
� �

CS ���� Collaborative Systems �

Section �� Collaborative Infrastructures

Prasun Dewan

�� COLLABORATIVE INFRASTRUCTURES

In the previous section� we discused collaborative applications� that is� collaboration
systems that provide end�users with some functionality to collaborate with each
other� In this section� we will discuss collaborative infrastructures� that is� software
systems that provide programmers with abstractions to implement collaborative
applications�
Because of the diversity in collaborative applications� none of the collaborative

infrastructures that have been developed so far is suitable for� or even capable of�
implementingall of the collaborative applications we studied in the previous section�
As a result� a large variety of infrastructures have been developed for implementing
di�erent kinds of collaborative applications� In fact� there may be more diversity
in the collaborative infrastructures than in collaborative applications�
Therefore� when we study a collaborative infrastructure� we will look at the fea�

tures of collaborative applications it can support� thereby evaluating its �exibility�
Another criterion for evaluating an infrastructure is the automation it o�ers� which
measures the amount of e�ort required to implement functions it �supports�� We
will distinguish between two basic ways to support some function� enabling� which
simply allows the implementation of the function� and automating� which relieves
programmers from implementing how the function is implementing� requiring them
to only specify what they want� To understand the di�erence between these two
forms of support� consider an assembly language� Pascal� and C� Pascal automates
record management but does not enable interrupt handlers since it does not allow
access to hardware registers� An assembly language enables both record manage�
ment and interrupt handlers� while C automates record management and enables
interrupt handlers� It is similarly important� in collaborative infrastructures� to
provide a �ne balance between automating and enabling� It is also important to
o�er space and time e�ciency� another evaluation criterion we will use� Finally� we
will look at the amount of reuse of existing systems supported by the infrastructure�
Dividing collaborative systems into applications and infrastructures is a simple

but coarse classi�cation scheme� since some systems have characteristics of both�
Consider ClearBoard�	� which provides a shared whiteboard and video overlays�
While the former is a speci�c application the latter is a general abstraction that
can be used to provide face�to�face awareness in arbitrary shared applications� Sim�
ilarly� the mail system can be considered an application since it directly interacts
with the end user� and also an infrastructure since it provides a portable method
for communicating information between arbitrary distributed applications� In gen�
eral� a software system can be divided into may layers and a higher�level layer is
an �application� for infrastructure layers below it� It is perhaps not surprising
that kernel
OS researchers would regard most of the systems we discuss below as
applications� They have been classi�ed as infrastructures since each of them needs
at least one layer above to interact with end�users� Later� we will look at their

�Copyright by P� Dewan� All rights reserved�

� �

positions in a layered collaboration architecture�

��� Example� True �Hello World� Program

To understand and evaluate these systems� we will discuss how they may be used to
implement a simple collaborative program� The program is a variation of the true
�hello world� example of ���� which says hello truly to the world� The �world�� in
this case� is a set of users interacting with the program� We allow a user to change
the initial greeting of the program� which is then shared with the remaining users�
We leave out many details of the application such as when a change is propagated
to other users� or whether there is any concurrency control� How we will handle
these issues will depend on the capabilities of the infrastructure � we will discuss
solutions that are possible and easy to implement using that infrastructure� When
it is really easy to do so� we will look the exact code required to implement the
application otherwise we will simply sketch the solution�

��� Shared Distributed Repositories

��	�� File System� Coarse�grained Data� Given a �le system shared by multiple
processes� here is a general scheme for developing a collaborative application� For
each user interacting with the application� we create one or more processes that
interact with the user� and linking among the users is implemented via one or more
�les shared among these processes� A �le may directly store binary representation
of shared data or a textual representation of it� It may be created by one of the
user processes or by a special process executed before any user accesses it�
Example� A special initializer program is executed with the session name as an

argument�

session �name ourHelloWorld

The program creates a greetings �le called helloWorld and initialize its contents
and access list�
To join the session� another user can execute the helloWorld program�

helloWorld �join ourHelloWorld

This program is an editor that allows its user to view and change the greeting
stored in the �le� Several variations of it are possible� The simplest approach is for
it to provide users with explicit commands to load
store the greeting in the �le�
Instead of requiring the user to explicitly load a new greeting� it can periodically
poll the �le� Instead of requiring the user to explicitly store a new greeting� it can
automatically store the greeting on every character� Moreover� instead of writing
directly to the shared �le� it can create a separate version� and always read the
latest version of the �le� It can check�out a version in the locked mode to prevent
con�icts� Otherwise� it can use merge facilities to combine two versions that were
concurrently modi�ed�
There are several advantages of using a �le system for implementing collabora�

tive applications� A �le system automates the implementation of persistence� access
control� and concurrency control� Moreover� in artifact�based collaborative applica�
tions supporting implicit sessions� the naming scheme provided by a �le system can
be used as a basis for naming sessions� thereby automating details of hierarchical

� �

names� symbolic links� and other rich concepts provided by modern �le systems�
Furthermore� �le�based version control systems automate the creation of multiple
versions of shared data and the di�ng and merging of these versions� Finally� �le
systems also come with programs that provide e�cient searches of textual data�
However� in comparison to some of the other infrastructures discused below� a

�le system has four main disadvantages� First� a processes must poll the �le to
determine if it has been changed by some other process� Since a high polling fre�
quency �e�g� � seconds� can severely degrade the system performance� this approach
is not suitable for real�time collaboration� This is a problem in all systems that
facilitate sharing through passive repositories of data� Later we will look at several
examples of active repositories� that is� repositories that allow user�de�ned triggers
to be associated with updates to the data�
Second� a �le resides primarily on disk� and thus communication between pro�

cesses can involve potentially costly disk accesses� This problem is reduced but not
eliminated by caching� which makes this technology further unsuitable for real�time
sharing of rapidly�changing state such as scrollbar and pointer positions�
Third� a �le system automates a small subset of the functions of a collaborative

application� For instance� while it enables �non real�time� coupling� the programmer
is responsible for implementing the details of depositing and fetching data from the
�le� Similarly� it does not provide automatic support for undo� Later we will look
at systems that make application programmers totally unaware of these functions�
Fourth� a �le system provides coarse�grained units of data� and functions such

as concurrency and access control that operate on these units cannot be used di�
rectly by all applications� For instance� applications that need di�erent records
of a bibliography to be associated with separate locks must implement their own
concurrency control�
Finally� this approach to developing collaborative applications does not work if

the collaborators do not share a �le system� Thus� it is not suitable for wide�area
collaboration�

��	�	 Traditional DBMS� Fine�Grained Data� The last problem is addressed by
a traditional �relational� database management system� It also provides a persis�
tent� disk�resident repository of shared data but the persistent data are relations
of records instead of �les� To create a collaborative application� we simply have to
replace the shared �le with a shared database� which would now provide the linking
among the processes interacting with the user�
Example� Same as the �le case except that� We replace the �le with a relation

of strings in which we store a single record to hold the greeting� An application
program uses a query language to insert� modify� and select that record� Since
traditional relational databases �x the size of a record� application programs would
need to pad
truncate user input�
A DBMS can discriminate among the di�erent records and �elds of a database�

and can thus provide a �ner granularity of sharing� protection� and concurrency
control� In particular� it can automate the locking semantics of the bibliography
application� In fact� concurrency control schemes in DBMS are more sophisticated
than those developed for �le systems� providing support for atomically executing a
transaction on multiple objects� In contrast� a �le system requires users to explicitly

� �

lock
unlock all �les that an operation must modify and provides no support for
atomicity� Later� we will study the subject of concurrency control in more depth�
Another strength of a relational database system is the powerful predicate�based

query language it provides for e�ciently searching through large amounts of data�
The language is particularly useful for searching for awareness information and
the status of a shared artifact or a collaboration task� For instance� it automates
queries to �nd all collaborators at a particular location� all talks scheduled within a
particular time range� all work�ows that are not complete� and all procedures mod�
i�ed by a user� The cost of manually programming such queries in a collaborative
application can be high ����
On the other hand� it has the problems of passive disk�resident repositories� An

additional problem is that a database system and the processes that access it typ�
ically use di�erent representations of data� As a result� a DBMS forces its clients
to convert between di�erent representations of data� which is referred to as the
impedance mismatch problem ���� Impedance mismatch makes the overhead of de�
veloping collaborative applications high since programmers must write translation
code that converts between the di�erent representations� It also increases the re�
sponse time of the applications because of the overhead of executing the translation
code at runtime� Impedance mismatch is also a problem in single�user applications
that use the database to store their persistent data� It is a more severe problem in
multiuser applications developed using this approach� since they use the database
to also store shared� possibly non�persistent� data such as a scrollbar position or
the list of users in a session�
Thus� a DBMS is even less suitable than a �le system for supporting real�time

collaboration� Impedance mismatchwould also occur in the latter if a textual rather
than directly binary representation of data is stored in a �le� However� even in the
case of text �les� all information about an application data structure such as a
parse tree can be stored in a single� variable�length �le� In the case of a traditional
DBMS� such a data structure would be spread out in multiple �xed�size records
and costly joins would be required to fetch and store all of these records ����

��	�� Lotus Notes� Rarely�Connected Document Replicas� Lotus Notes ��� pro�
vides a storage structure� called a document� that is a mix between database records
and �les� Like a database record� it can contain �ne�grained� �xed�length �elds of
prede�ned types� and like a �le� it can store variable�length data of prede�ned and
programmer�de�ned types� In particular� it can contain variable�length strings for
storing document text� Thus� Notes documents� like mail messages in Information
Lens� are semi�structured� In fact� one of the most popular applications of Notes is
Notes Mail� which stores mail messages as semi�structured documents and provides
various schemes for sorting them� Notes provides a uni�ed framework for processing
mail messages and other documents� For instance� the same program can be used
to browse through messages and other documents� and any document can have a
�response� linked to it�
Notes is an example of a replicated storage system� that is� a system that creates

multiple replicas of a data structure on di�erent sites and ensures consistency of
these replicas� Creating a replica at a site promotes fault tolerance� and more
importantly� allows read operations to be resolved locally without requiring any

� �

distributed communication�
The write operations are more complicated since they need to propagated to all

replicas to ensure consistency among them� Traditional replicated �le and database
systems ensure a strong immediate consistency model� that is� update all �or at least
a quorum� of the replicas when a write operation commits at the local site� Notes�
like the News application we saw earlier� supports a weaker eventual consistency
model� that is� ensures that if all update activities stop the replicas will converge
after a �nite amount of time�
The mainmotivation for supporting eventual consistency in News was the number

of sites involved � news postings would become unbearably slow if we had to commit
the posting to all replicas� This is also a motivation in document databases� but
perhaps a stronger reason is a rarely�connected computer� that is� a computer such
as a laptop that is more often than not disconnected from other computers� To
allow the user of such a computer to access data in the disconnected state� we
would like to create local replicas of shared document databases but cannot ensure
immediate consistency of a write operation� Instead� we would like to allow the user
to proceed with other operations� and propagate the results of these later when the
computer connects to others�
Like News� Notes supports a decentralized consistency scheme wherein pairs of

computers exchange changes to their documents� Each computer knows about one
or more other computers or peers that store replicas of the local databases� At some
point� it can �replicate� with a peer� when it does a ��way pull of changes from the
peer� �The peer can simultaneously pull changes from the local computer�� A user
can manually ask for immediate replication with a peer� Moreover� a replication
schedule �speci�ed by the system administrator� can trigger automatic replications�
The source and destination computers have autonomy over what parts of their

replicas are sent and received� respectively� The source computer sends only those
documents parts to which the destination computer has write access� Moreover� it
determines if deletions and old changes are shared with the destination� Conversely�
the destination receives only those document parts to which the peer has write
access� Moreover� it can specify the types of data it should receive from the source�
It can also specify also queries dynamically selecting the the database parts it wants
replicated� Finally� it determines if changes to access�control lists and replication
parameters associated with a database should also be received from the source�
Notes provides an automatic scheme for merging the destination replica with the

source replica� It associates objects with timestamps� and replaces an older version
of an object with a newer object in the source� Like News� it merges simultaneous
additions to the database by performing both operations� Concurrent updates to
the same document is hard to resolve and Notes simply creates both alternatives
as parallel versions� leaving the user to choose one of them� One of these versions
is made the primary document and the other is made a secondary �response� to
it� News does not have to address the concurrent update problem since users can
simultaneously update a News message� though they can simultaneously add two
messages to a bulletin board� As we shall see soon� the merge problem is addressed
in several other systems� and we shall address it in�depth later�
Example� Same as the database case except that� We create a document with

a variable length text �eld instead of a database record� Also we can create a local

� �

replica of the document and operate on it in the disconnected mode� In particular�
we can modify it in this mode � If we want automatic noti�cation of changes to a
greeting� then a system administrator must de�ne a replication schedule � otherwise
we explicitly replicate to exchange changes� If both computers have simultaneously
changed the greeting� then one of the greetings will be made a response to the
other� If we want to receive but not transmit our changes to the greeting� then we
give others write access but not read access to our replica�
Notes is useful not only for merging replicas modi�ed by di�erent users but also

those owned by the same user as he moves among workstations �e�g o�ce and home
computers�� In fact� the merge problem is much easier in this case� since concurrent
changes are never made to the replica�

��	�� Coda� Multiple Computer Couplings� So far� we have seen systems designed
for for two forms of networks � the traditional strongly�connected networks in which
disconnection of a computer is an exception� and rarely�connected networks in
which the reverse is true� In the former� the exception occurs when a computer
fails while in the latter it occurs when it replicates or merges its changes� Coda ��
�� is designed for hybrid networks in which a computer may be strongly�connected�
rarely�connected� or weakly�connected� that is� connected to the network through
an expensive low�bandwidth connection such as a cellular connection� Instead of
creating local replicas� Coda creates a local cache of data� The semantics of �le
operations issued by the computer depends on its connection to the network�

When a computer is strongly�connected� it caches data accessed by it and im�
mediately propagates the results of local operations to all other strongly�connected
computers� which can refresh their local caches� Thus� if all computers are strongly�
connected� strong immediate consistency is maintained among the caches� When a
computer is disconnected in the rarely�connected mode� it allows the user to perform
local operations on the cached data and propagates the results to other computers
when it is next connects to the network� It cannot� however� provide access to data
that are not cached� When it is weakly�connected� it loads the cache with data
not stored in it� but does not immediately propagate changes to other computers
to save on communication cost� It logs �and compresses� local changes and uses
�trickle re�integration� to asynchronously send them in batch to the server� More�
over� it does not receive updates made by strongly�connected computers� thereby
not impeding their progress� It receives remote changes when it is next strongly
connected� �Why not receive them in trickle reintegration coming the other way��
Coda has experimented with several approaches to merging cached and server

copies of the �le system� In an early version� it automatically merged certain kinds
of changes� For instance� like Locus� it automatically merged concurrent insertions
of new objects in a directory� For other changes� it required manual merging� For
instance� if two users concurrently change the same �le� it required them to man�
ually merge the changes� However� this approach was too conservative when the
users had changed independent parts of the �le� some changes were automatically
res Therefore� Coda now allows a programmer to provide an application�speci�c
program for merging versions of a �le� For instance� a programmer of a calendar
application can provide a program for merging concurrent operations to a calen�
dar �le based on the slots that were modi�ed � if the slots are di�erent then it

� �

combines the two changes� otherwise it makes an arbitrary choice or asks for user
intervention� Thus� unlike Notes� Coda gives the application programmer control
over how merging is done� Because of the large granularity of the data it manages
��les
directories�� there is more need for this feature in Coda�
Another di�erence is that it uses a more centralized approach for maintaining

consistency� Data are stored in a �possibly replicated� server and caches of these
data are stored in local clients� When a strongly�connected client invokes a �le
operation� it makes a call in the server to update the server copy of the �le� The
server� in turn� propagates the results in all strongly�connected clients by invoking
callbacks in them� When a disconnected or weakly�connected wishes to integrate�
its cache is merged with the server copy� and any updates to the server copy are
transmitted to other strongly�connected clients through callbacks� Thus� clients do
not do pairwise merging as in Notes � instead they merge with each other through
the server�s�� Replicated servers maintain consistency using another algorithm that
assumes strong�connection among them�
Example� It is programmed as in the �le case except that the programmer writes

an application�speci�c merge procedure� which can� for instance� concatenate the
con�icting strings� pre�xing each string with the name of the user who entered
it� The behavior of the application would be di�erent in that it users would be
able to use it in the disconnected and weakly connected modes� Of course� in
the disconnected mode� they would not receive or transmit updates while in the
weakly�connected mode they would not receive updates� and local changes would
be trickled asynchronously in batches to the strongly�connected users�

��� Distributed Communication

����� Interprocess Communication� Instead of communicating through a reposi�
tory� user processes can directly exchange information with each other using some
form of interprocess communication �IPC�� Several forms of interprocess commu�
nication have been developed ranging from simple message passing to remote pro�
cedure call� We do not distinguish among them here unless necessary� We assume
that they enable a process to communicate data to another process� allow a process
to declare its intention to get data from multiple processes� and notify a receiving
process when the data arrives� either by unblocking the receiver if it is waiting or
invoking an asynchronous callback� if it is not�
Interprocess communication allows programmers to implement collaborative ap�

plications in arbitrary ways� There are two main approaches we can use when
trying to code such applications�

�Replication� Implement as much of the application functionality as possible at the
local workstation of each user� thereby creating an application replica at each site�
It is not possible to implement the complete functionality at the local workstation
since linkage between users implies that there has to be some communication
among their replicas� Moreover� these are not true �replicas� as as the linkage
between users may not be WYSIWIS�

�Centralization� Implement as much of the application functionality as possible
in a single� master� process executing at some central site� It is not possible to
implement all of the application functionality in a central site� since some code

� �

must be executed at the local site to display output on the local workstation and
receive input from it� In general� the extent of this code depends on the I
O
package used by the application programmer to �e�g virtual terminal package�
curses library� window�system� toolkit � interact with a user� Assuming that the
I
O package allows a process to interact with a single user� we would have to
implement a separate I�O manager� for each user� which would interact with
the user through the I
O package� It would receive input from I
O package and
transmit it to the master and� conversely� receive output from the master� and
give it to the I
O package�

In both cases� we would need a session manager responsible for allowing users
to dynamically join and leave the conference� and a name server responsible for
associating session managers with session names� Moreover� we would user IPC to
communicate among the various application processes�
We will compare these two approaches in depth later � for now it is enough to

assume that the centralized application is easier to implement while the replicated
application gives better interactive performance by localizing the processing of op�
erations� Here we present them mainly to show some of the ways in which IPC can
be used in the construction of a collaborative applications�
Example�Replicated Case� As in the previous cases� a process or replica is

created at the local workstation of each user� which displays the greeting string
and allows the user to edit it� Also we create a session manager� which creates the
session and keeps track of all the replicas and the current value of the greeting�
A user creates a new session by invoking the session manager� giving it the session

name�

session �name ourHelloWorld

The session manager registers under the session name with a name server� When
a user joins the session�

helloWorld �join ourHelloWorld

the new replica uses the name server to lookup the session manager� registers itself
with the session manager� looks up the current greeting and replicas registered with
the session manager� and informs the replicas that it has joined the session� On
each keystroke� a replica uses the IPC mechanism to send the input character to
all other replicas and the session manager� which immediately modify their local
strings and update the screens� �Could we have done without the session manager
process��
Example�Centralized Case� A single master process is started at some central

site�

helloWorld �name ourHelloWorld

which creates and initializes a single copy of the string and registers itself with a
name server� To join the session� a user invokes an I
O manager�

join �name ourHelloWorld

� �

which uses the name server to contact the master and registers itself with the
master� The master processes input messages received from di�erent I
O agents
in the order in which it receives them� updates the string� and broadcasts the new
value to all of the agents�
An IPC system does not have the drawback of disk�resident data� Since we

assume that it noti�es processes when messages arrive� w it does not have the
problem of polling� If it supports communication of only simple types such as
strings� then it does su�er from the impedance mismatch problem� since structured
types must be converted to
from the simple types� Some IPC systems do allow
processes to exchange values of arbitrary types ���� doing automatic marshalling
and unmarshalling of data� and thus� do not su�er from this problem�
On the other hand� these bene�ts come at the cost of several drawbacks� An IPC

mechanism does not know which parts of the communicating processes� state are
shared or persistent data structures and simply provides a high�level scheme for
communicating information� As a result� it cannot automatically o�er persistence�
concurrency control� access control� versioning� merging� or querying� which have to
be implemented by the application programmer� It also does not automate session
naming� which must be implemented by a separate name server� Another important
drawback of this mechanism is that it require a process interacting with a user to
be agent aware� that is� aware of the identities of processes �agents� interacting
with other users� In the centralized case� the master process is aware of all the I
O
agents� while in the replicated process� each replica is aware of other replicas� As
a result� the programmer of a process must write code that reacts to a new user
joining and leaving a session� The repository�based approaches have none of these
drawbacks�

����	 ISIS� Process Groups and Causal Multicast� ISIS ��� illustrates how the
peer awareness problem can be addressed� The system can provide the abstraction
of a process group� which processes can join or leave and allows a process to mul�
ticast a message to a whole process group� The tasks of managing memberships of
process groups and multicasting to them� thus� is the task of the system� thereby
making individual processes peer unaware�
Example�Replicated Case� As in the previous cases� we create a central ses�

sion manager and replica on the workstation of each user� Instead of expliciting
sending a new string value to each of the other user processes� a replica sends the
message to a process group including the session manager and all replicas� The
session manager creates the process group and initializes the string� each replica
contacts it for the process group id and the current value of the string�
Example�Centralized Case� The single master process now creates a process

group including all I
O agents and multicasts it output to this group�
Consider a tricky issue in message delivery that we have so far ignored� Sup�

pose a process receives two messages� m� and m	� that are causally related� that
is� one of these messages� m	� would not have been sent had the other message�
m�� not been sent� In our example� that may happen if m� initializes an erro�
neous string �insertAt� � str� �helo world��� and m� contains an edit to
the string �insertAt� � str� �l��� To preserve the semantics of the interac�
tion� we would want the IPC mechanism to ensure that the cause �m�� is received

�	 �

at each process before the e�ect �m	��
Of course� a general purpose IPC mechanism does not know what the messages

are about� so it can never know the causality relationship among the messages�
But it can take a conservative approach to ordering messages by making two as�
sumptions� ��� If a process sends two messages� m� and m	� in succession� then the
�rst message� m�� is a cause of the second� m	� �	� If a process sends a message�
m	� after receiving a message m�� from another message� then message received�
m�� is the cause of the message sent� m	� Stream�based protocols such as TCP
IP
provide support for the �rst� intra�process� ordering� They are su�cient to support
applications such as the centralized example above� where only one process is mul�
ticasting to the group� ISIS takes this idea a step further by also supporting the
second� inter�process� ordering of messages� thereby supporting applications such
as the replicated example above� where more than one process multicasts messages�
For this reason� the multicast it supports is termed as causal multicast�
Causal multicast ensures that each process in a multicast group receives a cause

before an e�ect� However� it does not ensure that each process in the group receives
the set of multicast messages in the same order� In particular� two messages are
multicast concurrently �that is� one message is not a cause of the other�� then mem�
bers of the multicast group may receive them in di�erent orders� Continuing with
the repl� if two users concurrently change the string to �hello world� and �goodbye
world� respectively� then some users would see the �rst one as the �nal value and
some the second one� Thus� causal multicast su�ces as long the application en�
sures �by providing an appropriate concurrency control protocol� that concurrent
messages never con�ict with each other� For applications that cannot provide this
guarantee� ISIS also provides a stronger version of causal multicast� called atomic
multicast� which ensures processes in a process group see multicast messages in the
same order� In general� an atomic multicast may not be causal� though in the case
of ISIS it is�
ISIS was designed mainly to support replication of applications for fault tolerance�

However� as we have seen above� it can also support replication for good interactive
performance in a collaborative applications� For this reason� some collaborative
applications such as the MASSIVE ��� VR system have used it for multicasting
messages� However� this multicast is not ideal for all collaborative applications� for
two reasons�
First� causal multicast may be too conservative for messages that commute with

each other� Consider a replicated implementation of a GROVE�like structured
outline in which the replicas exchange �ne�grain updates with each other� that is�
describe an edit in terms of the smallest structure that changed rather than the
whole bu�er� In this situation� changes to di�erent parts of the structure would
commute with each other� For instance� the edit� section� � insertAt� �

str� �hello world� would commute with section� � insertAt� � str�

�goodbye world� � Even if the �rst change caused the other� there is no harm done
in processing it after the second one� Thus there is no advantage in using ISIS�s
implementation of causal multicast� On the other hand� there is a disadvantage in
using it� since it delays a message until all of its predecessors are received� thereby
giving poorer response�
More important� causal multicast is too liberal when concurrent messages con�ict

� ��

with each other� that is� do not commute with each other� Such con�icts would
occur in an application such as Grove that does not provide concurrency control�
and even in applications that provide �ne�grained concurrency control but exchange
large�grained updates� Consider again the replicated implementationof a Grove�like
editor but this time assume that changes are communicated in terms of the whole
bu�er� In this case� even if the editor ensures that two users do not concurrently
edit the same section� since edits that changes the bu�er length �e�g insertAt � str�
�hello world� insertAt� ��� str� �goodbye world�� have con�icts� In cases such as
these� causal multicast is not su�cient� and what we want is atomic multicast� But
implementations of atomic multicast must serialize concurrent messages through a
central process� thereby reducing the performance bene�ts of replication� For this
reason� some applications such as Grove use application�speci�c optimistic schemes
for ensuring consistency� Centralization is less of an issue in systems in which
replication is introduced for fault�tolerance rather than performance�

����� MBone� Network Multicast� In ISIS� Multicast is supported in the library
layer� It can be supported in lower�level layers to give better performance� In
particular� if it is supported in the kernel layer� then it is su�cient to make a
single kernel call to multicast a message to a process group and if it is supported
in the network layer� then it may be su�cient to send a single message along a
network link to multicast the message to multiple processes connected by the link�
For this reason MBone ��� �Multicast backbone� provides network�level support
for multicast� Multicast messages are targeted at special IP addresses that are
associated with groups of hosts�
The saving in kernel calls and network messages is particularly important for

scalable video conferencing� which must send large number of large messages to a
large number of sites� MBone has been designed for such applications and includes
an interesting set of applications for making distributed presentations including
audio and conferencing tools and a whiteboard application� All of these tools are
scalable in that they have been used by hundreds of users�
Reliability in scalable multicasts can be a tricky issue� In many reliable unicast

protocols such as TCP
IP� the sender is responsible for ensuring that the message
is delivered to the receiver by waiting for a positive ack from the latter� This is
not a good approach in scalable multicast� since it puts an undue burden on the
sending site� which must wait for a large number of positive acks� It is better to
use to make each receiver responsible for ensuring reliability by sending negative
acks in case messages are lost�
Wb ���� an Mbone shared whiteboard� illustrates another use for negative acks

in a replicated implementation of a collaborative application� It uses them for sup�
porting dynamic addition of users in an ongoing collaborative session� the replicas
created for these users simply send negative acks to receive the current state of
the conference� They do not have to� as in our replicated implementation of the
example� send application�speci�c messages requesting the current conference state�

����� X� Network I�O� Consider now the centralized I
O agent�based implemen�
tation of a collaborative application� There is an unnecessary level of indirection
here� the I
O agent does no more than forward requests to the local I
O package�
Moreover� the master process and I
O managers are responsible for encoding the

�� �

I
O calls as messages of some IPC mechanism� This indirection and use of an IPC
mechanism would not be necessary if the application could use �directly or indi�
rectly through a toolkit� an I
O package that provided a network interface� that is�
allowed a remote application to directly invoke its functions� and if an application
could concurrently interact with multiple I
O packages on di�erent workstations�
The X window system ��� is perhaps the �rst I
O package to o�er such an

interface� An X client can open connections to one or more X servers� Each X
server runs on a workstation and allows its clients to perform window�based I
O on
that workstation� It receives messages from X clients in the form of X requests and
sends messages to them in the form of X events� An X request from a client asks
the server to create a window� map it on the screen� draw text in it� or perform
some other output task on the screen� An X event to a client informs the client
about keyboard presses� mouse movements� and other input actions of the user�
The X window system is �almost� portable in that it has been accepted by a large
number of vendors� �Almost� because Microsoft decided not to adopt it�
Centralized Example� As before� we create a master process� which now in�

teracts with the users of the collaborative application by directly communicating
with the X servers managing their workstations� Instead of invoking I
O managers�
they invoke special join processes whose sole job is to inform the master process
about the identities of their X servers�
This implementation is certainly easier to code and more e�cient than the cen�

tralized implementation we saw before� However� it is not without disadvantages�
The application programmer must still implement a program used to join the ses�
sion� which involves using some IPC mechanism to communicate with the master
program� More important� a larger amount of information is communicated from
the master to the workstations� since� in comparison to high�level requests
events�
low�level requests
events are typically larger in number and size� X was designed
for high�speed local area networks� and is thus not ideal for wide�area� real�time
collaboration�

����� Web Browsers� High�Level Network I�O� So what we would like is a higher�
level I
O package that� like X� is portable and o�ers a network interface� A Web
browser ���� in fact� is such package� It is not a typical �I
O package� in that a
remote process does not execute output procedures to display information� instead
it sends documents or pages describing the display layout in HTML �HyperText
Markup Language�� An HTML document is stored at any internet site and is
managed by an HTTP �Hyper Text Transfer Protocol� server at that site� It is
associated with an internet�wide name called URL �Universal Resource Locator��
which identi�es the server managing it� A browser can request a document from
any server by sending it the URL of the document�
An HTML document may include a directive to periodically load a particular

page� More important� it may display not only hyperlinked static text� but also
dynamic forms for sending input to remote procedures� A form contains interactors
�or widgets� such as text items� menu choices� sliders� and nested forms for entering
input values� It is also associated with a remote callback called a CGI �Common
Gateway Interface� script� The script is invoked when the user submits the form
and receives as parameters the input values entered in the form� In response� it

� ��

sends the browser an HTML document describing the new display� A CGI script
is associated with a URL and is executed by the HTTP server that manages it�
There are� of course� many �avours of browsers and servers� but all of them must

support the currently accepted HTML and HTTP� respectively� though they can
provide their own extensions� Of particular interest to use are browsers that provide
a CCI �Client Communication Interface�� Such an interface� typically� allows some
other� possibly local� process to both monitor and invoke actions of the browser
such as loading of a new page�
Centralized Example� We de�ne an HTML document for the application�

whose URL serves as the session name� Users join the session by loading this
document in their browsers� The document displays a form containing a text item
showing the greeting� A users may edit and submit the form to change the greeting�
The CGI script invoked to process the form changes the greeting �eld in the HTML
document and asks the browser to reload this page�
How do other users view a change to the greeting� The simplest approach is

for user to explicitly reload the document to see the current value� Instead of
making the user poll for the new value� we can specify in the document that the
browser should automatically poll for it� These are essentially the user�interfaces
we saw in the repository�based solutions� Implementing a non�polling interface is
more di�cult but possible if the browser provides a CCI interface� At the server
site� we create a session process responsible for notifying browsers of changes to
the HTML document and monitoring its loads� �If CCI allows only local processes
to talk to a browser� then we need to create� for each browser� an additional local
process connecting it to the session manager�� as that user�s surrogate� When
a browser �rst loads the HTML document� the session manager registers it in a
directory� The CGI script now� in addition to changing the document� also informs
the session manager about the change� which then asks all the registered browsers
to reload the page�
This approach to implementing a centralized application o�ers several advantages

over the X�based one� A web browser does higher�level processing of I
O� thereby
requiring less communication with the remote master process� In our example�
it provides local processing of scrolling� backspace� and other browser commands�
sending and receiving only the greeting string from the master� Moreover� support
for URLs automates session naming� The browser also provides a standard user�
interface for interacting with applications� Furthermore� we can use a single set of
physical windows created by a particular instance of the browser to interact with
and navigate among multiple application� Perhaps most important� Web browsers
are more portable than X in that everyone �including Microsoft�� has ported it� A
directory of HTML documents can also be associated with access lists describing
the list of authorized users and their passwords� Since an HTML document is stored
as a �le in the native OS� all �le�based collaboration functions such as concurrency
control can also be used� but these are OS�speci�c and thus would not be portable�
Thus� we get can combine some of the bene�ts of schemes based on repositories
and distributed communication�
On the other hand� this approach is far from ideal for developing general collabo�

rative applications� The access�control provided by it is very coarse�grained� it only
decides who can access the document without distinguishing between di�erent kinds

�� �

of accesses such as read and write� Finer�grained control must be implemented by
the CGI scripts� More important� users cannot receive incremental feedback to �lo�
cal or remote� input� since a form is processed when it is submitted and not as users
make changes to it� For instance� in our application� users cannot see incremental
changes to the greeting made by their collaborators� Conversely� this approach does
not work well when a CGI script needs to make an incremental change in the dis�
play� since a whole new document describing the complete display must be sent to
the browser and processed by it� which makes the interaction slower and causes the
display to �icker� �Current browsers do not calculate the di�s between the original
and new dispays�� Since a browser is a high�level I
O package� it cannot create arbi�
trary user interfaces� The non�polling solutions are far from ideal since the session
manager and user agents must be coded using some IPC mechanism� and perhaps
more important� a large number of processes are involved in the communication
of information from a local user to a remote user� the local browsers� the HTTP
server that receives the CGI request� the copy of the server forked to execute the
CGI script� the session manager� and �nally� the remote browser� Moreover� if the
CCI supports communication among local processes� then an additional local pro�
cess would be involved� In the X�based solution� only three processes are involved�
the host and the local and remote X servers� If the browsers are implemented on
top of X� then the two X servers would still be involved in the communication�

����� Java� Code Downloading � Remote Method Invocation� One way to com�
bine the bene�ts of the X� and Web� based approaches is o�ered by the Java
object�oriented programming language� An HTML document can refer to a Java
program called a Java applet that is stored at the site of the server managing the
document� When a browser fetches the document� it also dynamically loads the
applet code and executes it� The applet code executes within the context of the
browser� that is� uses� for I
O� a section of the space allocated by the browser to
display the document� Thus� like an X client� a Java applet is programmer�de�ned
and can create an arbitrary user interface� and like a Web browser� it executes at
the local site� This idea of dynamically downloading code in an I
O package is not
new� and was pioneered �by the inventor of Java� in the Network Window System
�NeWS� ���� Dynamic downloading of code was also supported in Computational
Mail� as we saw earlier� As we saw in computational mail� downloading and exe�
cuting code from an arbitrary site raises security issues� Java addresses them by
allowing a Java applet to accesses �les at and send messages to only the site from
which it was downloaded�

It makes sense to not only download code in an HTML browser but also an
HTTP server� as illustrated by the Sun Java HTTP server� wich is written in Java�
The server is composed of smaller modules� called servlets� each of which serves
a particular kind of browser request� Like applets� user�de�ned servlets may be
dynamically loaded into the server� When a browser request comes in� the server
determines the servlet that must process it� If the servlet is trusted� then it executes
in the same OS process as the server� but in a separate Java thread otherwise the
it executes in a separate thread group �OS process���

A new servlet thread does not have to be forked on each request � once created�
it keeps processing requests until there are no more requests� after which it may

� ��

be terminated� Moreover� unlike an HTTP server� it can �since it is user�de�ned�
create state that persists across multiple browser requests� To allow a browser to
name this state� a servlet� like an HTML document or a cgi script� is associated
with a URL� which can be used by the browser to invoke a service in it�
Java programs do not have to be dynamically loaded and executed within the

context of a Web browser or server� Local Java programs can be executed as
standalone Java processes� which� like processes written in any other programming
language� have all rights of the users who create them�
Java also provides a high�level RPC�based mechanism for communication among

arbitrary processes� Traditional RPC executes a global procedure of a remote
process and �implicitly or explicitly� identi�es the target process� Java extends this
idea by supporting remote method invocation� that is� direct invocation of a method
of an object in a remote process� Instead of identifying the process� the invocation
presents a remote object reference to directly identify the target object� using the
same syntax as a local invocation� A process can register an object it wishes to
export with a Java�provided name server� called a registry� by associating it with
a string name� which can be looked up by some other process to receive a remote
reference to the object�
How should parameters � of remote invocations be handled� Traditional imple�

mentations of remote procedure calls do not allow address parameters and make
remote copies of value parameters� Some implementations do allow address param�
eters� but make copies of the referants at the remote site and return pointers to
these copies� As a result� dereferencing the address refers to the local copy and
not the original remote object� Java extends these semantics by sending copies of
parameters that do not implement the Java remote interface and remote references
to parameters that do�� The remote references can be dereferenced to access the
remote objects and not local copies�
Another interesting feature of Java is that if a process does not have the class of a

�copy of or reference to a� remote object it receives from another process� Java will
dynamically download the class into the process� much as it dynamically downloads
applets into a Web browser� Since Java classes are also objects� they can probably
be transmitted explicitly in parameters of methods�
Example� Servlet�based Centralized Version�
This is like the above version� except that we replace the session manager and

CGI scipt with a Java servlet� and instead of invoking the CGI script� the browser
now invokes the servlet� Not sure if form data can be passed to a servlet�
Example� Applet�based Centralized Version� As in the Web�based version�

we de�ne an HTML document for the session� which users load in their browsers
to join the session� Instead of containing a form� it contains a Java applet� which�
like the form� creates a local copy of the greeting� and displays it the user in an
editable text widget� We also create a central stand�alone master Java process at
the site from which the document is loaded� As before� it keeps track of the current
value of the greeting and the users that have joined the session� It exports to the
registry on its machine a session object de�ning methods for joining
leaving the
session� The applet uses the session object objects to register its local copy of the

�We consider return values to be special cases of parameters

�� �

greeting with the master and get a reference to the global copy� Both copies de�ne
update methods� which are used to keep them consistent� Thus� on each character
typed by the user� the applet invokes the update method in the global�greeting
object with the local value of the greeting� This update method� in turn� invokes
the update methods of all local�greeting objects� �Later we will see a more modular
Java�based implementation based on the Observer
Observable interface��
Example�Applet and Servlet�based Centralized Version�
This is like the above version� except that we replace the standalone Java session

manager with a Java servlet� and the local Java applets communicate with this
session manager through the server� Not sure if applets can invoke servlet functions�
Example� Replicated Version� It is also possible to use Java to build a

replicated version� but we cannot use Java applets since they can communicate
only with processes at the HTTP server site� The implementation is similar to the
one we saw under interprocess communication except that the local replicas use
the prede�ned Java registry and Java remote method invocation for IPC� Thus� the
session manager registers a session object with its registry� and the session manager
and the replicas de�ne local copies of the greeting that provide update methods�
The replicas and the session manager to establish connections among their copies
of the greeting objects and use the update methods to keep them consistent�
With its support for remote object references� Java can be considered as a lan�

guage supporting distributed shared memory� However� a remote reference is not
a �rst�class reference in that it can not be used to access instance variables of the
referant or invoke methods in any interface other than the Java remote interface�
�Perhaps with the Java re�ection model this will not be an issue since we could
invoke re�ection methods to retrieve arbitrary �elds and invoke arbitrary methods��

����� Obliq� Network Scopes� Let us now look at a similar language� Obliq ����
that is closer to supporting distributed shared memory� In Obliq� programs have
network scopes� that is� scopes extending to multiple address spaces
hosts� An
Obliq program starts of in some address space and can send portions of its code to
other address spaces� much as an HTTP server sends applets to HTML browsers�
The code� however� can be bound to variables at the original site� and these bindings
are preserved when it executes at the remote site� that is� they become remote
references to the values at the original site� As in Java� a distributed name space
can be implemented through a registry � network scopes provide another� more
convenient� mechanism for implementing suc spaces that use a registry only for
bootstrapping purposes�
Also� as in Java� objects may be transmitted to a remote address space as param�

eters and return values of remote method invocations� Obliq distinguishes between
immutable entities such as procedures and mutable entities such as objects� How
an entity is sent to a remote address space depends on whether it mutable or im�
mutable� If it is mutable� then a remote reference to it is sent otherwise a �copy� of
it is sent� which may contain remote references to the original site� Obliq constructs
the copy of an object as follows� It determines the graph of nodes reachable from
the object� creates copies of all the immutable nodes in the graph and the links to
them �preserving cycles�� and replaces local reference to mutable objects from the
copied nodes with corresponding remote references� Obliq also allows a process to

� ��

that a copy of a mutable object be sent�
To illustrate how Obliq may be used to create collaborative programs� and also

the nature of higher�level collaboration infrastructures� consider Visual Obliq ���� an
Obliq library for creating a replicated collaborative application� Each replica of the
application creates one or more top�level windows� called forms� for its user� Visual
Obliq allows a user to interactively specify the appearance of forms and attach Obliq
callback procedures to their �elds� The library generates Obliq form classes �with
associated form constructors� that implement the form user�interfaces speci�ed by
the user� and also an Obliq session�constructor object for adding new users� In
addition� for each form class� it creates a global session array that keeps track of
the instances of the form created for di�erent users� The application programmer
can augment
modify
subclass the generated code�
Let us say we have created a helloWorld program using Visual Obliq� A user� at

machine jeeves�cs�unc�edu� can create a new instance of this program by typing�

visobliq �run helloWord

A new Obliq process is created� containing all the global entities de�ned by the
program such as the session constructor and the session arrays for the di�erent
forms� VisualObliq registers the session�constructor under the name �helloWorld�
with a local registry� It also executes this constructor in the new process� which
instantiates each form of the application by calling its form�constructor procedure�
and adds references to each of these forms to its session array� Thus� this instance
of the program is a �server�� in that creates the global session data� and a �client��
in that it creates local data to interacts with a user and refers to the global data�
Now another user� say at emsworth�cs�unc�edu can join this session by typing�

visobliq �join helloWorld�jeeves�cs�unc�edu

VisObliq creates a new client at the local site� retrieves a reference to the session�
constructor from the registry at jeeves�cs�unc�edu and invokes the constructor�
The session�constructor fetches copies of all the form�constructor procedures from
the server� invokes them to create new instances of these forms� attaches local
callback procedures to them� and adds �references to� these instances to the global
session arrays stored in the server� Notice that the session arrays do not have to
stored in a registry� they are automatically visible to the procedures copied from
the server�
When a user enters information in a form� VisObliq invokes appropriate programmer�

de�ned callbacks procedures attached to the form� A callback can update not only
the local form instance but also the remote instances stored in the session arrays�
For instance� in our example� when a user changes the local greeting� the callback
can access access the references to the remote form instances replicas and update
their greetings �elds�
We have seen above how a replicated version of our example can be created using

Obliq and VisualObliq� � It does not support centralized applications� but Obliq
can be used directly to create such applications� A single copy of each application

�VisualObliq also provides a mechanism for inviting users to a session rather than requiring them

to use the session name to autonomously join the session�

�� �

form would be stored in the master process� which would invoke remote methods
in the I
O managers to update their displays�
Obliq can be used not only to create migrating applications or agents ���� A

migrating agent hops from site to site� collecting and processing information at each
site� When it hops to a new site� it brings with it a suitcase containing information
it has collected from the previous sites� receives a brie�ng from the new site� and
executes a procedure parameterized by these two pieces of information� In fact� we
can formally de�ne the notion of hopping agents in Obliq ����

let rec agent �

proc	suitcase
 briefing�

	� work at the current site ��

����

hop 	nextSite
 agent
 suitcase�

end

Here nextSite is a remote reference to a server at the next site for the agent�
The hop procedure is implemented not as a language primitive but� in fact� using

existing Obliq constructs�

let hop �

proc 	agentServer
 agent
 suitcase�

agentServer 	

proc	briefing�

fork	

proc	�

agent	copy	suitcase�
 briefing�

end�

ok

end�

end

The hop procedure invokes the remote agentServer� passing it a procedure as
an argument� Since a procedure is an immutable object� Obliq passes a copy of
the procedure �and the agent procedure referenced by it� with a remote references
to the local mutable suitcase object bound to it� On receiving this copy� the
remote server executes it after passing it the local brie�ng� This procedure forks a
new process� executes another procedure� while the parent process terminates and
unblocks the caller� Meanwhile� the child process retrieves a copy of the suitcase
and passes it� along with the brie�ng� to the copy of the agent procedure it received�
Migrating agents could be used for several purposes� They can be used to im�

plement� POLITeam like work�ow� taking a form to each user in the routing slip
computational mail� executing a program mailed to a user at the local site and
follow a user from site to site� If an agent is interactive� as in the examples above�
it puts the user�interface state in the suitcase� and recreates it on the local display

� ��

received as a brie�ng�
Currently Obliq does not support migration of multiuser agents since it does not

maintain connectivity with distributed processes as the agent moves�

����� Sumatra� Mobile Objects� Migration also in Java though RMI�
Not e�cient Not true migration � no redirection of references�
execution engines � Java interpreters�
Object group � I
O objects not moved but retargetted �suitcase��
forwarding adrress left and object�moved exception�
Can also create a new thread at remote site a la Obliq� rexec main method� Non

blocking�
Can also migrate thread� � go instruction� stack sent and non object groups�

remote references to object groups�
Code�
send thread code also� expensive� no retargetting�
assume same program all sites� too conservative�
send code from go to all visible gos � gos on control path� compiler support�
send code from go to enabled gos � uses dynamic stack info�
Policy� Application�de�ned �mobili�aware app��
Factors�
spatial variations � links with di�� speeds� population variations � users join
leave�

one time placement� temporal variations� link speed changes�
Experiments show� large spatial variations� US hosts� �� ms to ���ms� Non Us

hosts� ��ms to ����ms�
Time variation� short�term small jitter� occasional sharp jumps over short time

intervals� in small windows ��� mins�� �����over one day� mode variation� US
hosts� ��� ms� Non US� ����ms�
Application can request monitoring of link with speci�ed frequency� Mode of last

�� min window written in shared memory�
Example application�
Centralized� Master migrates� Thread or obj group� remote method vs remote

thread execution�
replicated� session manager� thread or obj group�
Policy� adapttalk � minimize max response time� tradeo� between stability and

good reponse� multiple rounds � decison cycle ���n�� win threshold for reponse
�	�n�� loss threshold ��	n��
consider all kinds of variations�

����� Rover� Disconnected Replicated Objects� While we did see how a repository
can o�er disconnected or weakly connected operation� we have yet seen the same for
distributed communication� Rover ���� illustrates a solution for systems supporting
communication of objects� Rover can be considered a cross between Obliq and
Coda� like Obliq it supports user�de�ned objects and allows them to migrate or
�rove� among computers and like Coda� it supports strongly�connected� weakly�
connected� and disconnected operation�
Rover supports the notion of a relocatable dynamic object � an object that is

managed by some server� called the home server of the object� from where it can
be dynamically relocated to the address space of a client of the server that has

�	 �

established a session with it� The relocation occurs when the client explicitly
imports a copy of the object� The client can now invoke one or more operations
on the local copy� and at some later time� explicitly export the changes back to the
server copy� Thus� this model is based on the explicit check�in
check�out concept
of version control systems rather than the automatic caching scheme of Coda� As
in Coda� the client can explicitly prefetch objects it expects to access �import��
The prefetch� import� and export are executed as remote procedure calls �RPCs�

invoked by the client in the server� Unlike traditional systems� Rover does not
invoke an RPC synchronously� blocking the invoker until the procedure is executed
at the remote site and returned results� Instead� it supports Queued RPC� that is�
unblocks the client� queues the RPC in a stable log at the client site� asynchronously
invokes the operation in the server� and communicates the results back to the client
by invoking a callback�
As in Coda� the scheduled used to process the client operations depends on

the connectivity to the server� In the strongly�connected case� each QRPC can
be sent immediately to the server� in the disconnected case� the RPCs are sent
when connection is next established� and in the weakly�connected case� the cost
of communication and the nature of the queued operation in�uences the schedule�
Queued RPCs are not necessarily executed in the order in which they are queued�
They can be reordered to let the more urgent operations be executed earlier� A
client associates a QRPC with an urgency or QOS �Quality of Service� parameter
which is used to determine how soon that call is invoked� The authors of QRPC
compare this parameter to the di�erent degrees of urgency we associate with postal
mail � ordinary� two�day express� one�day express� and so on� Thus� an import or
fetch RPC can be given higher priority than an export RPC to simulate the Coda
weak�connection policy�
Despite its name� an RDO� does not truly relocate or migrate to the client when

it is imported� In fact� it is shared with the client � the import operation creates
a copy of the object� leaving the original copy to be concurrently modi�ed by the
server or imported in other address spaces�
Rover provides several policies to support consistency among the copies of the

object� It allows� copies of the object to be modi�ed concurrently� using a type�
speci�c optimistic concurrency control mechanism to check for con�icts� We will
look at type�speci�c CC in more detail later to give an example � a Queue�speci�c
CC can allow concurrent queuing operations� In case of con�icts� a Coda�like
con�ict resolution procedure can be used to resolve the con�icts � instead of working
on �les� it would work on objects� To eliminate such con�icts� a shared object can
be locked by a client� thereby preventing the server and other clients frommodifying
it� However� as we saw earlier� this policy is suitable only if the the lock holder
is strongly connected� A disconnected or weakly�connected client can reduce the
chance of con�icts by specifying� for a local object� the following consistency options�

�Uncacheable� do not allow the object to be imported� We might associate this
option with an exported object that has not reached the server�

�Immutable� the object is guaranteed to be immutable� so write methods must
not be allowed on the object� Rover� thus� must distinguish between read and
write methods on an object�

� ��

�Verify�before�use� Before invoking a method on a object� check if the object is
still upto date� �What is the di�erence between locking an object and verifying
before use��

�Verify�if�service�is�accessible� Same as before except that the veri�cation is not
done if the cost of communicating with the server is high �more than some spec�
i�ed threshold��

�Expires�after�date� No operations can be performed on the object after a certain
date�

�Service callback� Notify the client if the server object changes� Not sure what
happens if the client is disconnected � doubt that server keeps track of callbacks
it must invoke�

Some of these options are orthogonal� and users must be able to specify multiple
options simultaneously�
As mentioned before� callbacks are also used to inform applications about the

completion import and export operations issued by them� When an application
invokes an import operation� it speci�es the session id� the object id� QOS speci��
cation� and a callback with the operation� Rover queues an RPC for the operation
and sends it to the server when an appropriate level of connectivity is established
with the server� The server fetches the object and sends it to the client� which
deletes the queued RPC and invokes the application callback�
Similarly� when a client exports an object� it speci�es the session and object id�

the QOS priority� and a callback� All operations invoked on the object since it was
imported are sent as QRPCs� The server executes them if there are no con�icts or
if con�icts can be resolved automatically �based on an application�provided proce�
dure�� sends back to the client an indication of whether the object was updated or
an unresolvable con�ict was detected� The client removes the QRPCs from the log�
and invokes the application callback with the values returned by the server� When
a method is invoked on a cached object� it is marked as tentatively committed� and
once it is successfully changed by the server� it is marked as committed� Applica�
tions can inform users about the commitment status of objects so that they know
which values they can depend on� The RPC request and response are split in that
they can be sent on communication links with di�erent properties�
As in Obliq� the importing of an object can trigger the creation of a new� �agent��

thread for executing operations on the object� As in Coda� logged QRPCs can be
compressed� but Rover excepts application programmers to provide the compres�
sion procedures� Rover supports both the interactive TCP
IP and batch SMTP
protocols for communication among clients and servers� the choice between them
is based on the QOS desired� Moreover� instead of using TCP
IP directly� a client
can instead use the higher level HTTP protocol� An object is identi�ed by a URN
�Uniform Resource Name�� which is built on top of a URL�
Rover has been used to built several applications� including versions of a mail

reader� calendar scheduler� and a Web browser that do not require strong connection
to the data they access� �The current Web browsers allow users to access cached
data when they are disconnected� what additional facilities can a Rover�based Web
browser provide���
How well does Rover perform compared to the traditional communicationmodel�

�� �

wherein no data are cached in the local client� and it manipulates objects by in�
voking operations in the server� Rover can be compared with the traditional model
only when there is some connectivity between the client and server� in case of dis�
connection� it clearly o�ers access where the traditional model would deny it� In
the connected case� the cost of a QRPC is much more than cost of traditional com�
munication because of the cost of logging the RPC in stable log� A TCP
IP�based
�null� RPC �	���byte request with a ��byte reply� takes �� milliseconds� over ��
Mbit
sec Ethernet� whereas using TCP
IP directly takes � milliseconds to commu�
nicate the same data� Writing a log entry takes �� milliseconds� which explains the
di�erence�
However� every RPC in the traditional model does not have to be correspond to a

QRPC in the Rover model� If an object has been imported in an application� then
it corresponds to a local operation in the application� which takes ��	 msec for a null
RPC� We need to also consider the time to import
export the object� The time to
export the object from a client to a server machine is �� msec� Once an object has
been exported� it can remain in the client machine� in case the application imports
it again� The cost of retrieving a null object into the address space of the client
from the address space of the system is ��� msec� which is the cost of a local null
RPC� LRPCs are not implemented e�ciently in Rover � hence the high cost� �All
numbers above are for the ethernet case� � The cost of exporting and importing
objects is� of course� amortized over multiple object invocations�
So how e�ective is the amortization in real applications� The authors of Rover

did several additional experiments with the applications they build to see overall
interaction times for some user�level actions� For instance� they considered the
cost of reading eight messages in a folder whose total size was ���� Kbytes� They
considered several cases� including�

�Strongly�connected remote exmh� remote exmh connected to local X server
through �� MB
sec Ethernet� Time taken� ���� �minutes�seconds��

�Weakly�connected ����� Kbit
sec � remote exmh� remote exmh connected to
local X server through ���� Kbit
sec connection� Time taken� �����

�Weakly�connected� local exmh� local exmh connected to remote �le system through
NFS running over ���� Kbit
sec SLIP connection� Time taken� 	����

�Weakly�connected� local Rover exmh� Rover exmh� assuming that folder is not
cached� connected to server through ���� Kbit
sec connection� Time taken� �����

�Weakly�connected� local Rover exmh� Rover exmh� assuming that folder is cached�
connected to server through ���� Kbit
sec connection� Time taken� �����

�Disconnect� local Rover exmh� Rover exmh assuming that folder is cached� Time
taken� ���	�

As can be seen� the cost of caching data is indeed amortized in this case but the
strongly�connected exmh gives the best performance�
Example�Replicated� An initialization program stores the greeting in some server

and associates it with a URN to be used as the session name� Each user runs an
application that uses the URN to import the object� registers a service callback to
receive updates� allows the user to modify the string� exports it after each change
or when the user saves it � depending on the connectivity� and immediately imports

� ��

it after exporting it� The service callback is used to update the string with the
new value of the object� If the application is guaranteed to be strongly connected
to the server� it can lock
unlock the string when the user starts
�nishes editing it�
Otherwise it can provide a procedure to resolve the con�icts or let the user do so
interactively�
Unlike the other distributed communication schemes we saw above� Rover pro�

vides support for consistency management in the form of concurrency control and
merging� This is because it combines features of shared repositories and distributed
communication� like the former it has a notion of shared data �RDOs�� and like the
latter� it provides a mechanism for communicating information among di�erent
processes �QRPC�� Currently� it does not o�er several repository functions such
as access lists and version trees� but these can be implemented in an object�based
repository� as we shall see when we consider object�oriented databases�
Rover�s check�in
check�out model also provides support for isolation� The changes

to imported objects are not propagated to other users until the object is exported�
Moreover� its QRPCs provides some fault tolerance� An RPCs is queued in a stable
log� so if the operation to send it to the server fails �because the client was discon�
nected� for instance� the client will try again until it gets an ack from the server
that the RPC was committed�
However� the support for concurrency control� isolation� and fault tolerance are

somewhat limited� An application must explicitly import� export� and lock objects�
it cannot atomically lock a set of distributed objects� it cannot make certain changes
to an object visible before others� and there is no general mechanism for recovering
from failures in arbitrary operations�

��� Argus� Distributed Transactions

Argus ���� also developed at MIT� is an example of a system that addresses these
problems� Like conventional database systems� it supports transactions� Instead
of manipulating relational data in some global database� they manipulate user�
de�ned data dispersed across multiple� autonomous �databases� called guardians�
A guardian is like a process� module� or monitor in that it is associated with its own
address space and exports an interface that can be invoked remotely from another
address space� It extends the notion of a module in several ways�
It can declare certain variables as stable � changes made to these variables are

saved on stable storage� Moreover� its types are atomic � that is� concurrent accesses
to objects of these types are automatically synchronized� Thus� programmers do
not have to worry about synchronization� �This is also the case with monitors� how
is a guardian di�erent�� Argus also allows a process to group together a series of
operations on one or more distributed guardians in a transaction� It allows di�erent
transactions to be executed concurrently and automatically locks atomic objects to
ensures their serialization� that is� their execution is equivalent to a serial schedule�
A transaction might commit successfully or abort� In case the transaction commits�
all changes made by the transaction to stable variables are written to stable storage�
In case it aborts� all changed stable variables are restored to the version saved in
stable storage�
A transaction might be decomposed into one or more subtransactions� Like trans�

actions� subtransactions are groups of operations that can execute concurently and

�� �

are serialized� However� changes made by them are not written to stable storage
unless the top�level transaction commits� Moreover� aborting a subtransaction does
not abort the enclosing transaction� which can try an alternative subtransaction�
Finally� a guardian is associated with a background process that executes when

no other operation is being executed in it�
Example� Centralized case� Like the standard IPC case except that IPC is en�

capsulated in transactions� Thus� an I
O manager sends input to the master in a
transaction� and a master broadcasts the output in same transaction� As a result�
changes to the master are synchronized and a failure to send output to a single I
O
module causes the whole transaction to fail�
Example � Replicated case� Like the standard IPC case� except that a replica cre�

ates a transaction for processing a series of changes from the user and broadcasting
them to other replicas� As a result� if the transaction aborts for any reason� all the
replicas are restored to their original state�
Argus was used to implement the CES editor discussed earlier� and the designers

of CES� while appreciating its automatic support for nested transactions� noticed
an important shortcoming for creating interactive programs� When a transaction
is aborted� any I
O performed by it is not undone� To illustrate why this is a
problem� consider the replicated implementation above� which creates a transaction
to process a series of changes from its user and distribute them to other replicas� To
give the user feedback� the transaction updates the local screen in response to each
user command� Now if the transaction aborts �because it could not distribute the
change to some failed site� for instance� all replicas are restored to their previous
state� thereby ignoring all e�ects of the user input� But the local display is not
restored�
CES used an interesting trick to address this problem� Here is my impression

regarding how it works� It encapsulated each user�display in a separate guardian
and provides operations to update the display bu�er� It also de�nes a stable lock�
which is acquired at the start of each operation and released at the end of it� It
also de�ned two non stable variables� action�count and commit�count� which
were incremented at the start and end of each operation� If commit�count was less
than action�count and the lock was not busy� then some transaction that updated
the display had aborted� So the display could refresh the screen from the guardian
that kept its state�
But how does the display discover this condition� Its background process can

poll � but CES provides a more e�cient solution� The display guardian also de�nes
a trigger�queue� into which the background process enqueues itself� When a trans�
action executes an operation is the display� it dequeues the background process
after acquiring the lock� The background process then blocks itself waiting for the
lock� When it acquires the lock� it checks for the abort condition� refreshing the
screen in case it holds� and releases the lock� It then goes back and enqueues itself�
There is a timing problem here� Between the time the background process was

dequeued and it tested the lock� another process might enter the display and ma�
nipulate an invalid display state� Therefore� every operation checks for the abort
condition before manipulating the display�
A more elegant solution would have been possible if Argus called programmer�

de�ned abort and and commit handlers for an object when changes to the object

� ��

are committed
aborted respectively�

��� MVC

What if we want� a� user transparency and b� di� views�
Model� View� Controller� Model �� View� addDependent� Model �� Model�

changed� Aspect� Model �� Controler� app�speci�c� View �� Model� update� Aspect�
Model � View� app�speci�c�
Java� similar idea� Observable� Observer�
Now to get distributed protocol� Not so easy � Anshu Problem�
Code application�
Centralized� create central process with multiple views and model�
Replicated� Each replica an observer
dependent of others�

��� Rendezvous

Constraints between model and view �dependent��
fonted string�string model�string
Enforced procedurally in model�aware views and controllers�
What if language o�ered constraints seprate from depedents�
ALV model in Rendezvous� ALV V Rendezvous V ! C�
one�way� multi�way� two�way constraints�
side e�ects � for latecomers�
uninitialized vars � data �ow approach� waitfor operands�
indirect references � dynamic inheritance� selected objects�
Ultra LWP objects like monitors�
Abstract processes ! View processes for fairness�
These enforced
Centralized impl only�
ALV for replicated�

����� Clock� No side e�ects�
Pure functional�
Structured objects�
Centralized implem�
root object� Session object� model object� view �component obj�
session prede�ned� allUsers� userName� userScreen� removeUser� addUser�
root view�
view Views �map greetingView allUsers�
GreetingView�
view Window �userName myId� userScreen myId� �Text greeting� �display text�

IP address� displayView�
key KeyCode modifyGreeting KeyCode�
GreetingModel�
greeting this� modifyGreeting KeyCode save �new greeting� initially save

�hello world�
Program consists of hierarchical components�
Root view�
View components have display view ! controller�

�� �

Model� request method ! update methods�
Hierarhical scopes� scopes uses IS�PART�OF relationship� messages can only be

sent to parent� constraints �ow downwards� so no cycles�
support for transactions� user actions create a series of threads� user actions

oredered � orders their threads � orders accesses to resources� server�based locking�
Views execute in local processes�
Distribution schemes�
Naive�
change� noti�ed� request� response�
Request Cache�
cache responses� if cached value not changed � use cache�
server invalidates cache based on data�ow techniques� seven times improvment�
Request Prefetech�
get all invalid values in batch� speedup ��� to � times�
Request Presend�
Server remembers which values requested by each view� sends these values when

it invalidates� 	 speedup�

����	 MUDS� Room�based session man�

����� Colab Programming Environment� Broadcast Methods� Replicated WYS�
INWYS

��	 Shared User Interfaces

����� GroupKit� Sharedd Environments etc� broadcast methods �" noti�cation�
multicast rpcs�
lexible session mgmt�

����	 XTV� Shared Windows� Colab Transparency�

����� Concur� Inverted X

����� DistView� Rep� Window System

����� Suite� Parameterized Flex�

����� Feiner�s System 	Meehan

����� Cola� Haake 	Rusev

����� Suite� Persistent Unix Objects� Send to later�

����� MMConf� Replicated Windows

������ DistView

��
 Multiuser Toolkits

����� Sync� Disconnected Operation

����	 Brown�s Stu�

��� Inter�Application Coordination

����� Intermezzo

� ��

����	 Object�Oriented Database Management System� Maybe this comes at the
very end�

����� Oz

����� Trellis

��� Interoperability

������ Message Bus

�����	 CORBA

������ Polylith

