CS 290: Collaborative Systems !
Section 3: Collaborative Infrastructures
Prasun Dewan

1. COLLABORATIVE INFRASTRUCTURES

In the previous section, we discused collaborative applications, that is, collaboration
systems that provide end-users with some functionality to collaborate with each
other. In this section, we will discuss collaborative infrastructures, that is, software
systems that provide programmers with abstractions to implement collaborative
applications.

Because of the diversity in collaborative applications, none of the collaborative
infrastructures that have been developed so far i1s suitable for, or even capable of,
implementing all of the collaborative applications we studied in the previous section.
As a result, a large variety of infrastructures have been developed for implementing
different kinds of collaborative applications. In fact, there may be more diversity
in the collaborative infrastructures than in collaborative applications!

Therefore, when we study a collaborative infrastructure, we will look at the fea-
tures of collaborative applications it can support, thereby evaluating its flexibility.
Another criterion for evaluating an infrastructure is the automation it offers, which
measures the amount of effort required to implement functions it “supports”. We
will distinguish between two basic ways to support some function: enabling, which
simply allows the implementation of the function, and automating, which relieves
programmers from implementing how the function is implementing, requiring them
to only specify what they want. To understand the difference between these two
forms of support, consider an assembly language, Pascal, and C. Pascal automates
record management but does not enable interrupt handlers since it does not allow
access to hardware registers. An assembly language enables both record manage-
ment and interrupt handlers, while C automates record management and enables
interrupt handlers. It 1s similarly important, in collaborative infrastructures, to
provide a fine balance between automating and enabling. It is also important to
offer space and time efficiency, another evaluation criterion we will use. Finally, we
will look at the amount of reuse of existing systems supported by the infrastructure.

Dividing collaborative systems into applications and infrastructures is a simple
but coarse classification scheme, since some systems have characteristics of both.
Consider ClearBoard-2, which provides a shared whiteboard and video overlays.
While the former is a specific application the latter is a general abstraction that
can be used to provide face-to-face awareness in arbitrary shared applications. Sim-
ilarly, the mail system can be considered an application since it directly interacts
with the end user, and also an infrastructure since it provides a portable method
for communicating information between arbitrary distributed applications. In gen-
eral, a software system can be divided into may layers and a higher-level layer is
an ”application” for infrastructure layers below it. It is perhaps not surprising
that kernel/OS researchers would regard most of the systems we discuss below as
applications. They have been classified as infrastructures since each of them needs
at least one layer above to interact with end-users. Later, we will look at their

LCopyright by P. Dewan. All rights reserved.



positions in a layered collaboration architecture.

1.1 Example: True "Hello World" Program

To understand and evaluate these systems, we will discuss how they may be used to
implement a simple collaborative program. The program is a variation of the true
"hello world” example of [?], which says hello truly to the world. The “world”, in
this case, 1s a set of users interacting with the program. We allow a user to change
the initial greeting of the program, which is then shared with the remaining users.
We leave out many details of the application such as when a change is propagated
to other users, or whether there is any concurrency control. How we will handle
these issues will depend on the capabilities of the infrastructure - we will discuss
solutions that are possible and easy to implement using that infrastructure. When
it 1s really easy to do so, we will look the exact code required to implement the
application; otherwise we will simply sketch the solution.

1.2 Shared Distributed Repositories

1.2.1 File System: Coarse-grained Data. Given a file system shared by multiple
processes, here is a general scheme for developing a collaborative application: For
each user interacting with the application, we create one or more processes that
interact with the user, and linking among the users is implemented via one or more
files shared among these processes. A file may directly store binary representation
of shared data or a textual representation of it. It may be created by one of the
user processes or by a special process executed before any user accesses it.

Example: A special initializer program is executed with the session name as an
argument:

session —name ourHelloWorld

The program creates a greetings file called helloWorld and initialize its contents
and access list.
To join the session, another user can execute the helloWorld program:

helloWorld -join ourHelloWorld

This program is an editor that allows its user to view and change the greeting
stored in the file. Several variations of it are possible: The simplest approach is for
it to provide users with explicit commands to load/store the greeting in the file.
Instead of requiring the user to explicitly load a new greeting, it can periodically
poll the file. Instead of requiring the user to explicitly store a new greeting, it can
automatically store the greeting on every character. Moreover, instead of writing
directly to the shared file, it can create a separate version, and always read the
latest version of the file. It can check-out a version in the locked mode to prevent
conflicts. Otherwise, it can use merge facilities to combine two versions that were
concurrently modified.

There are several advantages of using a file system for implementing collabora-
tive applications. A file system automates the implementation of persistence, access
control, and concurrency control. Moreover, in artifact-based collaborative applica-
tions supporting implicit sessions, the naming scheme provided by a file system can
be used as a basis for naming sessions, thereby automating details of hierarchical



names, symbolic links, and other rich concepts provided by modern file systems.
Furthermore, file-based version control systems automate the creation of multiple
versions of shared data and the diffing and merging of these versions. Finally, file
systems also come with programs that provide efficient searches of textual data.

However, in comparison to some of the other infrastructures discused below, a
file system has four main disadvantages. First, a processes must poll the file to
determine if it has been changed by some other process. Since a high polling fre-
quency (e.g. 3 seconds) can severely degrade the system performance, this approach
is not suitable for real-time collaboration. This is a problem in all systems that
facilitate sharing through passive repositories of data. Later we will look at several
examples of active repositories, that is, repositories that allow user-defined triggers
to be associated with updates to the data.

Second, a file resides primarily on disk, and thus communication between pro-
cesses can involve potentially costly disk accesses. This problem is reduced but not
eliminated by caching, which makes this technology further unsuitable for real-time
sharing of rapidly-changing state such as scrollbar and pointer positions.

Third, a file system automates a small subset of the functions of a collaborative
application. For instance, while it enables (non real-time) coupling, the programmer
is responsible for implementing the details of depositing and fetching data from the
file. Similarly, it does not provide automatic support for undo. Later we will look
at systems that make application programmers totally unaware of these functions.

Fourth, a file system provides coarse-grained units of data, and functions such
as concurrency and access control that operate on these units cannot be used di-
rectly by all applications. For instance, applications that need different records
of a bibliography to be associated with separate locks must implement their own
concurrency control.

Finally, this approach to developing collaborative applications does not work if
the collaborators do not share a file system. Thus, it is not suitable for wide-area
collaboration.

1.2.2 Traditional DBMS: Fine-Grained Data. The last problem is addressed by
a traditional (relational) database management system. It also provides a persis-
tent, disk-resident repository of shared data but the persistent data are relations
of records instead of files. To create a collaborative application, we simply have to
replace the shared file with a shared database, which would now provide the linking
among the processes interacting with the user.

Example: Same as the file case except that: We replace the file with a relation
of strings in which we store a single record to hold the greeting. An application
program uses a query language to insert, modify, and select that record. Since
traditional relational databases fix the size of a record, application programs would
need to pad/truncate user input.

A DBMS can discriminate among the different records and fields of a database,
and can thus provide a finer granularity of sharing, protection, and concurrency
control. In particular, it can automate the locking semantics of the bibliography
application. In fact, concurrency control schemes in DBMS are more sophisticated
than those developed for file systems, providing support for atomically executing a
transaction on multiple objects. In contrast, a file system requires users to explicitly



lock /unlock all files that an operation must modify and provides no support for
atomicity. Later, we will study the subject of concurrency control in more depth.

Another strength of a relational database system is the powerful predicate-based
query language it provides for efficiently searching through large amounts of data.
The language is particularly useful for searching for awareness information and
the status of a shared artifact or a collaboration task. For instance, it automates
queries to find all collaborators at a particular location, all talks scheduled within a
particular time range, all workflows that are not complete, and all procedures mod-
ified by a user. The cost of manually programming such queries in a collaborative
application can be high [?].

On the other hand, it has the problems of passive disk-resident repositories. An
additional problem is that a database system and the processes that access it typ-
ically use different representations of data. As a result, a DBMS forces its clients
to convert between different representations of data, which is referred to as the
impedance mismatch problem [?]. Impedance mismatch makes the overhead of de-
veloping collaborative applications high since programmers must write translation
code that converts between the different representations. It also increases the re-
sponse time of the applications because of the overhead of executing the translation
code at runtime. Impedance mismatch is also a problem in single-user applications
that use the database to store their persistent data. It is a more severe problem in
multiuser applications developed using this approach, since they use the database
to also store shared, possibly non-persistent, data such as a scrollbar position or
the list of users in a session.

Thus, a DBMS is even less suitable than a file system for supporting real-time
collaboration. Impedance mismatch would also occur in the latter if a textual rather
than directly binary representation of data is stored in a file. However, even in the
case of text files, all information about an application data structure such as a
parse tree can be stored in a single, variable-length file. In the case of a traditional
DBMS, such a data structure would be spread out in multiple fixed-size records
and costly joins would be required to fetch and store all of these records [?].

1.2.3 Lotus Notes: Rarely-Connected Document Replicas. Lotus Notes [?] pro-
vides a storage structure, called a document, that is a mix between database records
and files. Like a database record, it can contain fine-grained, fixed-length fields of
predefined types, and like a file, it can store variable-length data of predefined and
programmer-defined types. In particular, it can contain variable-length strings for
storing document text. Thus, Notes documents, like mail messages in Information
Lens, are semi-structured. In fact, one of the most popular applications of Notes 1s
Notes Mail, which stores mail messages as semi-structured documents and provides
various schemes for sorting them. Notes provides a unified framework for processing
mail messages and other documents. For instance, the same program can be used
to browse through messages and other documents, and any document can have a
“response” linked to it.

Notes is an example of a replicated storage system, that is, a system that creates
multiple replicas of a data structure on different sites and ensures consistency of
these replicas. Creating a replica at a site promotes fault tolerance, and more
importantly, allows read operations to be resolved locally without requiring any



distributed communication.

The write operations are more complicated since they need to propagated to all
replicas to ensure consistency among them. Traditional replicated file and database
systems ensure a strong immediate consistency model, that is, update all (or at least
a quorum) of the replicas when a write operation commits at the local site. Notes,
like the News application we saw earlier, supports a weaker eventual consistency
model, that is, ensures that if all update activities stop the replicas will converge
after a finite amount of time.

The main motivation for supporting eventual consistency in News was the number
of sites involved - news postings would become unbearably slow if we had to commit
the posting to all replicas. This is also a motivation in document databases, but
perhaps a stronger reason is a rarely-connected computer, that is, a computer such
as a laptop that is more often than not disconnected from other computers. To
allow the user of such a computer to access data in the disconnected state, we
would like to create local replicas of shared document databases but cannot ensure
immediate consistency of a write operation. Instead, we would like to allow the user
to proceed with other operations, and propagate the results of these later when the
computer connects to others.

Like News, Notes supports a decentralized consistency scheme wherein pairs of
computers exchange changes to their documents. Each computer knows about one
or more other computers or peers that store replicas of the local databases. At some
point, it can “replicate” with a peer, when it does a 1-way pull of changes from the
peer. (The peer can simultaneously pull changes from the local computer.) A user
can manually ask for immediate replication with a peer. Moreover, a replication
schedule (specified by the system administrator) can trigger automatic replications.

The source and destination computers have autonomy over what parts of their
replicas are sent and received, respectively. The source computer sends only those
documents parts to which the destination computer has write access. Moreover, it
determines if deletions and old changes are shared with the destination. Conversely,
the destination receives only those document parts to which the peer has write
access. Moreover, it can specify the types of data it should receive from the source.
It can also specify also queries dynamically selecting the the database parts it wants
replicated. Finally, it determines if changes to access-control lists and replication
parameters associated with a database should also be received from the source.

Notes provides an automatic scheme for merging the destination replica with the
source replica. It associates objects with timestamps, and replaces an older version
of an object with a newer object in the source. Like News, it merges simultaneous
additions to the database by performing both operations. Concurrent updates to
the same document is hard to resolve and Notes simply creates both alternatives
as parallel versions, leaving the user to choose one of them. One of these versions
is made the primary document and the other is made a secondary “response” to
it. News does not have to address the concurrent update problem since users can
simultaneously update a News message, though they can simultaneously add two
messages to a bulletin board. As we shall see soon, the merge problem is addressed
in several other systems, and we shall address it in-depth later.

Example: Same as the database case except that: We create a document with
a variable length text field instead of a database record. Also we can create a local



replica of the document and operate on it in the disconnected mode. In particular,
we can modify it in this mode . If we want automatic notification of changes to a
greeting, then a system administrator must define a replication schedule - otherwise
we explicitly replicate to exchange changes. If both computers have simultaneously
changed the greeting, then one of the greetings will be made a response to the
other. If we want to receive but not transmit our changes to the greeting, then we
give others write access but not read access to our replica.

Notes is useful not only for merging replicas modified by different users but also
those owned by the same user as he moves among workstations (e.g office and home
computers). In fact, the merge problem is much easier in this case, since concurrent
changes are never made to the replica.

1.2.4 Coda: Multiple Computer Couplings. So far, we have seen systems designed
for for two forms of networks - the traditional strongly-connected networks in which
disconnection of a computer is an exception, and rarely-connected networks in
which the reverse is true. In the former, the exception occurs when a computer
fails while in the latter it occurs when it replicates or merges its changes. Coda [7;
?] is designed for hybrid networks in which a computer may be strongly-connected,
rarely-connected, or weakly-connected, that is, connected to the network through
an expensive low-bandwidth connection such as a cellular connection. Instead of
creating local replicas, Coda creates a local cache of data. The semantics of file
operations issued by the computer depends on its connection to the network.

When a computer is strongly-connected, it caches data accessed by it and im-
mediately propagates the results of local operations to all other strongly-connected
computers, which can refresh their local caches. Thus, if all computers are strongly-
connected, strong immediate consistency is maintained among the caches. When a
computer is disconnected in the rarely-connected mode, it allows the user to perform
local operations on the cached data and propagates the results to other computers
when 1t is next connects to the network. It cannot, however, provide access to data
that are not cached. When it i1s weakly-connected, it loads the cache with data
not stored in it, but does not immediately propagate changes to other computers
to save on communication cost. It logs (and compresses) local changes and uses
"trickle re-integration” to asynchronously send them in batch to the server. More-
over, it does not receive updates made by strongly-connected computers, thereby
not impeding their progress. It receives remote changes when it is next strongly
connected. (Why not receive them in trickle reintegration coming the other way?)

Coda has experimented with several approaches to merging cached and server
copies of the file system. In an early version, it automatically merged certain kinds
of changes. For instance, like Locus, it automatically merged concurrent insertions
of new objects in a directory. For other changes, it required manual merging. For
instance, if two users concurrently change the same file, it required them to man-
ually merge the changes. However, this approach was too conservative when the
users had changed independent parts of the file. some changes were automatically
res Therefore, Coda now allows a programmer to provide an application-specific
program for merging versions of a file. For instance, a programmer of a calendar
application can provide a program for merging concurrent operations to a calen-
dar file based on the slots that were modified - if the slots are different then it



combines the two changes, otherwise it makes an arbitrary choice or asks for user
intervention. Thus, unlike Notes, Coda gives the application programmer control
over how merging is done. Because of the large granularity of the data it manages
(files/directories), there is more need for this feature in Coda.

Another difference 1s that it uses a more centralized approach for maintaining
consistency. Data are stored in a (possibly replicated) server and caches of these
data are stored in local clients. When a strongly-connected client invokes a file
operation, it makes a call in the server to update the server copy of the file. The
server, in turn, propagates the results in all strongly-connected clients by invoking
callbacks in them. When a disconnected or weakly-connected wishes to integrate,
its cache i1s merged with the server copy, and any updates to the server copy are
transmitted to other strongly-connected clients through callbacks. Thus, clients do
not do pairwise merging as in Notes - instead they merge with each other through
the server(s). Replicated servers maintain consistency using another algorithm that
assumes strong-connection among them.

Example: It is programmed as in the file case except that the programmer writes
an application-specific merge procedure, which can, for instance, concatenate the
conflicting strings, prefixing each string with the name of the user who entered
it. The behavior of the application would be different in that it users would be
able to use it in the disconnected and weakly connected modes. Of course, in
the disconnected mode, they would not receive or transmit updates; while in the
weakly-connected mode they would not receive updates, and local changes would
be trickled asynchronously in batches to the strongly-connected users.

1.3 Distributed Communication

1.3.1 Interprocess Communication. Instead of communicating through a reposi-
tory, user processes can directly exchange information with each other using some
form of interprocess communication (IPC). Several forms of interprocess commu-
nication have been developed ranging from simple message passing to remote pro-
cedure call. We do not distinguish among them here unless necessary. We assume
that they enable a process to communicate data to another process, allow a process
to declare its intention to get data from multiple processes; and notify a receiving
process when the data arrives, either by unblocking the receiver if it is waiting or
invoking an asynchronous callback, if it is not.

Interprocess communication allows programmers to implement collaborative ap-
plications in arbitrary ways. There are two main approaches we can use when
trying to code such applications:

— Replication: Implement as much of the application functionality as possible at the
local workstation of each user, thereby creating an application replica at each site.
It is not possible to implement the complete functionality at the local workstation
since linkage between users implies that there has to be some communication
among their replicas. Moreover, these are not true “replicas” as as the linkage
between users may not be WYSIWIS.

— Centralization: Implement as much of the application functionality as possible
in a single, master, process executing at some central site. It is not possible to
implement all of the application functionality in a central site, since some code



must be executed at the local site to display output on the local workstation and
receive input from it. In general, the extent of this code depends on the I/0O
package used by the application programmer to (e.g virtual terminal package,
curses library, window-system, toolkit ) interact with a user. Assuming that the
I/0O package allows a process to interact with a single user, we would have to
implement a separate I/0O manager, for each user, which would interact with
the user through the 1/O package. It would receive input from I/0 package and
transmit it to the master; and, conversely, receive output from the master, and
give it to the I/O package.

In both cases, we would need a session manager responsible for allowing users
to dynamically join and leave the conference, and a name server responsible for
associating session managers with session names. Moreover, we would user IPC to
communicate among the various application processes.

We will compare these two approaches in depth later - for now it is enough to
assume that the centralized application 1s easier to implement while the replicated
application gives better interactive performance by localizing the processing of op-
erations. Here we present them mainly to show some of the ways in which IPC can
be used in the construction of a collaborative applications.

Example-Replicated Case: As in the previous cases, a process or replica is
created at the local workstation of each user, which displays the greeting string
and allows the user to edit it. Also we create a session manager, which creates the
session and keeps track of all the replicas and the current value of the greeting.

A user creates a new session by invoking the session manager, giving it the session
name:

session —name ourHelloWorld

The session manager registers under the session name with a name server. When
a user joins the session:

helloWorld -join ourHelloWorld

the new replica uses the name server to lookup the session manager, registers itself
with the session manager, looks up the current greeting and replicas registered with
the session manager, and informs the replicas that it has joined the session. On
each keystroke, a replica uses the IPC mechanism to send the input character to
all other replicas and the session manager, which immediately modify their local
strings and update the screens. (Could we have done without the session manager
process?)

Example-Centralized Case: A single master process is started at some central
site:

helloWorld —name ourHelloWorld

which creates and initializes a single copy of the string and registers itself with a
name server. To join the session, a user invokes an I/O manager:

join —name ourHelloWorld



which uses the name server to contact the master and registers itself with the
master. The master processes input messages received from different I/0 agents
in the order in which it receives them, updates the string, and broadcasts the new
value to all of the agents.

An IPC system does not have the drawback of disk-resident data. Since we
assume that 1t notifies processes when messages arrive, w it does not have the
problem of polling. If it supports communication of only simple types such as
strings, then it does suffer from the impedance mismatch problem, since structured
types must be converted to/from the simple types. Some IPC systems do allow
processes to exchange values of arbitrary types [?], doing automatic marshalling
and unmarshalling of data, and thus, do not suffer from this problem.

On the other hand, these benefits come at the cost of several drawbacks: An IPC
mechanism does not know which parts of the communicating processes’ state are
shared or persistent data structures and simply provides a high-level scheme for
communicating information. As a result, it cannot automatically offer persistence,
concurrency control, access control, versioning, merging, or querying, which have to
be implemented by the application programmer. It also does not automate session
naming, which must be implemented by a separate name server. Another important
drawback of this mechanism is that it require a process interacting with a user to
be agent aware, that is, aware of the identities of processes (agents) interacting
with other users. In the centralized case, the master process is aware of all the 1/O
agents, while in the replicated process, each replica is aware of other replicas. As
a result, the programmer of a process must write code that reacts to a new user
joining and leaving a session. The repository-based approaches have none of these
drawbacks.

1.3.2 ISIS: Process Groups and Causal Multicast. TISIS [?] illustrates how the
peer awareness problem can be addressed. The system can provide the abstraction
of a process group, which processes can join or leave; and allows a process to mul-
ticast a message to a whole process group. The tasks of managing memberships of
process groups and multicasting to them, thus, is the task of the system, thereby
making individual processes peer unaware.

Example-Replicated Case: As in the previous cases, we create a central ses-
sion manager and replica on the workstation of each user. Instead of expliciting
sending a new string value to each of the other user processes, a replica sends the
message to a process group including the session manager and all replicas. The
session manager creates the process group and initializes the string, each replica
contacts it for the process group id and the current value of the string.

Example-Centralized Case: The single master process now creates a process
group including all I/O agents and multicasts it output to this group.

Consider a tricky issue in message delivery that we have so far ignored. Sup-
pose a process receives two messages, ml and m2, that are causally related, that
is, one of these messages, m2, would not have been sent had the other message,
ml, not been sent. In our example, that may happen if m1 initializes an erro-
neous string (insertAt: 1 str: '"helo world"") and m2 contains an edit to
the string (insertAt: 3 str: "1"). To preserve the semantics of the interac-
tion, we would want the TPC mechanism to ensure that the cause (m1) is received



10

at each process before the effect (m2).

Of course, a general purpose IPC mechanism does not know what the messages
are about, so it can never know the causality relationship among the messages.
But it can take a conservative approach to ordering messages by making two as-
sumptions: (1) If a process sends two messages, m1 and m2, in succession, then the
first message, m1, is a cause of the second, m2. (2) If a process sends a message,
m2, after receiving a message ml, from another message, then message received,
ml, is the cause of the message sent, m2. Stream-based protocols such as TCP /TP
provide support for the first, intra-process, ordering. They are sufficient to support
applications such as the centralized example above, where only one process 1s mul-
ticasting to the group. ISIS takes this idea a step further by also supporting the
second, inter-process, ordering of messages, thereby supporting applications such
as the replicated example above, where more than one process multicasts messages.
For this reason, the multicast it supports is termed as causal multicast.

Causal multicast ensures that each process in a multicast group receives a cause
before an effect. However, it does not ensure that each process in the group receives
the set of multicast messages in the same order. In particular, two messages are
multicast concurrently (that is, one message is not a cause of the other), then mem-
bers of the multicast group may receive them in different orders. Continuing with
the repl, if two users concurrently change the string to ”hello world” and ”goodbye
world” respectively, then some users would see the first one as the final value and
some the second one. Thus, causal multicast suffices as long the application en-
sures (by providing an appropriate concurrency control protocol) that concurrent
messages never conflict with each other. For applications that cannot provide this
guarantee, ISIS also provides a stronger version of causal multicast, called atomic
multicast, which ensures processes in a process group see multicast messages in the
same order. In general, an atomic multicast may not be causal, though in the case
of ISIS it is.

ISIS was designed mainly to support replication of applications for fault tolerance.
However, as we have seen above, it can also support replication for good interactive
performance in a collaborative applications. For this reason, some collaborative
applications such as the MASSIVE [?] VR system have used it for multicasting
messages. However, this multicast is not 1deal for all collaborative applications, for
two reasons.

First, causal multicast may be too conservative for messages that commute with
each other. Consider a replicated implementation of a GROVE-like structured
outline in which the replicas exchange fine-grain updates with each other, that is,
describe an edit in terms of the smallest structure that changed rather than the
whole buffer. In this situation, changes to different parts of the structure would
commute with each other. For instance, the edit, section: 1 insertAt: 1
str: "hello world" would commute with section: 1 insertAt: 1 str:
"goodbye world" . Even if the first change caused the other, there is no harm done
in processing it after the second one. Thus there is no advantage in using ISIS’s
implementation of causal multicast. On the other hand, there is a disadvantage in
using it, since 1t delays a message until all of its predecessors are received, thereby
giving poorer response.

More important, causal multicast is too liberal when concurrent messages conflict



11

with each other, that is, do not commute with each other. Such conflicts would
occur in an application such as Grove that does not provide concurrency control,
and even in applications that provide fine-grained concurrency control but exchange
large-grained updates. Consider again the replicated implementation of a Grove-like
editor but this time assume that changes are communicated in terms of the whole
buffer. In this case, even if the editor ensures that two users do not concurrently
edit the same section, since edits that changes the buffer length (e.g insertAt 1 str:
“hello world, insertAt: 100 str: ”goodbye world”) have conflicts. In cases such as
these, causal multicast is not sufficient, and what we want is atomic multicast. But
implementations of atomic multicast must serialize concurrent messages through a
central process, thereby reducing the performance benefits of replication. For this
reason, some applications such as Grove use application-specific optimistic schemes
for ensuring consistency. Centralization 1s less of an issue in systems in which
replication is introduced for fault-tolerance rather than performance.

1.3.3 MBone: Network Multicast. In ISIS, Multicast is supported in the library
layer. It can be supported in lower-level layers to give better performance. In
particular, if it is supported in the kernel layer, then it is sufficient to make a
single kernel call to multicast a message to a process group; and if it is supported
in the network layer, then it may be sufficient to send a single message along a
network link to multicast the message to multiple processes connected by the link.
For this reason MBone [?] (Multicast backbone) provides network-level support
for multicast. Multicast messages are targeted at special TP addresses that are
associated with groups of hosts.

The saving in kernel calls and network messages i1s particularly important for
scalable video conferencing, which must send large number of large messages to a
large number of sites. MBone has been designed for such applications and includes
an interesting set of applications for making distributed presentations including
audio and conferencing tools and a whiteboard application. All of these tools are
scalable in that they have been used by hundreds of users.

Reliability in scalable multicasts can be a tricky issue. In many reliable unicast
protocols such as TCP/IP, the sender is responsible for ensuring that the message
is delivered to the receiver by waiting for a positive ack from the latter. This is
not a good approach in scalable multicast, since it puts an undue burden on the
sending site, which must wait for a large number of positive acks. It is better to
use to make each receiver responsible for ensuring reliability by sending negative
acks in case messages are lost.

Wb [?], an Mbone shared whiteboard, illustrates another use for negative acks
in a replicated implementation of a collaborative application. It uses them for sup-
porting dynamic addition of users in an ongoing collaborative session: the replicas
created for these users simply send negative acks to receive the current state of
the conference. They do not have to, as in our replicated implementation of the
example, send application-specific messages requesting the current conference state.

1.3.4 X: Network I/0. Consider now the centralized I/O agent-based implemen-
tation of a collaborative application. There is an unnecessary level of indirection
here, the T/O agent does no more than forward requests to the local 1/O package.
Moreover, the master process and I/O managers are responsible for encoding the



12

I/0O calls as messages of some IPC mechanism. This indirection and use of an IPC
mechanism would not be necessary if the application could use (directly or indi-
rectly through a toolkit) an I/O package that provided a network interface, that is,
allowed a remote application to directly invoke its functions, and if an application
could concurrently interact with multiple I/O packages on different workstations.

The X window system [?] is perhaps the first 1/O package to offer such an
interface. An X client can open connections to one or more X servers. Each X
server runs on a workstation and allows its clients to perform window-based I/0O on
that workstation. It receives messages from X clients in the form of X requests and
sends messages to them in the form of X events. An X request from a client asks
the server to create a window, map it on the screen, draw text in it, or perform
some other output task on the screen. An X event to a client informs the client
about keyboard presses, mouse movements, and other input actions of the user.
The X window system is ”almost” portable in that it has been accepted by a large
number of vendors. ” Almost” because Microsoft decided not to adopt it.

Centralized Example: As before, we create a master process, which now in-
teracts with the users of the collaborative application by directly communicating
with the X servers managing their workstations. Instead of invoking I/O managers,
they invoke special join processes whose sole job is to inform the master process
about the identities of their X servers.

This implementation 1s certainly easier to code and more efficient than the cen-
tralized implementation we saw before. However, it is not without disadvantages.
The application programmer must still implement a program used to join the ses-
sion, which involves using some IPC mechanism to communicate with the master
program. More important, a larger amount of information is communicated from
the master to the workstations, since, in comparison to high-level requests/events,
low-level requests/events are typically larger in number and size. X was designed
for high-speed local area networks, and is thus not ideal for wide-area, real-time
collaboration.

1.3.5 Web Browsers: High-Level Network I/0. So what we would like is a higher-
level I/O package that, like X, is portable and offers a network interface. A Web
browser [?], in fact, is such package. It is not a typical ”I/O package” in that a
remote process does not execute output procedures to display information, instead
it sends documents or pages describing the display layout in HTML (HyperText
Markup Language). An HTML document is stored at any internet site and is
managed by an HTTP (Hyper Text Transfer Protocol) server at that site. Tt is
associated with an internet-wide name called URL (Universal Resource Locator),
which identifies the server managing it. A browser can request a document from
any server by sending it the URL of the document.

An HTML document may include a directive to periodically load a particular
page. More important, it may display not only hyperlinked static text, but also
dynamic forms for sending input to remote procedures. A form contains interactors
(or widgets) such as text items, menu choices, sliders, and nested forms for entering
input values. Tt is also associated with a remote callback called a CGI (Common
Gateway Interface) script. The script is invoked when the user submits the form
and receives as parameters the input values entered in the form. In response, it



13

sends the browser an HTML document describing the new display. A CGI script
is associated with a URL and is executed by the HT'TP server that manages it.

There are, of course, many flavours of browsers and servers, but all of them must
support the currently accepted HTML and HTTP, respectively, though they can
provide their own extensions. Of particular interest to use are browsers that provide
a CCI (Client Communication Interface). Such an interface, typically, allows some
other, possibly local, process to both monitor and invoke actions of the browser
such as loading of a new page.

Centralized Example: We define an HTML document for the application,
whose URL serves as the session name. Users join the session by loading this
document in their browsers. The document displays a form containing a text item
showing the greeting. A users may edit and submit the form to change the greeting.
The CGI script invoked to process the form changes the greeting field in the HTML
document and asks the browser to reload this page.

How do other users view a change to the greeting? The simplest approach is
for user to explicitly reload the document to see the current value. Instead of
making the user poll for the new value, we can specify in the document that the
browser should automatically poll for it. These are essentially the user-interfaces
we saw 1n the repository-based solutions. Implementing a non-polling interface is
more difficult but possible if the browser provides a CCI interface. At the server
site, we create a session process responsible for notifying browsers of changes to
the HTML document and monitoring its loads. (If CCT allows only local processes
to talk to a browser, then we need to create, for each browser, an additional local
process connecting it to the session manager.) as that user’s surrogate. When
a browser first loads the HTML document, the session manager registers it in a
directory. The CGI script now, in addition to changing the document, also informs
the session manager about the change, which then asks all the registered browsers
to reload the page.

This approach to implementing a centralized application offers several advantages
over the X-based one. A web browser does higher-level processing of 1/O, thereby
requiring less communication with the remote master process. In our example,
it provides local processing of scrolling, backspace, and other browser commands,
sending and receiving only the greeting string from the master. Moreover, support
for URLs automates session naming. The browser also provides a standard user-
interface for interacting with applications. Furthermore, we can use a single set of
physical windows created by a particular instance of the browser to interact with
and navigate among multiple application. Perhaps most important, Web browsers
are more portable than X in that everyone (including Microsoft!) has ported it. A
directory of HTML documents can also be associated with access lists describing
the list of authorized users and their passwords. Since an HTML document is stored
as a file in the native OS, all file-based collaboration functions such as concurrency
control can also be used, but these are OS-specific and thus would not be portable.
Thus, we get can combine some of the benefits of schemes based on repositories
and distributed communication.

On the other hand, this approach is far from ideal for developing general collabo-
rative applications. The access-control provided by it is very coarse-grained, it only
decides who can access the document without distinguishing between different kinds



14

of accesses such as read and write. Finer-grained control must be implemented by
the CGI scripts. More important, users cannot receive incremental feedback to (lo-
cal or remote) input, since a form is processed when it is submitted and not as users
make changes to it. For instance, in our application, users cannot see incremental
changes to the greeting made by their collaborators. Conversely, this approach does
not work well when a CGI script needs to make an incremental change in the dis-
play, since a whole new document describing the complete display must be sent to
the browser and processed by it, which makes the interaction slower and causes the
display to flicker. (Current browsers do not calculate the diffs between the original
and new dispays). Since a browser is a high-level I/O package, it cannot create arbi-
trary user interfaces. The non-polling solutions are far from ideal since the session
manager and user agents must be coded using some IPC mechanism, and perhaps
more important, a large number of processes are involved in the communication
of information from a local user to a remote user: the local browsers, the HTTP
server that receives the CGI request, the copy of the server forked to execute the
CGI script, the session manager, and finally, the remote browser. Moreover, if the
CCI supports communication among local processes, then an additional local pro-
cess would be involved. In the X-based solution, only three processes are involved:
the host and the local and remote X servers. If the browsers are implemented on
top of X, then the two X servers would still be involved in the communication.

1.3.6 Java: Code Downloading + Remote Method Invocation. One way to com-
bine the benefits of the X- and Web- based approaches is offered by the Java
object-oriented programming language. An HTML document can refer to a Java
program called a Java applet that is stored at the site of the server managing the
document. When a browser fetches the document, it also dynamically loads the
applet code and executes it. The applet code executes within the context of the
browser, that is, uses, for I/O, a section of the space allocated by the browser to
display the document. Thus, like an X client, a Java applet is programmer-defined
and can create an arbitrary user interface, and like a Web browser, it executes at
the local site. This idea of dynamically downloading code in an I/O package is not
new, and was pioneered (by the inventor of Java) in the Network Window System
(NeWS) [?]. Dynamic downloading of code was also supported in Computational
Mail, as we saw earlier. As we saw in computational mail, downloading and exe-
cuting code from an arbitrary site raises security issues. Java addresses them by
allowing a Java applet to accesses files at and send messages to only the site from
which it was downloaded.

It makes sense to not only download code in an HI'ML browser but also an
HTTP server, as illustrated by the Sun Java HT'TP server, wich is written in Java.
The server is composed of smaller modules, called serviets, each of which serves
a particular kind of browser request. Like applets, user-defined servlets may be
dynamically loaded into the server. When a browser request comes in, the server
determines the servlet that must process it. If the servlet is trusted, then it executes
in the same OS process as the server, but in a separate Java thread; otherwise the
it executes in a separate thread group (OS process?).

A new servlet thread does not have to be forked on each request - once created,
it keeps processing requests until there are no more requests, after which it may



15

be terminated. Moreover, unlike an HTTP server, it can (since it is user-defined)
create state that persists across multiple browser requests. To allow a browser to
name this state, a servlet, like an HTML document or a cgi script, is associated
with a URL, which can be used by the browser to invoke a service in it.

Java programs do not have to be dynamically loaded and executed within the
context of a Web browser or server. Local Java programs can be executed as
standalone Java processes, which, like processes written in any other programming
language, have all rights of the users who create them.

Java also provides a high-level RPC-based mechanism for communication among
arbitrary processes. Traditional RPC executes a global procedure of a remote
process and (implicitly or explicitly) identifies the target process. Java extends this
idea by supporting remote method tnvocation, that is, direct invocation of a method
of an object in a remote process. Instead of identifying the process, the invocation
presents a remote object reference to directly identify the target object, using the
same syntax as a local invocation. A process can register an object it wishes to
export with a Java-provided name server, called a registry, by associating it with
a string name, which can be looked up by some other process to receive a remote
reference to the object.

How should parameters 2 of remote invocations be handled? Traditional imple-
mentations of remote procedure calls do not allow address parameters and make
remote copies of value parameters. Some implementations do allow address param-
eters, but make copies of the referants at the remote site and return pointers to
these copies. As a result, dereferencing the address refers to the local copy and
not the original remote object. Java extends these semantics by sending copies of
parameters that do not implement the Java remote interface and remote references
to parameters that do.) The remote references can be dereferenced to access the
remote objects and not local copies.

Another interesting feature of Java is that if a process does not have the class of a
(copy of or reference to a) remote object it receives from another process, Java will
dynamically download the class into the process, much as it dynamically downloads
applets into a Web browser. Since Java classes are also objects; they can probably
be transmitted explicitly in parameters of methods.

Example: Servlet-based Centralized Version:

This is like the above version, except that we replace the session manager and
CGI scipt with a Java servlet, and instead of invoking the CGI script, the browser
now invokes the servlet. Not sure if form data can be passed to a servlet.

Example: Applet-based Centralized Version: As in the Web-based version,
we define an HTML document for the session, which users load in their browsers
to join the session. Instead of containing a form, it contains a Java applet, which,
like the form, creates a local copy of the greeting, and displays it the user in an
editable text widget. We also create a central stand-alone master Java process at
the site from which the document is loaded. As before, it keeps track of the current
value of the greeting and the users that have joined the session. It exports to the
registry on its machine a session object defining methods for joining/leaving the
session. The applet uses the session object objects to register its local copy of the

2We consider return values to be special cases of parameters



16

greeting with the master and get a reference to the global copy. Both copies define
update methods, which are used to keep them consistent. Thus, on each character
typed by the user, the applet invokes the update method in the global-greeting
object with the local value of the greeting. This update method, in turn, invokes
the update methods of all local-greeting objects. (Later we will see a more modular
Java-based implementation based on the Observer/Observable interface).

Example:Applet and Servlet-based Centralized Version:

This is like the above version, except that we replace the standalone Java session
manager with a Java servlet, and the local Java applets communicate with this
session manager through the server. Not sure if applets can invoke servlet functions.

Example: Replicated Version: It is also possible to use Java to build a
replicated version, but we cannot use Java applets since they can communicate
only with processes at the HI'TP server site. The implementation i1s similar to the
one we saw under interprocess communication except that the local replicas use
the predefined Java registry and Java remote method invocation for IPC. Thus, the
session manager registers a session object with its registry, and the session manager
and the replicas define local copies of the greeting that provide update methods.
The replicas and the session manager to establish connections among their copies
of the greeting objects and use the update methods to keep them consistent.

With its support for remote object references, Java can be considered as a lan-
guage supporting distributed shared memory. However, a remote reference is not
a first-class reference in that it can not be used to access instance variables of the
referant or invoke methods in any interface other than the Java remote interface.
(Perhaps with the Java reflection model this will not be an issue since we could
invoke reflection methods to retrieve arbitrary fields and invoke arbitrary methods.)

1.3.7 Oblig: Network Scopes. Let us now look at a similar language, Obliq [?],
that is closer to supporting distributed shared memory. In Obliq, programs have
nelwork scopes, that is, scopes extending to multiple address spaces/hosts. An
Obliq program starts of in some address space and can send portions of its code to
other address spaces, much as an HI'TP server sends applets to HTML browsers.
The code, however, can be bound to variables at the original site, and these bindings
are preserved when it executes at the remote site, that is, they become remote
references to the values at the original site. As in Java, a distributed name space
can be implemented through a registry - network scopes provide another, more
convenient, mechanism for implementing suc spaces that use a registry only for
bootstrapping purposes.

Also, as in Java, objects may be transmitted to a remote address space as param-
eters and return values of remote method invocations. Obliq distinguishes between
immutable entities such as procedures and mutable entities such as objects. How
an entity is sent to a remote address space depends on whether it mutable or im-
mutable. If it is mutable, then a remote reference to it is sent; otherwise a ” copy” of
it is sent, which may contain remote references to the original site. Obliq constructs
the copy of an object as follows: It determines the graph of nodes reachable from
the object, creates copies of all the immutable nodes in the graph and the links to
them (preserving cycles), and replaces local reference to mutable objects from the
copied nodes with corresponding remote references. Obliq also allows a process to



17

that a copy of a mutable object be sent.

To illustrate how Obliq may be used to create collaborative programs, and also
the nature of higher-level collaboration infrastructures, consider Visual Obliq [?], an
Obliq library for creating a replicated collaborative application. Each replica of the
application creates one or more top-level windows, called forms, for its user. Visual
Obliq allows a user to interactively specify the appearance of forms and attach Obliq
callback procedures to their fields. The library generates Obliq form classes (with
associated form constructors) that implement the form user-interfaces specified by
the user, and also an Obliq session-constructor object for adding new users. In
addition, for each form class, it creates a global session array that keeps track of
the instances of the form created for different users. The application programmer
can augment/modify /subclass the generated code.

Let us say we have created a helloWorld program using Visual Obliq. A user, at
machine jeeves.cs.unc.edu, can create a new instance of this program by typing:

visobliq -run helloWord

A new Obliq process is created, containing all the global entities defined by the
program such as the session constructor and the session arrays for the different
forms. VisualObliq registers the session-constructor under the name ”helloWorld”
with a local registry. It also executes this constructor in the new process, which
instantiates each form of the application by calling its form-constructor procedure,
and adds references to each of these forms to its session array. Thus, this instance
of the program is a “server”, in that creates the global session data, and a “client”,
in that it creates local data to interacts with a user and refers to the global data.

Now another user, say at emsworth.cs.unc.edu can join this session by typing:

visobliq —join helloWorld@jeeves.cs.unc.edu

VisObliq creates a new client at the local site, retrieves a reference to the session-
constructor from the registry at jeeves.cs.unc.edu and invokes the constructor.
The session-constructor fetches copies of all the form-constructor procedures from
the server, invokes them to create new instances of these forms, attaches local
callback procedures to them, and adds (references to) these instances to the global
session arrays stored in the server. Notice that the session arrays do not have to
stored in a registry, they are automatically visible to the procedures copied from
the server.

When a user enters informationin a form, VisObliq invokes appropriate programmer-
defined callbacks procedures attached to the form. A callback can update not only
the local form instance but also the remote instances stored in the session arrays.
For instance, in our example, when a user changes the local greeting, the callback
can access access the references to the remote form instances replicas and update
their greetings fields.

We have seen above how a replicated version of our example can be created using
Obliq and VisualOblig. ® It does not support centralized applications, but Obliq
can be used directly to create such applications. A single copy of each application

3VisualObliq also provides a mechanism for inviting users to a session rather than requiring them
to use the session name to autonomously join the session.



18

form would be stored in the master process, which would invoke remote methods
in the I/O managers to update their displays.

Obliq can be used not only to create migrating applications or agents [?]. A
migrating agent hops from site to site, collecting and processing information at each
site. When it hops to a new site, it brings with it a suitcase containing information
it has collected from the previous sites, receives a briefing from the new site, and
executes a procedure parameterized by these two pieces of information. In fact, we
can formally define the notion of hopping agents in Obliq [?]:

let rec agent =
proc(suitcase, briefing)
(* work at the current site *)

hop (nextSite, agent, suitcase);
end;

Here nextSite is a remote reference to a server at the next site for the agent.
The hop procedure is implemented not as a language primitive but, in fact, using
existing Obliq constructs:

let hop =
proc (agentServer, agent, suitcase)
agentServer (
proc(briefing)
fork(
proc()
agent(copy(suitcase), briefing);
end);
ok
end);
end;

The hop procedure invokes the remote agentServer, passing it a procedure as
an argument. Since a procedure is an immutable object, Obliq passes a copy of
the procedure (and the agent procedure referenced by it) with a remote references
to the local mutable suitcase object bound to it. On receiving this copy, the
remote server executes 1t after passing it the local briefing. This procedure forks a
new process, executes another procedure, while the parent process terminates and
unblocks the caller. Meanwhile, the child process retrieves a copy of the suitcase
and passes it, along with the briefing, to the copy of the agent procedure it received.

Migrating agents could be used for several purposes. They can be used to im-
plement: POLITeam like workflow, taking a form to each user in the routing slip;
computational mail, executing a program mailed to a user at the local site; and
follow a user from site to site. If an agent is interactive, as in the examples above,
it puts the user-interface state in the suitcase, and recreates it on the local display



19

received as a briefing.
Currently Obliq does not support migration of multiuser agents since it does not
maintain connectivity with distributed processes as the agent moves.

1.3.8 Sumatra: Mobile Objects. Migration also in Java though RMI.

Not efficient Not true migration - no redirection of references.

execution engines - Java interpreters.

Object group - I/0 objects not moved but retargetted (suitcase.)

forwarding adrress left and object-moved exception.

Can also create a new thread at remote site a la Obliq. rexec main method. Non

blocking.

Can also migrate thread. - go instruction. stack sent and non object groups.
remote references to object groups.

Code?

send thread code also: expensive, no retargetting.

assume same program all sites- too conservative.

send code from go to all visible gos - gos on control path. compiler support.

send code from go to enabled gos - uses dynamic stack info.

Policy? Application-defined (mobili-aware app.)

Factors:

spatial variations - links with diff. speeds. population variations - users join/leave.
one time placement. temporal variations: link speed changes.

Experiments show: large spatial variations. US hosts: 15 ms to 863ms. Non Us
hosts: 84ms to 4000ms.

Time variation: short-term small jitter. occasional sharp jumps over short time
intervals. in small windows (10 mins): 70-90over one day, mode variation: US
hosts: 500 ms, Non US: 5750ms.

Application can request monitoring of link with specified frequency. Mode of last
10 min window written in shared memory.

Example application:

Centralized: Master migrates. Thread or obj group? remote method vs remote
thread execution.

replicated: session manager. thread or obj group?

Policy: adapttalk - minimize max response time. tradeoff between stability and
good reponse. multiple rounds - decison cycle (50n). win threshold for reponse
(25n). loss threshold (12n).

consider all kinds of variations.

1.3.9 Rower: Disconnected Replicated Objects. While we did see how a repository
can offer disconnected or weakly connected operation, we have yet seen the same for
distributed communication. Rover [?], illustrates a solution for systems supporting
communication of objects. Rover can be considered a cross between Obliq and
Coda: like Obliq it supports user-defined objects and allows them to migrate or
”rove” among computers; and like Coda, 1t supports strongly-connected, weakly-
connected, and disconnected operation.

Rover supports the notion of a relocatable dynamic object - an object that is
managed by some server, called the home server of the object, from where it can
be dynamically relocated to the address space of a client of the server that has



20

established a session with it. The relocation occurs when the client explicitly
imports a copy of the object. The client can now invoke one or more operations
on the local copy, and at some later time, explicitly export the changes back to the
server copy. Thus, this model is based on the explicit check-in/check-out concept
of version control systems rather than the automatic caching scheme of Coda. As
in Coda, the client can explicitly prefetch objects it expects to access (import).

The prefetch, import, and export are executed as remote procedure calls (RPCs)
invoked by the client in the server. Unlike traditional systems, Rover does not
invoke an RPC synchronously, blocking the invoker until the procedure is executed
at the remote site and returned results. Instead, it supports Queued RPC| that is,
unblocks the client, queues the RPC in a stable log at the client site, asynchronously
invokes the operation in the server, and communicates the results back to the client
by invoking a callback.

As in Coda, the scheduled used to process the client operations depends on
the connectivity to the server. In the strongly-connected case, each QRPC can
be sent immediately to the server, in the disconnected case, the RPCs are sent
when connection is next established, and in the weakly-connected case, the cost
of communication and the nature of the queued operation influences the schedule.
Queued RPCs are not necessarily executed in the order in which they are queued.
They can be reordered to let the more urgent operations be executed earlier. A
client associates a QRPC with an urgency or QOS (Quality of Service) parameter
which 1s used to determine how soon that call is invoked. The authors of QRPC
compare this parameter to the different degrees of urgency we associate with postal
mail - ordinary, two-day express, one-day express, and so on. Thus, an import or
fetch RPC can be given higher priority than an export RPC to simulate the Coda
weak-connection policy.

Despite its name, an RDO, does not truly relocate or migrate to the client when
it 1s imported. In fact, it is shared with the client - the import operation creates
a copy of the object, leaving the original copy to be concurrently modified by the
server or imported in other address spaces.

Rover provides several policies to support consistency among the copies of the
object. It allows, copies of the object to be modified concurrently, using a type-
specific optimistic concurrency control mechanism to check for conflicts. We will
look at type-specific CC in more detail later; to give an example — a Queue-specific
CC can allow concurrent queuing operations. In case of conflicts, a Coda-like
conflict resolution procedure can be used to resolve the conflicts - instead of working
on files, 1t would work on objects. To eliminate such conflicts, a shared object can
be locked by a client, thereby preventing the server and other clients from modifying
it. However, as we saw earlier, this policy is suitable only if the the lock holder
is strongly connected. A disconnected or weakly-connected client can reduce the
chance of conflicts by specifying, for a local object, the following consistency options:

— Uncacheable: do not allow the object to be imported. We might associate this
option with an exported object that has not reached the server.

—Immutable: the object is guaranteed to be immutable, so write methods must
not be allowed on the object. Rover, thus, must distinguish between read and
write methods on an object.



21

— Verify-before-use: Before invoking a method on a object, check if the object is
still upto date. (What is the difference between locking an object and verifying
before use?)

— Verify-if-service-is-accessible: Same as before except that the verification is not
done if the cost of communicating with the server is high (more than some spec-

ified threshold).

— Ezpires-after-date: No operations can be performed on the object after a certain
date.

—Service callback: Notify the client if the server object changes. Not sure what
happens if the client is disconnected - doubt that server keeps track of callbacks
1t must invoke.

Some of these options are orthogonal, and users must be able to specify multiple
options simultaneously.

As mentioned before, callbacks are also used to inform applications about the
completion import and export operations issued by them. When an application
invokes an import operation, it specifies the session id, the object id, QOS specifi-
cation, and a callback with the operation. Rover queues an RPC for the operation
and sends it to the server when an appropriate level of connectivity is established
with the server. The server fetches the object and sends it to the client, which
deletes the queued RPC and invokes the application callback.

Similarly, when a client exports an object, it specifies the session and object 1d,
the QOS priority, and a callback. All operations invoked on the object since it was
imported are sent as QRPCs. The server executes them if there are no conflicts or
if conflicts can be resolved automatically (based on an application-provided proce-
dure), sends back to the client an indication of whether the object was updated or
an unresolvable conflict was detected. The client removes the QRPCs from the log,
and 1nvokes the application callback with the values returned by the server. When
a method is invoked on a cached object, i1t is marked as tentatively committed, and
once it is successfully changed by the server, it is marked as commutted. Applica-
tions can inform users about the commitment status of objects so that they know
which values they can depend on. The RPC request and response are split in that
they can be sent on communication links with different properties.

As in Obliq, the importing of an object can trigger the creation of a new, ” agent”,
thread for executing operations on the object. As in Coda, logged QRPCs can be
compressed, but Rover excepts application programmers to provide the compres-
sion procedures. Rover supports both the interactive TCP/IP and batch SMTP
protocols for communication among clients and servers, the choice between them
is based on the QOS desired. Moreover, instead of using TCP/IP directly, a client
can instead use the higher level HT'TP protocol. An object is identified by a URN
(Uniform Resource Name), which is built on top of a URL.

Rover has been used to built several applications, including versions of a mail
reader, calendar scheduler, and a Web browser that do not require strong connection
to the data they access. (The current Web browsers allow users to access cached
data when they are disconnected, what additional facilities can a Rover-based Web
browser provide?).

How well does Rover perform compared to the traditional communication model,



22

wherein no data are cached in the local client, and it manipulates objects by in-
voking operations in the server. Rover can be compared with the traditional model
only when there is some connectivity between the client and server, in case of dis-
connection, it clearly offers access where the traditional model would deny it. In
the connected case, the cost of a QRPC is much more than cost of traditional com-
munication because of the cost of logging the RPC in stable log. A TCP/IP-based
“null” RPC (290-byte request with a 5-byte reply) takes 47 milliseconds, over 10
Mbit/sec Ethernet, whereas using TCP/IP directly takes 8 milliseconds to commu-
nicate the same data. Writing a log entry takes 37 milliseconds, which explains the
difference.

However, every RPC in the traditional model does not have to be correspond to a
QRPC in the Rover model. If an object has been imported in an application, then
it corresponds to a local operation in the application, which takes 3.2 msec for a null
RPC. We need to also consider the time to import/export the object. The time to
export the object from a client to a server machine 1s 59 msec. Once an object has
been exported, it can remain in the client machine, in case the application imports
it again. The cost of retrieving a null object into the address space of the client
from the address space of the system is 7.5 msec, which 1s the cost of a local null
RPC. LRPCs are not implemented efficiently in Rover - hence the high cost. (All
numbers above are for the ethernet case. ) The cost of exporting and importing
objects is, of course, amortized over multiple object invocations.

So how effective is the amortization in real applications. The authors of Rover
did several additional experiments with the applications they build to see overall
interaction times for some user-level actions. For instance, they considered the
cost of reading eight messages in a folder whose total size was 65.4 Kbytes. They
considered several cases, including:

—Strongly-connected remote exmh: remote exmh connected to local X server
through 10 MB/sec Ethernet. Time taken: 0:55 (minutes:seconds).

—Weakly-connected (14.4 Kbit/sec ) remote exmh: remote exmh connected to
local X server through 14.4 Kbit/sec connection. Time taken: 9:08.

—Weakly-connected, local exmh: local exmh connected to remote file system through
NFS running over 14.4 Kbit/sec SLIP connection. Time taken: 2:36.

—Weakly-connected, local Rover exmh: Rover exmh, assuming that folder is not
cached, connected to server through 14.4 Kbit/sec connection: Time taken: 1:34.

—Weakly-connected, local Rover exmh: Rover exmh, assuming that folder is cached,
connected to server through 14.4 Kbit/sec connection: Time taken: 1:06.

—Disconnect, local Rover exmh: Rover exmh assuming that folder is cached. Time
taken: 1:02.

As can be seen, the cost of caching data is indeed amortized in this case but the
strongly-connected exmh gives the best performance.

Ezample-Replicated: An initialization program stores the greeting in some server
and associates it with a URN to be used as the session name. Each user runs an
application that uses the URN to import the object, registers a service callback to
receive updates, allows the user to modify the string, exports it after each change
or when the user saves it - depending on the connectivity, and immediately imports



23

it after exporting it. The service callback is used to update the string with the
new value of the object. If the application is guaranteed to be strongly connected
to the server, it can lock/unlock the string when the user starts/finishes editing it.
Otherwise it can provide a procedure to resolve the conflicts or let the user do so
interactively.

Unlike the other distributed communication schemes we saw above, Rover pro-
vides support for consistency management in the form of concurrency control and
merging. This i1s because it combines features of shared repositories and distributed
communication, like the former it has a notion of shared data (RDOs), and like the
latter, it provides a mechanism for communicating information among different
processes (QRPC). Currently, it does not offer several repository functions such
as access lists and version trees, but these can be implemented in an object-based
repository, as we shall see when we consider object-oriented databases.

Rover’s check-in/check-out model also provides support for isolation: The changes
to imported objects are not propagated to other users until the object is exported.
Moreover, its QRPCs provides some fault tolerance. An RPCs is queued in a stable
log, so if the operation to send it to the server fails (because the client was discon-
nected, for instance) the client will try again until it gets an ack from the server
that the RPC was committed.

However, the support for concurrency control, isolation, and fault tolerance are
somewhat limited. An application must explicitly import, export, and lock objects,
it cannot atomically lock a set of distributed objects, it cannot make certain changes
to an object visible before others, and there is no general mechanism for recovering
from failures in arbitrary operations.

1.4 Argus: Distributed Transactions

Argus [?], also developed at MIT, is an example of a system that addresses these
problems. Like conventional database systems, it supports transactions. Instead
of manipulating relational data in some global database, they manipulate user-
defined data dispersed across multiple, autonomous ”databases” called guardians.
A guardian 1s like a process, module, or monitor in that it 1s associated with its own
address space and exports an interface that can be invoked remotely from another
address space. It extends the notion of a module in several ways.

It can declare certain variables as stable - changes made to these variables are
saved on stable storage. Moreover, its types are atomic - that is, concurrent accesses
to objects of these types are automatically synchronized. Thus, programmers do
not have to worry about synchronization. (This is also the case with monitors, how
is a guardian different?) Argus also allows a process to group together a series of
operations on one or more distributed guardians in a transaction. It allows different
transactions to be executed concurrently and automatically locks atomic objects to
ensures their serialization, that 1s, their execution is equivalent to a serial schedule.
A transaction might commit successfully or abort. In case the transaction commits,
all changes made by the transaction to stable variables are written to stable storage.
In case it aborts, all changed stable variables are restored to the version saved in
stable storage.

A transaction might be decomposed into one or more subtransactions. Like trans-
actions, subtransactions are groups of operations that can execute concurently and



24

are serialized. However, changes made by them are not written to stable storage
unless the top-level transaction commits. Moreover, aborting a subtransaction does
not abort the enclosing transaction, which can try an alternative subtransaction.

Finally, a guardian is associated with a background process that executes when
no other operation is being executed in it.

Ezrample- Centralized case: Like the standard IPC case except that IPC is en-
capsulated in transactions. Thus, an I/O manager sends input to the master in a
transaction, and a master broadcasts the output in same transaction. As a result,
changes to the master are synchronized and a failure to send output to a single I/O
module causes the whole transaction to fail.

Ezxample - Replicated case: Like the standard TPC case, except that a replica cre-
ates a transaction for processing a series of changes from the user and broadcasting
them to other replicas. As a result, if the transaction aborts for any reason, all the
replicas are restored to their original state.

Argus was used to implement the CES editor discussed earlier, and the designers
of CES, while appreciating its automatic support for nested transactions, noticed
an important shortcoming for creating interactive programs: When a transaction
is aborted, any I/O performed by it is not undone. To illustrate why this is a
problem, consider the replicated implementation above, which creates a transaction
to process a series of changes from its user and distribute them to other replicas. To
give the user feedback, the transaction updates the local screen in response to each
user command. Now if the transaction aborts (because it could not distribute the
change to some failed site, for instance) all replicas are restored to their previous
state, thereby ignoring all effects of the user input. But the local display is not
restored.

CES used an interesting trick to address this problem. Here is my impression
regarding how it works: It encapsulated each user-display in a separate guardian
and provides operations to update the display buffer. It also defines a stable lock,
which is acquired at the start of each operation and released at the end of it. It
also defined two non stable variables, action-count and commit-count, which
were incremented at the start and end of each operation. If commit-count was less
than action-count and the lock was not busy, then some transaction that updated
the display had aborted. So the display could refresh the screen from the guardian
that kept its state.

But how does the display discover this condition? Its background process can
poll - but CES provides a more efficient solution. The display guardian also defines
a trigger-queue, into which the background process enqueues itself. When a trans-
action executes an operation is the display, 1t dequeues the background process
after acquiring the lock. The background process then blocks itself waiting for the
lock. When it acquires the lock, it checks for the abort condition, refreshing the
screen in case it holds, and releases the lock. It then goes back and enqueues itself.

There 1s a timing problem here: Between the time the background process was
dequeued and it tested the lock, another process might enter the display and ma-
nipulate an invalid display state. Therefore, every operation checks for the abort
condition before manipulating the display.

A more elegant solution would have been possible if Argus called programmer-
defined abort and and commit handlers for an object when changes to the object



25

are committed/aborted respectively.

1.5 MVC

What if we want: a) user transparency and b) diff views.

Model, View, Controller. Model ;- View: addDependent. Model j- Model:
changed: Aspect, Model j- Controler: app-specific. View |- Model: update: Aspect.
Model | View: app-specific.

Java, similar idea. Observable, Observer.

Now to get distributed protocol. Not so easy - Anshu Problem.

Code application:

Centralized: create central process with multiple views and model.

Replicated: Each replica an observer/dependent of others.

1.6 Rendezvous

Constraints between model and view (dependent).
fonted string.string = model.string
Enforced procedurally in model-aware views and controllers.
What if language offered constraints seprate from depedents.
ALV model in Rendezvous. ALV V = Rendezvous V + C.
one-way, multi-way, two-way constraints.
side effects - for latecomers.
uninitialized vars - data flow approach, waitfor operands.
indirect references - dynamic inheritance, selected objects.
Ultra LWP objects like monitors.
Abstract processes + View processes for fairness.
These enforced
Centralized impl only.
ALV for replicated?

1.6.1 Clock. No side effects.

Pure functional.

Structured objects.

Centralized implem:

root object, Session object, model object, view (component obj)

session predefined: allUsers, userName, userScreen, removeUser, addUser.

root view:

view = Views (map greetingView allUsers)

GreetingView:

view = Window (userName mylId, userScreen myld) (Text greeting) (display text,
TP address, displayView)

key KeyCode = modifyGreeting KeyCode.

GreetingModel:

greeting = this. modifyGreeting KeyCode = save (new greeting) initially = save
"hello world”

Program consists of hierarchical components.

Root view.

View components have display = view + controller.



26

Model: request method 4+ update methods.

Hierarhical scopes: scopes uses IS-PART-OF relationship. messages can only be
sent to parent. constraints flow downwards. so no cycles.

support for transactions: user actions create a series of threads. user actions
oredered - orders their threads - orders accesses to resources. server-based locking.

Views execute in local processes.

Distribution schemes:

Naive:

change, notified, request, response.

Request Cache:

cache responses. if cached value not changed - use cache.

server invalidates cache based on dataflow techniques. seven times improvment.

Request Prefetech:

get all invalid values in batch. speedup 1.5 to 5 times.

Request Presend:

Server remembers which values requested by each view. sends these values when
it invalidates: 2 speedup.

1.6.2 MUDS: Room-based sesston man.

1.6.3 Colab Programming Environment: Broadcast Methods. Replicated WYS-
INWYS

1.7 Shared User Interfaces

1.7.1 GroupKit: Sharedd Environments etc. broadcast methods - notification.
multicast rpcs.
lexible session mgmt.

1.7.2 XTV: Shared Windows. Colab Transparency.
1.7.3 Concur: Inverted X
1.7.4 DistView: Rep. Window System
1.7.5 Suite: Parameterized Flex.
1.7.6 Feiner’s System (Meehan)
1.7.7 Cola: Haake (Rusev)
1.7.8 Suite: Persistent Uniz Objects. Send to later.
1.7.9 MMConf: Replicated Windows
1.7.10 DistView
1.8 Multiuser Toolkits
1.8.1 Sync: Disconnected Operation
1.8.2 Brown’s Stuff

1.9 Inter-Application Coordination

1.9.1 Intermezzo



27

1.9.2 Object-Oriented Database Management System. Maybe this comes at the
very end.

1.9.3 Oz
1.9.4 Trellis

1.10 Interoperability
1.10.1 Message Bus
1.10.2 CORBA
1.10.3 Polylith



