CONCURRENCY CONTROL

Prasun Dewan
Department of Computer Science
University of North Carolina at Chapel Hill

dewan@cs.unc.edu

mailto:dewan@cs.unc.edu

CONCURRENCY CONTROL

Issue

Description

Session Management

How do distributed users create,
destroy, join, and leave collaborative
sessions?

Single-user Interface

What are the application semantics if
there 1s a single user in the session?

Coupling

What 1s the remote feedback of a user
command and when 1s it given?

Access Control

How do we ensure that users do not
execute unauthorized commands?

Concurrency Control

How do we ensure that concurrent
users do not execute 1inconsistent
commands?

PROBLEM IN SHARED WINDOW SYSTEMS

Window Application

leftButton *, wi, x1, y1

leftButton *, wil, x2, y2

[JO Relayer & Output

A 4

Multiple users can indeed generate input
sequence that cannot be generated by single user

/O Relayer

/O Relayer

Window System

Window System

Window System

A

A

press leftButton

press leftButton

v
User 1

Problem occurs because of interleaved execution

PROBLEM IN S

HARED MODEL SYTEMS

&=l

i [ConcertExpense]

i3

File Edit Yiew Custormize | %] [ServerProxy]
ConcerExpense File Edit View Customize Sen
Number Of Attendees “
|3 | [| Real Time Synchronize
Ticket Price d L
|23.4] |
Total —
705 hd

& [ConcertExpense] Z

File Edit “iew Customize ConcertExpense

EX)

| £ [ServerProxy]

Number OF Attendees
E

Ticket Price
23,5

Total
F0.4

File Edit View Customize Sen

synchronize

[| Real Time Synchronize

<] T

y &

PROBLEM IN SHARED MODEL SYSTEMS

&=l

i [ConcertExpense]

i3

File Edit Wiew Customize | %] [ServerProxy]
ConcerExpense File Edit View Customize Sen
Number Of Attendees “
|3 | [| Real Time Synchronize
Ticket Price d !
|24.1 |
Total =
723 b

& [ConcertExpense]

File Edit “iew Customize ConcertExpense

EX)

| £ [ServerProxy]

Number OF Attendees
3

Ticket Price
24.0

Total
720

File Edit View Customize Sen

synchronize

[| Real Time Synchronize

<] T

y &

SYNCHRONIZATION MODEL

- Users submit operations in transactions

User 1 User 2

\ /

(BeginTransaction Operation* EndTransaction)®

/ Synchronization logic

Operations are

validated w.r.t.
concurrent

operations ‘hared Schedules
K data > (interleaved transactions)

N

TRADITIONAL CORRECTNESS CRITERIA:

SERIALIZABILITY

o Concurrent transactions execute as if they were

submitted one after the other.

-

all possible
schedules

Sl

serializable
schedules

~

/

SERIALIZABILITY: DIFFERENT ITEMS

T2

T1

R1(d!) R%(d?) W?(d?) Wi(d?

)

R2(d?) RY(d?) W?(d?) Wi(d?)

R%(d?) W2(d?) RY(d?) Wi(d?)

T2T1

T1T2

Serializable? -

(

Commuting operat
can be reordere

Serializable!

DIFFERENT ITEMS

i [ConcertExpense] Z E|E|

File Edit Wiew Customize | %] [ServerProxy]

ConcerExpense File Edit View Customize Sen
Number Of Attendees “
|EI | [| Real Time Synchronize
Ticket Price d L
|23.4] |
Total _

\ 0.0 b

i [ConcertExpense] Z”E|E|
File Edit “iew Customize ConcertExpense

| £ [ServerProxy]
Humber OFf Attendees File Edit View Customize Sen

3

[| Real Time Synchronize

Ticket Price
0.0

<] T

Total
0.0

y €

SERIALIZABILITY: SAME ITEMS

L € T2

R1(d?

Ri(d!) R%(d?) Wi(d?)

R2(d!) RY(d?) Wi(d?)

T2 T1

T1T2

&

[Serializable? .

{ T2 should precedel
F No dependencie
between commuti
operations

Serializable!

10

SERIALIZABILITY: SAME ITEMS

T! > T?
[Serializable? -

(T2 should precedel

r
T! should precede
Cl

rCycIe in the transa
graph!

[Not seriaIizabI'

Reverse reads a
writes?

11

SERIALIZABILITY: SAME ITEMS

Seri

T2 shoul

T! shoul

| 0l

Not se

SERIALIZABILITY: MULTIPLE ITEMS

m\m
m//m

Seri

T2 shou

T! shou

| Ul

Not se

13

SERIALIZABILITY: MULTIPLE ITEMS

T1 T2
[Serializable? -

(T2 should foIIowl
T2 should follow

Serializable!

14

SERIALIZABILITY

o R-W Serializability

 R-R operations (on same item) commute and hence can
be reordered.

e R-W and W-W do not commute and hence cannot be
reordered. Cause R-W and W-W conflicts in non-
serializable transactions

15

SHARED WINDOW SYSTEMS

Window Application L

r
leftButtond, wl, x3,

leftButtond, wl, x?,

leftButtonY, wt, x%,

I
leftButtonY, wl, x2,

T2

A 4

Window System Window System Window System

press leftButto press leftButt

release leftButt [release leftButt

I

User 3

SHARED MODEL SYSTEMS
£ [ConcertExpense] |Z||E|E /

A= E

£ [ConcertExpense]

File Edit “iew Customize File Edit “iew Customize ConcedExpense
CancertExpense
= Mumber OFf Attendees
Humber OFf Attendees — |3
3 |
Ticket Price
Ticket Price |23 - |
22,5 | :
Total | &| [ServerProxy]
Todal 3 : - -
| £ [ServerProxy] v 705 File Edit View Customize Sen
File Edit View Customize Sen —

[] Real Time Synchronize

[Real Time Synchronize \ 4] Il /
\ <] I J

SHARED MODEL SYSTEMS
£

i [ConcertExpense] = [ConcertExpense]
File Edit “iew Customize File Edit “iew Customize ConcedExpense
CancertExpense
= Mumber OFf Attendees
Humber Of Attendees — | 3
3 |
Ticket Price

Ticket Price |24] |

24.1 :

|Tr|;l' , | Total | £| [ServerProxy]
% [ServerProxy] : 23 0 File Edit View Customize Ser
File Edit View Customize Sen —
[] Real Time Synchronize

[_] Real Time Synchronize \ <] i /
\ 4] I /

R2(Price)

Not serializable! '

&

CONCURRENT DRAWING: INITIAL STATE

USER! CHANGE NOT SEEN BY USER?

MODELING CONCURRENT DRAWING

FINE-GRAINED MODELING OF READ

Ri(Line.Color)

W?1(Line.Color)

Serializable!

R?(Line.Size)

W?2(Line.Size)

COARSE-GRAINED READ MODELING

Not Serializable!l

m\

W<(Line.Color) <

W?2(Line.Size)

Assuming whole line rea(l

CONCURRENT DRAWING

\

\

CONCURRENT DRAWING

\

\

CONCURRENT DRAWING

\

/

FINE-GRAINED MODELING

Serializable!

RY(Rectangle)

W?(Rectangle)

/

COARSE-GRAINED MODELING

RY(Drawing)

W?(Rectangle)

[
Not Serializable!
Assuming whole drawing re /

R?(Drawing)

THE PROBLEM OF TRACING READS

o In interactive application, not clear what user has
read.

o Many collaborative systems take liberal approach,
not tracking them.

o Strict serializability would require conservative
approach of assuming everything on the display is
read

o Eye and scroll tracking would help narrow down the
read data

29

R/W VS. TYPE-SPECIFIC SERIALIZABILITY

T Set operations: serializable |-

Is project/README

ls project/src

edit project/README

mkdir project/src

T2 IR/W operations: not seria-

R(project)

R(project)

W(project)

W(project)

SERIALIZABILITY

o Modeling Is as read and mkdir as write leads to directory-
Independent, non-serializable case

o Using type-specific semantics leads to serializable case

31

SYNCHRONIZATION SYSTEMS

o Provide synchronization on behalf of

applications

User 1 User 2

N/

|

Synchronization system

Shared
data

N

Application Consistency requirements

Consistency criteria

32

CONSISTENCY CRITERIA VS. REQUIREMENTS

ﬁonsistency \

requirements

S

all possible

schedules :
consistency

(/ criteria

CONSISTENCY CRITERIA VS. REQUIREMENTS

@pe specific
Serializability

S

all possible
schedules

St

R/W

Serializability

/

34

CONSISTENCY REQUIREMENTS & CRITERIA

o Consistency requirements:
o specify the set of 1deally allowable schedules.

o “Users may concurrently add room reservations (that
don’t overlap), but may not concurrently change the same
reservation.”

o Consistency criteria:
o specify the set of actually allowed schedules.
o “Users must access the set of reservations one at a time.”

39

SYNCHRONIZATION SYSTEMS

o Provide synchronization on behalf of

applications

User 1 User 2

N/

Application Consistency requirements

|

Synchronization system Consistency criteria

Given some consistency criteria
how should the synchronization
system check transactions for
serializability?

Shared
data
S
36

&

VALIDATION/CHECKING TIME

o Pessimistic

o Early

o Failure => block
o Optimistic

 Late

o Failure => abort

e Interactive transaction?

o Wasted human work not redoable perhaps

o Merging

o Late, not serializable

 Merging, new transaction to replace conflicting
transactions

37

L
O
C
K
I
NG: O
N
E
IT
E
M

T1
T2
T1
T2

Fi(d?)

Fi(d?)

38

SYNCHRONIZATION MODEL (REVIEW)

- Users submit operations in transactions

User 1 User 2

\ /

(BeginTransaction Operation* EndTransaction)®

N/

pe

Synchronization logic

Operations are
validated w.r.t.
concurrent
operations

Ei

hared Schedules
\ data > (interleaved transactions)
_/

39

&

TRANSACTIONS (REVIEW)

o A (tomic)
o Either all action of a transaction occur or none
o C (onsistent)

e Each transaction leaves shared state 1n a consistent
state, where consistency is application-defined

o I (solation)

o Actions of concurrent transactions are i1solated so that
together they leave the shared state in a consistent state

o D (urability)
o Actions of a transaction persist — written to stable
storage) vs. persistent storage
o Stable — atomic write no errors;
» Persistent — errors possible

TRADITIONAL ISOLATION CRITERIA:
SERIALIZABILITY (REVIEW)

o Concurrent transactions execute as if they were
submitted one after the other, leaving data in

consistent state

-

all possible
schedules

Sl

serializable
schedules

~

/

41

VALIDATION/CHECKING TIME (REVIEW)

o [Pessimistic
o Early
e Failure => block

o Optimistic
o Late
o Failure => abort
o Interactive transaction?
o Wasted human work not redoable perhaps
o Merging
o Late, not serializable

 Merging, new transaction to replace conflicting
transactions

42

:Z)

LOCKING: ONE ITEM (REVIEW)

T1 T2 T1 T2

‘ F() l

Fi(d?)

43

SYNCHRONIZATION MODEL (REVIEW)

- Users submit operations in transactions

User 1 User 2

\ /

(BeginTransaction Operation* EndTransaction)®

N/

pe

Synchronization logic

Operations are
validated w.r.t.
concurrent
operations

Ei

hared Schedules
\ data > (interleaved transactions)
_/

44

TRANSACTIONS (REVIEW)

o A (tomic)
o Either all action of a transaction occur or none
o C (onsistent)

e Each transaction leaves shared state 1n a consistent
state, where consistency is application-defined

o I (solation)

o Actions of concurrent transactions are i1solated so that
together they leave the shared state in a consistent state

o D (urability)
o Actions of a transaction persist — written to stable
storage) vs. persistent storage
o Stable — atomic write no errors;
» Persistent — errors possible

TRADITIONAL ISOLATION CRITERIA:
SERIALIZABILITY (REVIEW)

o Concurrent transactions execute as if they were
submitted one after the other, leaving data in

consistent state

-

all possible
schedules

Sl

serializable
schedules

~

/

46

VALIDATION/CHECKING TIME (REVIEW)

o [Pessimistic
o Early
e Failure => block

o Optimistic
o Late
o Failure => abort
o Interactive transaction?
o Wasted human work not redoable perhaps
o Merging
o Late, not serializable

 Merging, new transaction to replace conflicting
transactions

47

LOCKING: ONE ITEM (REVIEW)

T1 T2 T1 T2

‘ F() l

Fi(d?)

48

LOCK COMPATIBILITY MATRIX

Unlocked

Lock

I Issues-

LOCK COMPATIBILITY MATRIX (REVIEW)

Unlocked

Lock

ISSUES

LOCK DENIAL

ISSUES

USER-INTERFACE

UI: EXPLICIT/IMPLICIT LOCKING

Explicit

Selection-implied

Dragging-implied

Lock O
Append O, E1
Delete O, E2

Select Object — Lock Object + Select Object

Press Key — Lock Buffer + Process Key

Start Dragging — Lock Object + Start Dragging

EXPLICIT/IMPLICIT UNLOCKING

Explicit

Selection-implied

Dragging-implied

Append O, E1
Delete O, E2
Unlock O

Unselect Object — Unselect object + Unlock
object

Release Key — Unlock Buffer + Unlock object

Stop Dragging — Stop Dragging + Unlock
Object

Analogues of explicit/implicit locking

IMPLICIT UNLOCKING

Tickle locks Timeout— Unlock Object

Preemptive locks Lock Object— Unlock Object + Lock Object

Tickle + Timeout + Lock Object— Unlock Object + Lock
Preemptive Object

Unlocked object may not be consistent!

Unlocking user may be able to restore consistency of
another user to essentially do a joint (nested) transaction

CONSISTENCY VS CONCURRENCY

Non-Preemptive Tickle-Locks

Lock O Lock O Lock O
Insert O, E1 Insert O, E1 Insert O, E1
Delete O, D1
Unlock O, \ e
\ Lock O
Insert O, E2

Lock O Lock O

Insert O, E2 Insert O, E2
4 4 Y4)

Pro: Consistency Pro: Low Wait Time Pro: Forgetting to
' Pro: Priority unlock

. _ VAN J

ISSUES

IMPLEMENTATION

REPLICATED VS CENTRALIZED

‘iceractor

'

Interactor

Interactor

N

REPLICATED VS CENTRALIZED

Lock Lock Lock
Qeractor Interactor Interactor
‘ Lock Model Lock Model % Lock Model

Lock
‘ Interactor

REPLICATED MODEL: ISSUES

Lock Lock
Interactor Interactor

Lock Model 4 Lock Model

Who solves the consistency problems of the
consistency enforcer!

Consistency 1ssues of causality and con
operations (to be addressed later
Correctness and performance issues

model 1s non deterministic, accesses c
resources, and has side effects

[

DISTRIBUTED CONSENSUS PROBLEM

A set of processes have to agree on a common value
(Byzantine generals)

There may be failures in machines and
communication

Some processes may be malicious

2 Phase Commit : Coordinator takes vote in first
phase and reports majority outcome in second

Not to be confused with 2 Phase Locking (later)

Will simply use the centralized cache solutions
assuming no faults

DISTRIBUTION UNAWARE INTERACTOR WITH
MODEL CACHE/PROXY

orwards
operation
1t

Read ope
lock) acce

Interactor Ll blos e
Cache

' Lock Model

REQUEST FOR LOCKED RESOURCE

Locked(I?)
' Locked(I?)

Locked(I?)

REQUEST FOR UNLOCKED RESOURCE

S

{
~_ -~
-

{
—

FREE REQUEST FOR LOCKED RESOURCE

Free

Free

NN

DISTRIBUTION UNAWARE INTERACTOR WITH
MODEL CACHE/PROXY

orwards wr
operation wi
1t

Interactor Lock Model
Cache
~—

‘ Lock Model

Acquire (
M

CONCURRENT LOCK REQUEST: MESSAGE TO
SECOND LOCKER DELAYED

i

‘ Locked(I?)

i

CONCURRENT LOCK REQUEST : MESSAGE TO
FIRST LOCKER DELAYED

Locked(I')

‘

3
{

At most one cache will make
transition from free to locked

CONCURRENT FREE/LOCK REQUEST

T
=

———

>

Y

-

“

onservat
needs to be 1
each

sing appli
for more c

IMMEDIATE FREEING (APPLICATION SEMANTICS)

Release r
1mmedi

IMMEDIATE LOCKING?

t

Weak/eventual consis
pay the price

Optimistic locks: un
changes if lock request

from others, must und

May have received ch
last changes or block

hanges — must do distr

Others may have s
C
undo 1f changes se

Locked(I')

OPTIMISTIC LOCKING

1. Perform operation o and put it
in undo log

2. Send permission to perform
operation and defer performing
received operations

Undo Log

drag O

drag O h

Better response time

3. Undo if lock request fails,
and perform deferred
received actions

4. Othewrise, toOthers()
send operation and
perform deferred receive

Received
Log

color O

DISTRIBUTION UNAWARE INTERACTOR WITH
MODEL CACHE/PROXY

Interactor Ll blos e
Cache

‘ Lock Model

Read ope
lock) acce

Distrib
arc

SINGLE-USER PATTERN

Lockable
Model

VETOERS VS OBSERVERS

Vetoer

Observable Observer
(Listenable) (Listener)

Vetoer 2

method

Interactor 2

Interactor 3

Vetoer 4

Permission Change
Sought Announced

Interactor 4

‘

OBSERVER VS. VETOER

N

register() [operatiol

e

0 [operatiol

~

fter ev

OBSERVER VS. VETOER

N

register() operation

N

register()

operation

Vetoers checked with b
event processing do

Feedback, so notifier
wait 1n distributed
1mplementation

VETOERS

o Like an observer, a vetoer can be registered with an
object

o The object checks with each vetoer before making
and announcing change

o If a singe vetoer rejects change, then it 1s not made
or announced

o Java Beans comes with standard Vetoer interface

VETOERS (REVIEW)

o Like an observer, a vetoer can be registered with an
object

o The object checks with each vetoer before making
and announcing change

o If a singe vetoer rejects change, then it 1s not made
or announced

o Java Beans comes with standard Vetoer interface

STANDARD JAVA VETOER INTERFACE

public interface VetoableChangelListener ({
public void vetoableChange (PropertyChangeEvent evt)
throws PropertyVetoException

Vetoing is not an exception (error)!

Better to return a Boolean value

CONTROLLED REPLICATED HISTORY

public class AControlledReplicatedHistory<ElementType>
extends AReplicatedSimpleList<ElementType>
implements ControlledReplicatedHistory<ElementType> {
VetoableChangeSupport vetoableChangeSupport =
new VetoableChangeSupport(this);
public synchronized void replicatedAdd(ElementType aNewValue) {
try {
vetoableChangeSupport.fireVetoableChange(
"IMHistory", null, aNewValue);
} catch (PropertyVetoException e} [

return; Fitting list add to property change —
} old value 1s null, property name
super.replicatedAdd(aNewVal could be also

}
public void addVetoableChangeListener(

VetoableChangelListener listener) {
vetoableChangeSupport.addVetoableChangelListener(listener);

}

LIBRARY LISTENABLE EVENT QUEUE

IniutController

Collaboration-Unaware

Application

ah, w?, x,'

2 .
a”, ws, Xrl AnExtendible

<« —>| AWTEventQueue <

at, w?, X'I

Collaboration-Unaware
Window System

I

Y

Listeninglnput

How TO INTERCEPT, INJECT AND VETO WINDOW
EVENTS

addEventQueueHandler
(AWTEventQueueHandler)

static
getEventQueue()

dispatchReceived Event
AnExtendible lspa(ZW§§$Zit) ven

getCommunication

EventSupport()

AWTEventQueue

addVetoableChangelListener
(VetoableChangelListener)

The property v
change is the A
property name

DISTRIBUTED + SOFTWARE ARCHITECTURE

Vetoer 1

Interactor Lock Model
Cache

N

register() operation

V V

‘ Lock Model

Vetoeable

|| Local Model Cache = Vetoeable Model + Slave Model Vet.

Lock Model = Master Lock Model

Assume each site has Slave Model Vetoer and one of these sit
Master Lock Model

Three relevant user operations: write, lock, release

y

TRACEABLE AWARE SLAVE Ul THREAD

Slave UI Thread (Vetoer)

For each vetoable write received from local user U

If not getLock(U), UserActionDenied

Slave Ul Thread (Lock Grantor)

For each SlavelLockGrantRequestMade by local user U

if not locked(U), to all, SlaveLockGrantRequestSent

Slave UI Thread (Lock Releaser)

For each SlavelLockReleaseRequestMade by local user U

If locked(U), setLock(U, false), to all, SlaveLockReleaseRequestSent

TRACEABLE AWARE MASTER RECEIVING THREADS

aster Recel

Master Recel

TRACEABLE AWARE SLAVE RECEIVING THREADS

SUMMARY

S OS

L
O
CK
IN
G
: 0
N
E ITEM
(R
EV
I1E
W)

T1
T2
T1
T2

Fi(d?)

Fi(d?)

LOCKING MULTIPLE ITEMS IN SAME ORDER

m/m

T2

F(d)

T1
L+(d*)
L>(d")
Fl(dl) [l
L+(d?)
F1(d?) L*(d?)
‘ F2(d?) |

|
l T2 performs an operation on each object af- *%
\D

LOCKING MULTIPLE ITEMS IN DIFFERENT ORDER

Locks were freed too quickly! l

Get all locks before doing any
operation?

Early binding and keeps locks f
longer than necessary

T1 T2

L(d?) I

Fi(d?)

F2(d?)

Two phase locking

A transaction has a growing phase
when locks are added and not releas

Then it has a shrinking phase when
locks are released but not freed

LS

NON TwO PHASE IN SAME ORDER

T1 T2 T! T2

e S

TwO PHASE LOCKING IN SAME ORDER

T1 T2 T! T2
m\m ‘ i) l
ETD l

Wz(dl)
F1(d?) F2(d?)
L2(d?)

(
I D! freed after all locks gathered but before end of t

NON Tw0O PHASE DIFFERENT ORDER

T1

T2

L1(d?)

Fi(d?)

TwWO-PHASE LOCKING DIFFERENT ORDER

T1 T2 T! T2

Ll(dl)

Ll(dZ)

Non serializable schedules lea
deadlocks
[Need deadlock detection scheI

Two phase locking

A transaction has a growing phas
when locks are added and not relea

Then it has a shrinking phase wh %
locks are released but not freed N

PROOF THAT 2PL - SERIALIZABILITY

Transaction graph: T! has edge to T? if T? performs some (non commuting) operation

after some operation performed by T?!

Non-serializable == Cycles in transaction graph

Cycles in transaction graph under 2PL will lead to deadlocks

Proof by Contradiction

There is a cycle but no deadlock

Cycle: T! accessed d! before T2, and T2 accessed d? before T!

No deadlock: T! had both locks before T? had any locks (or vice versa)

No deadlock: No cycle

LOCKING: ONE ITEM

T1 T2 T1 T2

e

LY(d?)

‘ Fl(dl) l

Single lock for read and
T2 ‘s read unnecessarily de

Fi(d?)

100

LOCKING: ONE ITEM

T2 T1 T2

e

T1

R1(d?) LY(d?)

‘ Fl(dl) l

‘ Fi(dY)

{ T2 unnecessarily delay-

“®

TYPE-SPECIFIC LOCKS

T2 T1 T2

T1

R*(d*)

RL?(d?)

WLY(d?)

W(d")
RF1(d)
WF1(d)

(Concurrent reads allow

-

Concurrent read and writ
allowed

READ/WRITE LOCKS

Read Locked |Write Locked | Unlocked

Read Lock
Write Lock rl\m Yes

S(HARED)/(E)X(CLUSIVE) LOCKS

EREREN
S Yes No
X No No

More co

LOCK GRANULARITY

|

FIXED-GRAIN LOCKING

T1 T2 T1 T2

Si(d?)

Xl(dl)

SF2(d?)

Wl(dl.B)
SF1(d?)

XF(d?)

[T! unnecessarily waits for T? to fini-

VARIABLE-GRAINED HIERARCHICAL LOCKING

T2 T1 T2

SZ(dl.A)

SFZ(dl.A)

T1

W1(d1B) SF1(d?)

XFl(dl.B)

{ More concurrency

{ Each lock in a tree indepen.

look only at lock at your le

ANCESTOR DEPENDENCE

RZ(d 1.A)
SFZ(dl.A)

SF1(dY)

Lock operation must

searches ~ height of tree - O(h))

DESCENDENT DEPENDENCE

T1

T2 T1

ST

Wi(d?)

Lock operation must consider lock at descende

searches ~ nodes in tree - O (2")

Assuming a node contains information only abo
| that node

3 Trade space for time?

T2

SZ(dl.A)

SFZ(dl.A)

ANCESTOR DEPENDENCE (REVIEW)

RZ(d 1.A)
SFZ(dl.A)

R2(d1A)
SFi(d')

- Lock operation must c

searches ~ height of tree - O(h))

DESCENDENT DEPENDENCE (REVIEW)

T1

T2

T1

| o]

Wi(d?)

Lock operation must consider lock at descenden

searches ~ nodes in tree - O (2")

Assuming a node contains information only abou
| that node

3 Trade space for time?

T2

SZ(dl.A)

SFZ(dl.A)

INTENTION LOCKS

T1 T2 T1 T2

T

SFZ(dl.A)
ISF2(d?)

Wl(dl)
SF(d?)
Intention lock: a flag (synthesized attribute) in each ancestor of a locked node

indicating the kind of lock, associated with a reference count
incremented/decremented by lock and free operations

Synthesized attribute: An attribute of a node that is a function of a descendent(IS)

Inherited attribute: An attribute of a node that is a function of an ancestor(S) o ‘@
LA

S(HARED)/(E)X(CLUSIVE) LOCKS

s s s X
IS Yes Yes Yes Yes No

= Yes Yes No No No
5 [Yes| [No| [Yes| [No| [No
SIS Yes No No No No
X No No No No No

IS: some descendent of the node will have a shared lock

IX: some descendent of the node will have an exclusive lock

SIX: shared lock on this node and an exclusive lock on some descendent
(inherited and synthesized attribute)

INTENTION LOCKS

RZ(dl.A) m
=
RZ(dl.A)
SFZ(dl.A)
ISF2(d?)

SFi(d?)

’ Re-order int

INTENTION LOCKS

B
L

R2(d1A)
SF2(d1A)
ISF2(d?)

ck tree not consistent
duri

E de_

o)

y
|

LOCKING/UNLOCKING ORDER

-

SHARED MODEL SYSTEMS
£ [ConcertExpense] |Z||E|E /

A= E

£ [ConcertExpense]

File Edit “iew Customize File Edit “iew Customize ConcedExpense
CancertExpense
= Mumber OFf Attendees
Humber OFf Attendees — |3
3 |
Ticket Price
Ticket Price |23 - |
22,5 | :
Total | &| [ServerProxy]
Todal 3 : - -
| £ [ServerProxy] v 705 File Edit View Customize Sen
File Edit View Customize Sen —

[] Real Time Synchronize

[Real Time Synchronize \ 4] Il /
\ <] I J

SHARED MODEL SYSTEMS
£ [ConcertExpense] |Z||E|E /

A= E

£ [ConcertExpense]

File Edit “iew Customize File Edit “iew Customize ConcedExpense
CancertExpense
= Mumber OFf Attendees
Humber OFf Attendees — |3
3 |
Ticket Price
Ticket Price |24 ; |
|24.1 | :
Total | &| [ServerProxy]
Todal 3 : - -
| £ [ServerProxy] v 770 File Edit View Customize Sen
File Edit View Customize Sen —

[] Real Time Synchronize

[Real Time Synchronize \ 4] Il /
\ <] I J

What does time line
R%(Price) mean here?

Sync should be a first
class operation known

to the transaction *

system

ALTERNATIVE READ MODELING
= e
2 [ConcertExpense] |._||E|E|

A= E

£ [ConcertExpense]

File Edit “iew Customize File Edit “iew Customize ConcedExpense
CancertExpense
= Mumber OFf Attendees
Humber OFf Attendees — |3
3 |
Ticket Price
Ticket Price |24 ; |
|24.1 | :
Total | &| [ServerProxy]
Todal 3 : - -
| £ [ServerProxy] 770 File Edit View Customize Sen
b4
File Edit View Customize Sen —

[] Real Time Synchronize

[Real Time Synchronize \ 4] Il /
\ <] I J

Neither transaction
reads value of the
other or overwrites
until synchronize
(commit) occurs

No incremental #‘@
N

sharing

R2(Price)

W?(Price)

R(Price)

READ, VALIDATION, WRITE PHASE
e [ConcertExpense] = [ConcertExpense] |-_||E|E|
File Edit “iew Customize File Edit “iew Customize ConcedExpense
CancertExpense
= Mumber OFf Attendees
Humber Of Attendees = |3
3 | _ _
Ticket Price
Ticket Price
|24.00 |
1241 |
Total | £ [ServerProxy]
e W File Edit View Customize Sen
|| [ServerProxy] 3 720
File Edit View Customize Sen —
[] Real Time Synchronize
:
[| Real Time Synchronize K ‘| Il
\ a - / Read phase: shared
object read but not
R(Price) written
W2(Price) R2(Price) Validation phase,
. assign time stamps
i P : . .
J Validate | W?(Price) and decide commit or
Write T2 Validate abort
. System Abort : :
Validation rules? Y Write phase k3

OPTIMISTIC TRANSACTION RULES

o Optimistic concurrency control divides a transaction
into a read phase, a validation phase, and a writing
phase

o Read phase: transaction reads shared 1items, and
performs writes on local buffers, with no checking
taking place

o Validation phase: the system assigns time stamps to
transactions, and assumes transactions are
serialized in order of these timestamps

o Write phase, the local writes of validated
transactions are made global.

o If a transaction 1s not validated wrt to another
transaction, one of them 1s aborted

VALIDATION ALTERNATIVE

A

N
R2(01)
W?2(0?)
Validate

Write

J
ransaction T' is validated wrt to
begi

l - 0_1 '

> €

€«—H€

VALIDATION RULES

A

N
Validat.

Write

Transaction T' is validated wrt
b

> €

€<«

Concurrent opera

VALIDATION RULES

A
RY(0Y)
1 1
Wi(0?) J
; Validat t 1
T alidate 1{O2
J R1(0O?)
A
Write
v 1 1
WE(HI |
A
T2 Validate
v
A
Write
v

‘Transaction T'is validated if wrt T/, j > i, if T' does not read any of the item
T'and transaction T' finishes its write phase before transaction T begin
phase.

Lack of incremental sharing does not make a difference when there is no R
dependency

4

VALIDATION RULES

A

WZ(ol)
Valida.

o) |

Write

-
R-W dependencies (s
concurrent

-

Because

-
Locking would

€C—HDE—H €

Valida.

€C—HDE—H €

<

PROBLEMS OF INCREMENTAL SHARING

Rl(ol)
W2(0?)
User Abort l

System Abortl

E" Cascaded abort because incremental results shared in pessimistic sc-

Problem would not occur in optimistic transactions or if no W-R dep

from transaction aborted by user .

ﬂ In locking systems problem is avoided by keeping write lock until

transaction

B

[

VALIDATION/CHECKING TIME

o Early

» Pessimistic
o Late

o Optimistic
o Merging

PESSIMISTIC VS. OPTIMISTIC CC

o Two alternatives to serializable transactions
o Pessimistic

» Prevent conflicting operation before it is executed
e Implies locks and possibly remote checking

o Optimistic
o Abort conflicting operation after it executes

» Involves replication, check pointing/compensating
transactions

EARLY VS. LATE VALIDATION

o Per-operation checking
and communication
overhead

o No compression possible.
o Prevents inconsistency.

o Tight coupling:
incremental results
shared

o Not functional if
disconnected
» Unless we lock very

conservatively, limiting
concurrency.

o No per-operation checking,
communication overhead

o Compression possible.

o Inconsistency possible
resulting in lost work.

o Allows parallel
development.

o Functional when
disconnected.

MERGING

o Like optimistic
o Allow operation to execute without local checks
o But no aborts
o Merge conflicting operations
e E.g.1nsert 1,a | | insert 2, b =1insert 1, a; insert 3, b | |
isert 2, b; insert 1, a
o Serializability not guaranteed
o Ignore reads
» New transaction to replace conflicting transactions

e Strange results possible
o E.g. concurrent dragging of an object in whiteboard

o App-specific

HIERARCHICAL SHARED OBJECTS

Introduction

HIERARCHICAL TRANSACTIONS VS. OBJECTS

T12: Move
Figures Introduction

T Fix Typos

Read
Abstract Write

Write Introduction

Abstract

Check and
Fix Length The actions are hierarchica

rather than the data
Submit

Paper

HIERARCHICAL VS. SERIAL TRANSACTIONS

T!: Fix Paper T!: Fix Paper

N

3 Read
T1L: Fix Typos TEEvICE Abstract
Figures
) Write
Abstract

Write

Read

Abstract Write
Write Introduction

Introduction

Abstract

Check and
Fix Length

Check and r
Fix Length Sub transactions can
execute in parallel but

not sub operations

Submit
Paper

HIERARCHICAL VS. FLAT TRANSACTIONS

T!: Fix Paper

N

T Fix Typos

T12: Move
Figu res

Read
Abstract

Write
Abstract

Write

Introduction

Check and
Fix Length

T Fix Typos

T2: Move

3. £
Figures T°: Fix Paper

Read
Abstract

! Introduction
Write Submit
Abstract oM

: Check and
Write Fix Length

Paper

Sub-transactions do
not guarantee
consistency and their
results are not durable

They get locks from

—

They are atomic and
serializable wrt to each
other

parent and release locks

to parent locks and write

to parent uncommitted
data

Top level transaction gets

shared object locks .
5

CONCURRENCY OF PARENT

T!: Fix Paper

T12: Move

T Fix Typos

Parent may wait until sub-

transactions finish

A la Java (Mesa) thread join

Fi§u res
Read
Abstract Write
Write Introduction
Abstract

Check and
Fix Length

Needed in this example

Parent may execute in parallel

Subtransactions not serializable
wrt to parent

Ilgnore parent locks (but not
versa) and override parent
writes

ABORT SEMANTICS

T!: Fix Paper

N

T12: Move

11: g
T+ Fix Typos Figures

Read
Abstract

Write
Introduction

Write
Abstract

Abort

Check and
Fix Length

DIFFERENT ALTERNATIVE TRANSACTION

T!: Fix Paper r

/\ Child aborts do not abort par

T13: Move transactlor}, a parent c.an try
alternative transactions

T Fix Typos

Figu res

Read
Abstract Write

Write Conclusion
Abstract

Check and
Fix Length

Submit
Paper

NESTED TRANSACTIONS

o Like top-level, atomic and 1solated wrt to siblings in
transaction tree

o Not unit of consistency or durability
o Actions do not conflict with parent’s transactions.

o In lock-based systems, can get a lock from parent in
weaker mode and then release lock to parent

o In optimistic schemes they write to parent’s data set

o Parent’s actions conflict with child if parent executes
1n parallel

o Child abort does not abort the parent, which can try
alternative sub-transactions

TYPE SPECIFIC OPERATIONS

Tl

Set operations: serializable

TZ

Is project/README

edit project/README

R(project)

W(project)

mkdir project/src

IR/W operations: not seria-

ls project/src

R(project)

W(project)

TYPE-SPECIFIC SERIALIZABILITY

o Modeling Is as read and mkdir as write leads to directory-
Independent, non-serializable case

o Using type-specific semantics leads to serializable case

TRANSACTION GRAPH

DX, Y)
N L v]

MODELING AN OBJECT AS A BLACKBOX:
SERIALIZABILITY

Abstract Data Type
(Black Box)

/

\ / Serializability: No cycles in D(any,
Any

any) relationship among
concurrent transactions

D = D(Any, Any)

Tl T2

getPrice()

getPrice()

setPrice()

Not serializable

MODELING AN OBJECT AS A BLACKBOX: PREVENT
CASCADED ABORTS

Abstract Data Type

(Black Box)
No cascaded aborts: No D(any,

\ any) relationship among
Any

concurrent transactions

D(Any, Any)

Tl T2
] D
getPrice() (Aﬂy, Any)
setPrice()

Not allowed if cascaded aborts are to be avoided

MODELING AN OBJECT AS A READ/WRITE
REPOSITORY: SERIALIZABILITY

: . Abstract Data Type D
int getPrice() (R/W Repository) setPrice(int)
Write I

U D3 U D? relationsh
concurrent transa

T1 T2

getPrice()

getPrice()

setPrice()

Serializable

MODELING AN OBJECT AS A BLACKBOX: PREVENT
CASCADED ABORTS

: : Abstract Data Type
int getPrice() (R/W Repository)
Read I o cascaded aborts: @

relationship among c
transaction

setPrice(int)

T1 T2

getPrice() D, W)

setPrice()

Allowed if cascaded aborts are to be avoided

QUEUE

Queue<Element>
Element QDelete() (R/W Repository) QEnter(Element e)

I QEnter(X) -
I X = QDelete() -

Assume each element h ‘
ente‘r ‘

TRANSACTION GRAPH (REVIEW)

MODELING AN OBJECT AS A

SERIALIZABILITY (REVIEW)

Abstract Data Type
(Black Box)

BLACKBOX:

/

\ E -

D = D(Any, Any)

Serializability: No cycles in D(any,
any) relationship among
concurrent transactions

Tl

getPrice()

setPrice()

T2

getPrice()

Not serializable

MODELING AN OBJECT AS A BLACKBOX: PREVENT
CASCADED ABORTS (REVIEW)

Abstract Data Type

(Black Box)
No cascaded aborts: No D(any,

\ any) relationship among
Any

concurrent transactions

D(Any, Any)

Tl T2
] D
getPrice() (Aﬂy, Any)
setPrice()

Not allowed if cascaded aborts are to be avoided

MODELING AN OBJECT AS A READ/WRITE
REPOSITORY: SERIALIZABILITY (REVIEW)

: . Abstract Data Type D
int getPrice() (R/W Repository) setPrice(int)
Write I

Serializability: No cyc
U D3 U D* relationsh
concurrent transac

Tl T2

getPrice()

getPrice()

setPrice()

Serializable

MODELING AN OBJECT AS A BLACKBOX: PREVENT
CASCADED ABORTS (REVIEW)

: : Abstract Data Type
int getPrice() (R/W Repository)
Read I No cascaded aborts: @
relationship among c
l D! = D(R -

transactions

setPrice(int)

Tl T2

getPrice() D, W)

setPrice()

Allowed if cascaded aborts are to be avoided

QUEUE (REVIEW)

Queue<Element>
Element QDelete() (R/W Repository) QEnter(Element e)

I QEnter(X) -
I X = QDelete() -

Assume each element h ‘
ente‘r ‘

MODELING AN OBJECT AS A READ/WRITE
REPOSITORY: SERIALIZABILITY

Queue<Element>

QEnter(Element e)

Element QDelete()

|

(R/W Repository)

!
Read] Write] Write I

Not serializable even though
working at different ends

MODELING AN OBJECT AS A READ/WRITE
REPOSITORY: NO CASCADED ABORTS

Queue<Element>

QEnter(Element e)

Element QDelete()

|

(R/W Repository)

!
Read] Write] Write I

T1 T2
D

’ D
e Up—
erializable but not allowed if ¢
to be avoided because of D(

SUPPORTING QUEUE OPERATIONS DIRECTLY

Element QDelete() Queue<Element>) Q@ ter(Element e)

i

E(B)

be queued bef

'ot serializable because in a serial s

SUPPORTING QUEUE OPERATIONS DIRECTLY

Element QDelete() | Queve<tlement>) Fophter(Element e)

Ilot serializable because in a serial schedule all

be dequeued before or aft

MODELING QUEUE OPERATIONS

Queue<Element>) QEnter(Element e)

Element QDelete()

The element dequeued by T?is n
queued by T!

We know that based on argume
values of transactio

Tl T2

E(A)

o

Serializable because two transactions working at
different ends of the queue

SUPPORTING QUEUE OPERATIONS DIRECTLY

Element QDelete()

Queue<Element>) QEnter(Element e)

S(HARED)/(E)X(CLUSIVE) LOCKS

e L e

E(e) N/A N/A

E(e) N Yes No

His

D(e) N N/A 0

D(e’) Yes No No

D(null) Yes

7112 l#] [#]

TYPE-SPECIFIC LOCKS

o Less information about operations available to locking
system more conservative 1t 1s about commuting and
dependent operations

o No information
» Serializability: no interleaving operations on an object
» (Cascaded aborts: no concurrency

o R/W:
e Serializability: No cycles in D(R,W), D(W,R), D(R,R)
 No Cascaded aborts: No D(W,R) relationship among
concurrent transactions
o Queue-specific:
. %e(ar,i)a;lizability: Cycles allowed in D(E(e), D(e)) and D(D(e),
¢
» (Cascaded aborts: No D(E(e), D(e)) relationship among
concurrent transactions

» A lock specifies kind of operation and element queued or
dequeued

o Kept until end of transaction

CONCURRENCY CONTROL SUMMARY

o Transactions and ACID
o Isolation: serializability and cascaded aborts
o Explicit, implicit Locks

o Locking implementation: Two phase commait, cache
1Incoherence

o Shared vs. exclusive locks

o Two phase locking

o Hierarchical locking and intention locks
o Type-specific dependencies and locking
o Optimistic transactions

o Optimistic locks

o Nested transactions

EXTRA SLIDES

S(HARED)/(E)X(CLUSIVE) LOCKS

EEECEECE

E(e) N/A No

E(e) No Yes
D(e) No N/A
D(e) Yes No

Locks held until end of transaction to:

remember which elements have been added removed

prevent cascaded aborts

Not clear we need to remember elements added removed if we have

null row and column

MODELING AN OBJECT AS A READ/WRITE
REPOSITORY: SERIALIZABILITY

ueue<Element>
(?R/W Repository) QEnter(Element e)

Read @ Write Write

Element QDelete()

A

There is indeed
a D(W,R)
relation

between T!
and T? contrary

to what the
recording says

Not serializable even though two trans
working at different ends of the que

MODELING AN OBJECT AS A READ/WRITE
REPOSITORY: NO CASCADED ABORTS

ueue<Element>
(?R/W Repository) QEnter(Element e)

Element QDelete()

$!
Read @ Write Write
There is
indeed a
11 T2 D(W,R) relation
D between T1

w, R) Dey and T2 contrary
W) to what the
recording says

and so under

R/W semantics
it wull be
disallowed

Serializable but not allowed if cascaded ab
to be avoided because of D(W, R) depen

SUPPORTING QUEUE OPERATIONS DIRECTLY

Element QDelete() | Queve<tlement>) Fophter(Element e)

Tl T2

E(B)

Serializable because two transactions working at
different ends of the queue

NOT HOLDING LOCK UNTIL END OF
TRANSACTION

Element QDelete() | Queve<tlement>) Fophter(Element e)

S(HARED)/(E)X(CLUSIVE) LOCKS

e L e

E(e) N/A N/A

E(e) N Yes No

D(e) N N/A 0

His

D(e’) Yes No No

D(null) Yes

7112 l#] [#]

S(HARED)/(E)X(CLUSIVE) LOCKS

[o | o T

E(e) N/A N/A

E(e) Yes 'Fo]
D(e) N/A N/A
D(e) Yes No N/A

BlE

D(null) N/A No Yes

S(HARED)/(E)X(CLUSIVE) LOCKS

[o | o T

E(e) N/A N/A

E(e) Yes 'Fo]

D(e) N/A N/A

D(e’) Yes m N/A
D(null) N_/A Yes

S(HARED)/(E)X(CLUSIVE) LOCKS

e L e

E(e)
E(e)
D(e)
D(e’)

D(null)

N/A| | N/A
[No| | Yes
N/A

Yes| | No|

Yes

Yes

Yes

Yes

[Assume dequeue is non blocking -

B

S(HARED)/(E)X(CLUSIVE) LOCKS

e L e

E(e)
E(e)
D(e)
D(e’)

D(null)

N/A| | N/A
[No| | Yes
N/A

Yes| | No|

Yes

Yes

Yes

Yes

[Assume dequeue is non blocking -

B

