList<ElementType>  
     implements ControlledReplicatedHistory<ElementType>  { 
  VetoableChangeSupport vetoableChangeSupport =  
 new VetoableChangeSupport(this); 
  public synchronized void replicatedAdd(ElementType aNewValue) { 
    try { 
       vetoableChangeSupport.fireVetoableChange( 
           "IMHistory", null, aNewValue); 
    } catch (PropertyVetoException e) { 
       return; 
    } 
    super.replicatedAdd(aNewValue); 
  } 
  public void addVetoableChangeListener( 
             VetoableChangeListener listener) { 
    vetoableChangeSupport.addVetoableChangeListener(listener); 
  } 
… 
 

Fitting list add to property change – 

old value is null, property name 

could be also 



85 

LIBRARY LISTENABLE EVENT QUEUE 

Collaboration-Unaware 
Window System 

Collaboration-Unaware 
Application 

a^, w2, x, y 

a^, w2, x, y 

AnExtendible 
AWTEventQueue 

ListeningInput 
Distributer 

a^, w2, x, y 

InputController 
a^, w2, x, y 



86 

HOW TO INTERCEPT, INJECT AND VETO WINDOW 

EVENTS 

AnExtendible 

AWTEventQueue 

static  

getEventQueue() 
addEventQueueHandler 

(AWTEventQueueHandler) 

dispatchReceivedEvent 

(AWTEvent) 

getCommunication 

EventSupport() 

addVetoableChangeListener 

(VetoableChangeListener) 

The property value of fired vetoable 

change is the AWTEvent and the 

property name is to be ignored 



87 

DISTRIBUTED + SOFTWARE ARCHITECTURE 

Lock Model 

Interactor 
Lock Model 

Cache 

Vetoeable 

Vetoer 1 

register() operation 

Local Model Cache = Vetoeable Model + Slave Model Vetoer 

Lock Model = Master Lock Model 

Assume each site has Slave Model Vetoer and one of these sites has 
Master Lock Model 

Three relevant user operations: write, lock, release 



88 

TRACEABLE AWARE SLAVE UI THREAD  

For each SlaveLockReleaseRequestMade by local user U 

If locked(U), setLock(U, false), to all, SlaveLockReleaseRequestSent 

Slave UI Thread (Vetoer) 

Slave UI Thread (Lock Releaser) 

For each SlaveLockGrantRequestMade by local user U 

if not locked(U), to all,  SlaveLockGrantRequestSent 

Slave UI Thread (Lock Grantor) 

For each vetoable write received from local user U  

If not getLock(U), UserActionDenied 



89 

TRACEABLE AWARE MASTER RECEIVING THREADS 

For each MasterLockRequestReceived 

Master Receiving Thread 

For each MasterLockReleaseRequestReceived from user U 

If getLock(U), MasterLockReleased, to all, MasterLockReleaseStatusSent 

Master Receiving Thread 

If not isLocked(), MasterLockGranted, to all, MasterLockGrantStatusSent 



90 

TRACEABLE AWARE SLAVE RECEIVING THREADS 

Slave Receiving Thread 

For each SlaveLockRelease Received 

Provide awareness 

Slave Receiving Thread 

For each SlaveLockGrantReceived to A  by U  

SlaveLockGranted; If (A == U), SlaveMyLockGrantMadeReceived 

Provide awareness 

SlaveLockReleased 



91 

SUMMARY 

Concurrency Control and Transactions 

Simple Locking – One Lock – and its distributed 
implementation 

Multiple Locks 

Multiple (Programmer-Defined) Lock Types 

Alternatives to Locking 

 

 

Nested transactions 



92 

LOCKING: ONE ITEM (REVIEW) 

T1 

W1(d1) 

R1(d1) 

T2 

W2(d1) 

R2(d1) 

T1 

W1(d1) 

R1(d1) 

T2 

W2(d1) 

R2(d1) 

L1(d1) 

F1(d1) 

L2(d1) 

F1(d1) 



93 

LOCKING MULTIPLE ITEMS IN SAME ORDER 

T1 

W1(d1) 

T2 

W2(d1) 

W2(d2) 

T1 T2 

W2(d1) 

W2(d2) 

W1(d1) 

W1(d2) 
W1(d2) 

L1(d1) 

F1(d1) 
L2(d1) 

F2(d1) 

L1(d2) 

F1(d2) L2(d2) 

F2(d2) 

T2 performs an operation on each object after T1  



94 

LOCKING MULTIPLE ITEMS IN DIFFERENT ORDER 

T1 

W1(d1) 

T2 

W2(d2) 

W2(d1) 

T1 T2 

W2(d2) 

W2(d1) 

W1(d1) 

W1(d2) 

W1(d2) 

L1(d1) 

F1(d1) 
L2(d2) 

F2(d2) 

L1(d2) 

F1(d2) 

L2(d1) 

F2(d1) 
Locks were freed too quickly! 

Get all locks before doing any 
operation? 

Early binding and keeps locks for 
longer than necessary 

A transaction has a growing phase 
when locks are added and not released 

Two phase locking 

Then it has a shrinking phase when 
locks are released but not freed 



95 

NON TWO PHASE IN SAME ORDER 

T1 

W1(d1) 

T2 

W2(d1) 

W2(d2) 

T1 T2 

W2(d1) 

W2(d2) 

W1(d1) 

W1(d2) 
W1(d2) 

L1(d1) 

F1(d1) 
L2(d1) 

F2(d1) 

L1(d2) 

F1(d2) L2(d2) 

F2(d2) 

Locks shrink and then grow 



96 

TWO PHASE LOCKING IN SAME ORDER 

96 

T1 

W1(d1) 

T2 

W2(d1) 

W2(d2) 

T1 T2 

W2(d1) 

W2(d2) 

W1(d1) 

W1(d2) 

12(d2) 

L1(d1) 

F1(d1) 

L2(d1) 

F2(d1) 

L1(d2) 

F1(d2) 

L2(d2) 

D1 freed after all locks gathered but before end of transaction  



97 

NON TWO PHASE DIFFERENT ORDER 

T1 

W1(d1) 

T2 

W2(d2) 

W2(d1) 

T1 T2 

W2(d2) 

W2(d1) 

W1(d1) 

W1(d2) 

W1(d2) 

L1(d1) 

F1(d1) 
L2(d2) 

F2(d2) 

L1(d2) 

F1(d2) 

L2(d1) 

F2(d1) 



98 

TWO-PHASE LOCKING DIFFERENT ORDER  

98 

T1 

W1(d1) 

T2 

W2(d2) 

W2(d1) 

T1 T2 

W2(d2) 

W1(d1) 

W1(d2) 

L1(d1) 

L2(d2) 
L1(d2) 

L2(d1) 

Non serializable schedules lead to 
deadlocks 

A transaction has a growing phase 
when locks are added and not released 

Two phase locking 

Need deadlock detection schemes 

Then it has a shrinking phase when 
locks are released but not freed 



99 

PROOF THAT 2PL  SERIALIZABILITY 

Non-serializable == Cycles in transaction graph 

Transaction graph: T1 has edge to T2 if T2 performs some (non commuting) operation 
after some operation performed by T1 

Cycles in transaction graph under 2PL will lead to deadlocks  

Proof by Contradiction 

There is a cycle but no deadlock 

Cycle: T1 accessed d1 before T2, and T2 accessed d2 before T1 

No deadlock: T1 had both locks before T2 had any locks (or vice versa) 

No deadlock: No cycle 



100 

LOCKING: ONE ITEM 

100 

T1 

R1(d1) 

W1(d1) 

T2 

R2(d1) 

W2(d1) 

T1 

R1(d1) 

W1(d1) 

T2 

R2(d1) 

W2(d1) 

L1(d1) 

F1(d1) 

L2(d1) 

F1(d1) 

Single lock for read and write? 

T2 ‘s read unnecessarily delayed 



101 

LOCKING: ONE ITEM 

T1 

R1(d1) 

W1(d1) 

T2 

R2(d1) 

T1 

R1(d1) 

W1(d1) 

T2 

R2(d1) 

L1(d1) 

F1(d1) 

L2(d1) 

F1(d1) 

T2 unnecessarily delayed 



102 

TYPE-SPECIFIC LOCKS 

T1 

R1(d1) 

W1(d1) 

T2 

R2(d1) 

T1 

R1(d1) 

W1(d1) 

T2 

R2(d1) 

RL1(d1) 

RF1(d1) 

RL2(d1) 

RF2(d1) 

Concurrent reads allowed 

WL1(d1) 

WF1(d1) 

Concurrent read and write not 
allowed 



103 

READ/WRITE LOCKS 

Data Item D Read Locked Write Locked Unlocked 

Read Lock 

Write Lock 

No Yes Yes 

No Yes No 



104 

S(HARED)/(E)X(CLUSIVE) LOCKS 

S X 

S Yes No 

X No No 

More compact representation 



105 

Session 

Application 

Window 

Paragraph/Drawing 

LOCK GRANULARITY 

Char Fine-grained 

Coarse-grained  

(Floor Control) 
V

a
ri

a
b
le

-g
ra

in
e
d

 

Finer Control  More Concurrency  More 
Lock/Unlock Operations    More Locking Overhead 

Comparison and 

Ideal 

granularity? 



106 

FIXED-GRAIN LOCKING 

T1 

R1(d1) 

W1(d1.B) 

T2 

R2(d1.A) 

T1 

R1(d1) 

W1(d1.B) 

T2 

R2(d1.A) 

S1(d1) 

SF1(d1) 

S2(d1) 

SF2(d1) 

T1 unnecessarily waits for T2 to finish write 

X1(d1) 

XF1(d1) 



107 

VARIABLE-GRAINED HIERARCHICAL LOCKING 

T1 

R1(d1) 

W1(d1.B) 

T2 

R2(d1.A) 

T1 

R1(d1) 

W1(d1) 

T2 

R2(d1.A) 

S1(d1) 

SF1(d1) 

S2(d1.A) 

SF2(d1.A) 

More concurrency 

X1(d1.B) 

XF1(d1.B) 

Each lock in a tree independent, 
look only at lock at your level? 



108 

ANCESTOR DEPENDENCE 

T1 

W1(d1) 

T2 

R2(d1.A) 

T1 

W1(d1) 

T2 

R2(d1.A) 

X1(d1) 

SF1(d1) 

S2(d1.A) 

SF2(d1.A) 

Lock operation must consider lock at ancestor nodes 

# searches ~ height of tree -  O(h)) 

Search cost? 

Descendent dependence? 



109 

DESCENDENT DEPENDENCE 

T1 

W1(d1) 

T2 

R2(d1.A) 

T1 

W1(d1) 

T2 

R2(d1.A) X1(d1) 

SF1(d1) 

S2(d1.A) 

SF2(d1.A) 

Lock operation must consider lock at descendent nodes 

# searches ~ nodes in tree -  O (2h) 

Trade space for time? 

Assuming a node contains information only about locks at 
that node 



110 

ANCESTOR DEPENDENCE (REVIEW) 

T1 

W1(d1) 

T2 

R2(d1.A) 

T1 

W1(d1) 

T2 

R2(d1.A) 

X1(d1) 

SF1(d1) 

S2(d1.A) 

SF2(d1.A) 

Lock operation must consider lock at ancestor nodes 

# searches ~ height of tree -  O(h)) 

Search cost? 

Descendent dependence? 



111 

DESCENDENT DEPENDENCE (REVIEW) 

T1 

W1(d1) 

T2 

R2(d1.A) 

T1 

W1(d1) 

T2 

R2(d1.A) X1(d1) 

SF1(d1) 

S2(d1.A) 

SF2(d1.A) 

Lock operation must consider lock at descendent nodes 

# searches ~ nodes in tree -  O (2h) 

Trade space for time? 

Assuming a node contains information only about locks at 
that node 



112 

INTENTION LOCKS 

T1 

W1(d1) 

T2 

R2(d1.A) 

T1 

W1(d1) 

T2 

R2(d1.A) 

X1(d1) 

SF1(d1) 

S2(d1.A) 

SF2(d1.A) 

IS2(d1) 

Intention lock: a flag (synthesized attribute) in each ancestor of a locked node 
indicating the kind of lock, associated with a reference count 

incremented/decremented by lock and free operations 

ISF2(d1) 

Synthesized attribute: An attribute of a node that is a function of a descendent(IS) 

Inherited attribute: An attribute of a node that is a function of an ancestor(S) 



113 

S(HARED)/(E)X(CLUSIVE) LOCKS 
IS IX S SIX X 

IS 

IX 

S 

SIX 

X 

Yes Yes Yes Yes No 

Yes Yes No No No 

Yes No Yes No No 

Yes No No No No 

No No No No No 

IS: some descendent of the node will have a shared lock 

IX: some descendent of the node will have an exclusive lock 

SIX: shared lock on this node and an exclusive lock on some descendent 
(inherited and synthesized attribute) 



114 

INTENTION LOCKS 

T1 

W1(d1) 

T2 

R2(d1.A) 

T1 

W1(d1) 

T2 

R2(d1.A) 

X1(d1) 

SF1(d1) 

S2(d1.A) 

SF2(d1.A) 

IS2(d1) 

ISF2(d1) 

Re-order intention and shared locks? 



115 

INTENTION LOCKS 

T1 

W1(d1) 

T2 

R2(d1.A) 

T1 

W1(d1) 

T2 

R2(d1.A) 

X1(d1) 

SF1(d1) 

SF2(d1.A) 

S2(d1.A) 

ISF2(d1) Lock tree not consistent if the entire lock tree is not locked 
during its traversal 

IS2(d1) 

Earlier transaction delayed and can lead to unecessary 
deadlocks 



116 

Session 

Application 

Window 

Paragraph/Drawing 

LOCKING/UNLOCKING ORDER 

Char 

IS 

IS 

IS 

S 



117 

SHARED MODEL SYSTEMS 



118 

SHARED MODEL SYSTEMS 

W1(Price) 

R2(Price) 

R1(Price) 

W2(Price) 

What does time line 
mean here? 

Sync should be a first 
class operation known 

to the transaction 
system 



119 

ALTERNATIVE READ MODELING 

R1(Price) 

R2(Price) 

W1(Price) 

W2(Price) 

Neither transaction 
reads value of the 

other or overwrites 
until synchronize 
(commit) occurs 

No incremental 
sharing 



120 

READ, VALIDATION, WRITE PHASE 

W1(Price) R2(Price) 

R1(Price) 

W2(Price) Validate T1 

Write Validate 

System Abort 

T2 

Read phase: shared 
object read but not 

written 

Validation phase, 
assign time stamps 

and decide commit or 
abort 

Write phase Validation rules? 



121 

OPTIMISTIC TRANSACTION RULES 

 Optimistic concurrency control divides a transaction 

into a read phase, a validation phase, and a writing 

phase 

 Read phase: transaction reads shared items, and 

performs writes on local buffers, with no checking 

taking place  

 Validation phase: the system assigns time stamps to 

transactions, and assumes transactions are 

serialized in order of these timestamps 

 Write phase, the local writes of validated 

transactions are made global.  

 If a transaction is not validated wrt to another 

transaction, one of them is aborted 

 



122 

VALIDATION ALTERNATIVE 

Transaction Ti is validated wrt to  Tj, j > i, Ti finishes its write phase before Tj 
begins its read phase 

R2(O1) 

W2(O2) 

Validate T2 

Equivalent of locks on same object serializing access 

W1(O1) 

R1(O1) 

Validate T1 

Write 

Write 



123 

VALIDATION RULES 

W1(O2) 

R1(O1) 

Validate T1 

Write 

Transaction Ti is validated wrt Tj, j > i, Tj does not read or write any items 
written by TI 

Equivalent of different locks on different objects 

Concurrent operations on same sets of object? 

W1(O4) 

R1(O3) 

Validate T2 

Write 



124 

VALIDATION RULES 

W1(O1) 

R1(O1) 

Validate T1 

Write 

Transaction Ti is validated if wrt Tj, j > i, if TJ does not read any of the items written by 
TI and transaction TI finishes its write phase before transaction TJ begins its write 

phase. 

Lack of incremental sharing does not make a difference when there is no R-W and W-R 
dependency 

W1(O1) 

R1(O2) 

Validate T2 

Write 



125 

VALIDATION RULES 

W2(O1) 

R1(O1) 

Validate T1 

Write 

W1(O1) 

Validate T2 

Abort 

R-W dependencies (same as W-R dependencies) among 
concurrent transactions cause aborts 

Because no incremental sharing 

R1(O1) 

Locking would have allowed this schedule 



126 

PROBLEMS OF INCREMENTAL SHARING 

Cascaded abort because incremental results shared in pessimistic schemes 

W1(O1) 

R1(O1) 

W1(O2) 

R1(O1) User  Abort 

Problem would not occur in optimistic transactions or if no W-R dependencies 
from transaction aborted by user 

System Abort R3(O2) 

System Abort 

In locking systems problem is avoided by keeping write lock until end of 
transaction  



127 

VALIDATION/CHECKING TIME 

 Early 

 Pessimistic 

 Late 

 Optimistic 

 Merging 



128 

PESSIMISTIC VS. OPTIMISTIC CC 

 Two alternatives to serializable transactions 

 Pessimistic 

 Prevent conflicting operation before it is executed 

 Implies locks and possibly remote checking 

 Optimistic 

 Abort conflicting operation after it executes 

 Involves replication, check pointing/compensating 

transactions 



129 

EARLY VS. LATE VALIDATION 

 Per-operation checking 
and communication 
overhead 

 No compression possible. 

 Prevents inconsistency. 

 Tight coupling: 
incremental results 
shared 

 Not functional if 
disconnected 

 Unless we lock very 
conservatively, limiting 
concurrency. 

 No per-operation checking, 

communication overhead 

 Compression possible. 

 Inconsistency possible 

resulting in lost work. 

 Allows parallel 

development. 

 Functional when 

disconnected. 



130 

MERGING 

 Like optimistic 

 Allow operation to execute without local checks 

 But no aborts 

 Merge conflicting operations 

 E.g. insert 1,a || insert 2, b = insert 1, a; insert 3, b || 

insert 2, b; insert 1, a 

 Serializability not guaranteed 

 Ignore reads 

 New transaction to replace conflicting transactions 

 Strange results possible 

 E.g. concurrent dragging of an object in whiteboard 

 App-specific 

 



131 

HIERARCHICAL SHARED OBJECTS 

Paper 

Abstract Introduction 

Para 1 Para 2 



132 

HIERARCHICAL TRANSACTIONS VS. OBJECTS 

T11: Fix Typos T12: Move 
Figures 

T1: Fix Paper 

Read 
Abstract 

Write 
Abstract 

Write 
Introduction  

Check and 
Fix Length 

Submit 
Paper 

Paper 

Abstract Introduction 

Para 1 Para 2 

The actions are hierarchical 
rather than the data 



133 

HIERARCHICAL VS. SERIAL TRANSACTIONS 

T1: Fix Paper 

Check and 
Fix Length 

Submit 
Paper 

Read 
Abstract 

Write 
Abstract 

Write 
Introduction  

T11: Fix Typos T12: Move 
Figures 

T1: Fix Paper 

Read 
Abstract 

Write 
Abstract 

Write 
Introduction  

Check and 
Fix Length 

Submit 
Paper 

Sub transactions can 
execute in parallel but 

not sub operations 



134 

HIERARCHICAL VS. FLAT TRANSACTIONS 

T11: Fix Typos T12: Move 
Figures 

T1: Fix Paper T1: Fix Typos T2: Move 
Figures T3: Fix Paper 

Write 
Introduction  

Read 
Abstract 

Write 
Abstract 

Write 
Introduction  

Check and 
Fix Length 

Submit 
Paper 

Check and 
Fix Length 

Submit 
Paper 

Read 
Abstract 

Write 
Abstract 

Sub-transactions do 
not guarantee 

consistency and their 
results are not durable 

They are atomic and 
serializable wrt to each 

other 

They get locks from 
parent and release locks 
to parent locks and write 
to parent uncommitted 

data 

Top level transaction gets 
shared object locks 



135 

CONCURRENCY OF PARENT 

T11: Fix Typos T12: Move 
Figures 

T1: Fix Paper 

Read 
Abstract 

Write 
Abstract 

Write 
Introduction  

Check and 
Fix Length 

Submit 
Paper 

Parent may wait until sub-
transactions finish  

Parent may execute in parallel 

Subtransactions not serializable 
wrt to parent 

Ignore parent locks (but not 
versa) and override parent 

writes 

A la Java (Mesa) thread join 

Needed in this example 



136 

ABORT SEMANTICS 

T11: Fix Typos T12: Move 
Figures 

T1: Fix Paper 

Read 
Abstract 

Write 
Abstract 

Check and 
Fix Length 

Submit 
Paper 

Abort 

Write 
Introduction  



137 

DIFFERENT ALTERNATIVE TRANSACTION 

T11: Fix Typos T13: Move 
Figures 

T1: Fix Paper 

Read 
Abstract 

Write 
Abstract 

Check and 
Fix Length 

Submit 
Paper 

Write 
Conclusion 

Child aborts do not abort parent 
transaction, a parent can try 

alternative transactions 



138 

NESTED TRANSACTIONS 

 Like top-level, atomic and isolated wrt to siblings in 

transaction tree 

 Not unit of consistency or durability 

 Actions do not conflict with parent’s transactions. 

 In lock-based systems, can get a lock from parent in 

weaker mode and then release lock to parent 

 In optimistic schemes they write to parent’s data set 

 Parent’s actions conflict with child if parent executes 

in parallel 

 Child abort does not abort the parent, which can try 

alternative sub-transactions 

 



139 

TYPE SPECIFIC OPERATIONS 

139 

T1 

ls project/README 

edit project/README  

T2 

mkdir project/src 

ls project/src 

T1 

R(project) 

W(project) 

T2 

W(project) 

R(project) 

Set operations: serializable 

R/W operations: not serializable 



140 

TYPE-SPECIFIC SERIALIZABILITY 

 Modeling ls as read and mkdir as write leads to directory-

independent, non-serializable  case 

 Using type-specific semantics leads to serializable case 



141 

TRANSACTION GRAPH 

T1 T2 

T1 performs operation X before 
T2 does operation Y 

D(X, Y) 



142 

MODELING AN OBJECT AS A BLACKBOX: 

SERIALIZABILITY 

Abstract Data Type 

(Black Box) 

Any 

getPrice() 

getPrice() 

setPrice() 

setPrice(int) int getPrice() 

D = D(Any, Any) 

Serializability: No cycles in D(any, 
any)  relationship among 
concurrent transactions 

Not serializable 

T1 T2 



143 

MODELING AN OBJECT AS A BLACKBOX: PREVENT 

CASCADED ABORTS 

Abstract Data Type 

(Black Box) 

Any 

getPrice() 

setPrice() 

setPrice(int) int getPrice() 

D(Any, Any) 

No cascaded aborts: No D(any, 
any) relationship among 
concurrent transactions 

Not allowed if cascaded aborts are to be avoided 

T1 T2 



144 

MODELING AN OBJECT AS A READ/WRITE 

REPOSITORY: SERIALIZABILITY 

Abstract Data Type 

(R/W Repository) 

Read 

getPrice() 

getPrice() 

setPrice() 

setPrice(int) int getPrice() 

Serializability: No cycles in D = D2 
U D3 U D4  relationship among 

concurrent transactions 

Serializable 

Write 

D1 = D(R , R) 

D2 = D(R , W) 

D3 = D(W , R) 

D4 = D(W , W) 

T1 T2 



145 

MODELING AN OBJECT AS A BLACKBOX: PREVENT 

CASCADED ABORTS 

Abstract Data Type 

(R/W Repository) 

getPrice() 

setPrice() 

setPrice(int) int getPrice() 

No cascaded aborts: No D(W, R) 
relationship among concurrent 

transactions 

Allowed if cascaded aborts are to be avoided 

Read Write 

D1 = D(R , R) 

D2 = D(R , W) 

D3 = D(W , R) 

D4 = D(W , W) 

T1 T2 



146 

QUEUE 

Queue<Element> 

(R/W Repository) 
 

QEnter(Element e) Element QDelete() 

E(X) QEnter(X) 

D(X) X = QDelete() 

Assume each element has a unique id assigned when it is 
entered into queue 



147 

TRANSACTION GRAPH (REVIEW) 

T1 T2 

T1 performs operation X before 
T2 does operation Y 

D(X, Y) 

How to prevent non serializable 
transactions? 

How to prevent cascaded aborts 



148 

MODELING AN OBJECT AS A BLACKBOX: 

SERIALIZABILITY (REVIEW) 

Abstract Data Type 

(Black Box) 

Any 

getPrice() 

getPrice() 

setPrice() 

setPrice(int) int getPrice() 

D = D(Any, Any) 

Serializability: No cycles in D(any, 
any)  relationship among 
concurrent transactions 

Not serializable 

T1 T2 



149 

MODELING AN OBJECT AS A BLACKBOX: PREVENT 

CASCADED ABORTS (REVIEW) 

Abstract Data Type 

(Black Box) 

Any 

getPrice() 

setPrice() 

setPrice(int) int getPrice() 

D(Any, Any) 

No cascaded aborts: No D(any, 
any) relationship among 
concurrent transactions 

Not allowed if cascaded aborts are to be avoided 

T1 T2 



150 

MODELING AN OBJECT AS A READ/WRITE 

REPOSITORY: SERIALIZABILITY (REVIEW) 

Abstract Data Type 

(R/W Repository) 

Read 

getPrice() 

getPrice() 

setPrice() 

setPrice(int) int getPrice() 

Serializability: No cycles in D = D2 
U D3 U D4  relationship among 

concurrent transactions 

Serializable 

Write 

D1 = D(R , R) 

D2 = D(R , W) 

D3 = D(W , R) 

D4 = D(W , W) 

T1 T2 



151 

MODELING AN OBJECT AS A BLACKBOX: PREVENT 

CASCADED ABORTS (REVIEW) 

Abstract Data Type 

(R/W Repository) 

getPrice() 

setPrice() 

setPrice(int) int getPrice() 

No cascaded aborts: No D(W, R) 
relationship among concurrent 

transactions 

Allowed if cascaded aborts are to be avoided 

Read Write 

D1 = D(R , R) 

D2 = D(R , W) 

D3 = D(W , R) 

D4 = D(W , W) 

T1 T2 



152 

QUEUE (REVIEW) 

Queue<Element> 

(R/W Repository) 
 

QEnter(Element e) Element QDelete() 

E(X) QEnter(X) 

D(X) X = QDelete() 

Assume each element has a unique id assigned when it is 
entered into queue 



153 

MODELING AN OBJECT AS A READ/WRITE 

REPOSITORY: SERIALIZABILITY 

Queue<Element> 

(R/W Repository) QEnter(Element e) Element QDelete() 

E(A) 

D(C) 

E(B) 

Write Write 
Read 

Not serializable even though two transactions 
working at different ends of the queue 

T1 T2 



154 

MODELING AN OBJECT AS A READ/WRITE 

REPOSITORY: NO CASCADED ABORTS 

Queue<Element> 

(R/W Repository) QEnter(Element e) Element QDelete() 

E(A) 

D(C) 

Write Write 
Read 

Serializable but not allowed if cascaded aborts are 
to be avoided because of D(W, R) dependency 

T1 T2 



155 

SUPPORTING QUEUE OPERATIONS DIRECTLY 

Queue<Element>) 
 QEnter(Element e) Element QDelete() 

E(A) 

E(C) 

E(B) 

Not serializable because in a serial schedule all elements of one transaction will 
be queued before or after another 

T1 T2 



156 

SUPPORTING QUEUE OPERATIONS DIRECTLY 

Queue<Element>) 
 QEnter(Element e) Element QDelete() 

D(A) 

D(C) 

D(B) 

Not serializable because in a serial schedule all elements of one transaction will 
be dequeued before or after another 

T1 T2 



157 

MODELING QUEUE OPERATIONS 

Queue<Element>) 
 QEnter(Element e) Element QDelete() 

E(A) 

D(C) 

E(B) 

Serializable because two transactions working at 
different ends of the queue 

We know that based on argument and return 
values of transactions 

The element  dequeued by T2 is not an element 
queued by T1  

T1 T2 



158 

SUPPORTING QUEUE OPERATIONS DIRECTLY 

Queue<Element>) 
 QEnter(Element e) Element QDelete() 

D1 = E(e) , E(e’) 

D2 = E(e) , D(e’) 

D3 = E(e) , D(e) 

D4 = D(e) , E(e’) 

D5= D(e) , D(e’) 

Serializability:  No cycles in D = D1 U D3 U D5 

No D3 relationship in concurrent transactions 

Serializability? 

Avoiding cascaded aborts? 



159 

S(HARED)/(E)X(CLUSIVE) LOCKS 

E(e) D(e) D(null) 

E(e) 

E(e’) 

D(e) 

D(e’) 

D(null) 

N/A 

No Yes 

No 

N/A 

Yes No 

N/A 

No No 

No 

No 

No 

No 

Yes 



160 

TYPE-SPECIFIC LOCKS 

 Less information about operations available to locking 
system more conservative it is about commuting and 
dependent operations 

 No information 
 Serializability: no interleaving operations on an object 

 Cascaded aborts: no concurrency 

 R/W: 
 Serializability: No cycles in D(R,W), D(W,R), D(R,R) 

 No Cascaded aborts:  No D(W,R) relationship among 
concurrent transactions 

 Queue-specific: 
 Serializability: Cycles allowed in D(E(e), D(e’)) and D(D(e), 

E(e’)) 

 Cascaded aborts: No D(E(e), D(e)) relationship among 
concurrent transactions 

 A lock specifies kind of operation and element queued or 
dequeued 

 Kept until end of transaction 

 



161 

CONCURRENCY CONTROL SUMMARY 

 Transactions and ACID 

 Isolation: serializability and cascaded aborts 

 Explicit, implicit Locks 

 Locking implementation: Two phase commit, cache 
incoherence 

 Shared vs. exclusive locks 

 Two phase locking 

 Hierarchical locking and intention locks 

 Type-specific dependencies and locking 

 Optimistic transactions 

 Optimistic locks 

 Nested transactions 

 



162 

EXTRA SLIDES 

 



163 

S(HARED)/(E)X(CLUSIVE) LOCKS 

Locks held until end of transaction to: 

remember which elements have been added removed 

prevent cascaded aborts 

E(e) D(e) 

E(e) 

E(e’) 

D(e) 

D(e’) 

N/A 

No Yes 

No 

No 

Yes No 

N/A 

Not clear we need to remember elements added removed if we have 
null row and column 



164 

MODELING AN OBJECT AS A READ/WRITE 

REPOSITORY: SERIALIZABILITY 

Queue<Element> 

(R/W Repository) QEnter(Element e) Element QDelete() 

E(A) 

D(C) 

E(B) 

Write Write 
Read 

Not serializable even though two transactions 
working at different ends of the queue 

T1 T2 

There is indeed 
a D(W,R) 
relation 

between T1 
and T2 contrary 

to what the 
recording says 



165 

MODELING AN OBJECT AS A READ/WRITE 

REPOSITORY: NO CASCADED ABORTS 

Queue<Element> 

(R/W Repository) QEnter(Element e) Element QDelete() 

E(A) 

D(C) 

Write Write 
Read 

Serializable but not allowed if cascaded aborts are 
to be avoided because of D(W, R) dependency 

T1 T2 

There is 
indeed a 

D(W,R) relation 
between T1 

and T2 contrary 
to what the 

recording says 
and so under 

R/W semantics 
it wull be 

disallowed 



166 

SUPPORTING QUEUE OPERATIONS DIRECTLY 

Queue<Element>) 
 QEnter(Element e) Element QDelete() 

E(A) 

D(C) 

E(B) 

Serializable because two transactions working at 
different ends of the queue 

T1 T2 



167 

NOT HOLDING LOCK UNTIL END OF 

TRANSACTION 

Queue<Element>) 
 QEnter(Element e) Element QDelete() 

E(A) 

D(A) 

E(B) 

T1 T2 

LE(A) 

LE(B) 

FE(A) 

FE(B) 

LD(A) 

LD(C) 

FD(C) 

FD(A) 

D(C) 



168 

S(HARED)/(E)X(CLUSIVE) LOCKS 

E(e) D(e) D(null) 

E(e) 

E(e’) 

D(e) 

D(e’) 

D(null) 

N/A 

No Yes 

No 

N/A 

Yes No 

N/A 

No No 

No 

No 

No 

No 

Yes 



169 

S(HARED)/(E)X(CLUSIVE) LOCKS 

E(e) D(e) D(null) 

E(e) 

E(e’) 

D(e) 

D(e’) 

D(null) 

N/A 

No Yes 

No 

N/A 

Yes No 

N/A 

N/A No 

No 

No 

N/A 

N/A 

Yes 



170 

S(HARED)/(E)X(CLUSIVE) LOCKS 

E(e) D(e) D(null) 

E(e) 

E(e’) 

D(e) 

D(e’) 

D(null) 

N/A 

No Yes 

No 

N/A 

Yes No 

N/A 

N/A No 

No 

No 

N/A 

N/A 

Yes 



171 

S(HARED)/(E)X(CLUSIVE) LOCKS 

E(e) D(e) D(null) 

E(e) 

E(e’) 

D(e) 

D(e’) 

D(null) 

N/A 

No Yes 

No 

N/A 

Yes No 

N/A 

Yes No 

No 

No 

Yes 

Yes 

Yes 

Assume dequeue is  non blocking 



172 

S(HARED)/(E)X(CLUSIVE) LOCKS 

E(e) D(e) D(null) 

E(e) 

E(e’) 

D(e) 

D(e’) 

D(null) 

N/A 

No Yes 

No 

N/A 

Yes No 

N/A 

Yes No 

No 

No 

Yes 

Yes 

Yes 

Assume dequeue is  non blocking 


