
Comp 734 - Assignment 1:
Distributed Non-Blocking Halloween

Simulation Project

Date Assigned: Tue Aug 18 2015

Completion Date: Tue Sep 15, 2015, 11:55pm

The goal of the assignment is allow you to use Java’s non-blocking mechanisms to write

a “realistic” distributed program. You will take an existing non distributed program - a

Halloween simulation - and create a distributed version of it. It will be trivial to interface

with this simulation.

Non Distributed Simulation
The non distributed simulation is a project I gave to my Fall Comp 401

(http://www.cs.unc.edu/~dewan/comp114/f10/) class. You will work with the code of

one of the students in the class – Beau Anderson – who created a particularly nice

simulation. The simulation created two windows, a command window, and a graphics

window. The command window is used to manipulate the objects shown in the graphics

window.

As shown in Figure 1, each graphics window consists of (a) one or more houses, each

with a path and a candy container; and (b) a movable avatar with a candy container. The

move command can be used to move the avatar in both the x and y directions, as shown

in Figure 1(a).

http://www.cs.unc.edu/~dewan/comp114/f10/

(a) Avatar moves into path of leftmost house

(b) Avatar takes one candy

Figure 1Beau's Non-Distributed Simulation

If the feet of the avatar are in the path of a house, then the take and give commands can

be used to transfer candies between the house and avatar containers. In addition,

commands are provided to add and remove a house in the simulation, and undo or redo

previous commands. The following is the syntax of the commands:

<Command> <Move Command> | <Add Command> | <Remove Command> | <Take

Command> | <Give Command> | <Undo Command> | <Redo Command>

<Move Command> move <number> <number>

<Take Command> take <number>

<Give Command> give <number>

<Add Command> addHouse

<Remove Command> removeHouse

<Undo Command> undo

<Redo Command> redo

You can ignore most implementation details of the non distributed simulation. All you

need to know is how to trap (using an observer) and execute a command entered by the

user. I have created an Eclipse project, Coupled Halloween Simulations, which shows

how this is done. The program TwoCoupledHalloweenSimulations in the project couples

two simulations in the same process – your task will be to couple simulations in (possibly

an arbitrary number of) processes – this means you must run a different program for each

process. The project references both Beau’s code and a user-interface library I wrote,

ObjectEditor, which is used by Beau’s code. All three pieces of code are available from

the course home page. The Eclipse project must be uncompressed, while ObjectEditor

and Beau’ code are also compressed, but can be used in this form as they are referenced

as external libraries in the Eclipse project. You need to change the paths in the project in

order to use them correctly.

The coupled simulations use public methods in the following interface:
public interface HalloweenCommandProcessor {

 …

}

Two important methods it does not show are:
 boolean isConnectedToSimulation();

 void setConnectedToSimulation(boolean connectedToSimulation);

Normally, the command processor changes the simulation and then notifies observers. To

support automatic broadcast, you will need to disable local processing, and send the

command only to the observers. By calling the setter with the false value, you can disable

the local processing. This feature is needed in later assignments, but you are welcome to

use it immediately as I do in my demos.

Beau created the project using an older version of a library I have written: oeall17.jar. The

latest version in oeall22.jar, but it gives warnings that oeall17.jar does not. These can be

disabled using the following call:

Tracer.showWarnings(false)

Both versions are on the web site.

Distributed Simulation

You should create a distributed version of this simulation that involves an arbitrary

number of processes. The simulations created by these processes are coupled similarly to

the way the two simulations are coupled in the demo project – after a user submits a

command to one simulation, the command should be executed by each of the simulations

in some order chosen by you. You should use the Java NIO library for communication

and all I/O including the connection call should be non-blocking. I used the following

tutorial to understand it. http://rox-xmlrpc.sourceforge.net/niotut/. You can download and

modify the example program or write it from scratch.

You can assume a simulation process does not join a session dynamically, that is, joins a

session after a user of some existing process in the session has entered a command. More

simply, your implementation need not support latecomers.

 Some of the issues you should think about and discuss are:

(a) How do simulation processes join a session?

(b) Are there any processes other than the simulation processes involved in

mediating the connection and communication between the simulation

processes? You can use a server (the easy approach) or try and create a P2P

system.

(c) If you have created a server, how can you share the code your write for the

server and client?

(d) What are some of the other design and implementation issues you have

addressed?

(e) Trace the sequence of actions that take place in each process when a user

command is entered? Be sure to trace the flow between processes and between

your objects and the simulation objects in the same process.

(f) How do the interest ops registered with the NIO selector change? Give the

transitions.

(g) How do you handle failure of one or more processes in the simulation?

(h) Are there special commands (such as locking and access control commands)

entered by the user for controlling the nature of the distributed simulation?

(i) If there are delays, is it possible for race conditions to results in different

output for the same input.

(j) If so, how are messages sent by different processes synchronized, if at all?

Future assignments and class material will be addressing issues (f) – (i) in depth. Thus,

you are free to address these in a simplistic manner. These have been mentioned here for

the more ambitious students who wish to try their own solutions to these problems early

in the course. In yours answers, make sure you present the question before the answer.

http://rox-xmlrpc.sourceforge.net/niotut/

Downloading and Installation Instructions

First get oeall22 install it in some location.

Next get the zip beau_project.zip , uncompress it, and create a new Java project from the

uncompressed version. In Eclipse this means Project>New Java Project> , uncheck

default location and then browse to the location where the project is downloaded. Right

click the project, Properties>Build Path. Go the Projects tab and remove any referenced

projects. Then go to the Libraries tab and remove all libraries other than the JRE. In this

tab, do Add External Library and reference oeall22. Run

main.BeauAndersonFinalProject. Type move 100 -100 in the command window and see

if the avatar moved.

Now get CoupledTrickOrTreat.zip and go through the same process as above. However,

this time, in the Project tab, add Beau’s project to the build path. As before you need

oeall22. Run coupledsims. TwoCoupledHalloweenSimulations. Two command windows

and simulations should show up. Typing in one window should change avatars in both

windows. This project tells you how to take intercept a command from one simulation

and inject it in another simulation in the same address space. Your task in this project is

to inject the commands in a remote simulation.

Finally clone the following Git repository https://github.com/pdewan/GIPC.git. In Eclipse

do File>Import>Git>Projects from Git>Clone URL and paste the link above and follow

the instructions to add the project. Now go through the process of removing any projects

and libraries in the build path and adding oeall22.

The niotut package contains the code form the NIO tutorial mentioned above (http://rox-

xmlrpc.sourceforge.net/niotut/) Run niotut.NIOServer. Next run niotut.NIOClient. You

should see “Hello World” in the client console. You can also run niotut.NIOClientGoogle

to get a google page echoed back.

Your task is to combine the CoupledTrickOrTreat project with the code in the NIO

Tutorial. I would first change the NIO tutorial code to create a collaborative program that

echoes HelloWorld from one client to all of the other clients. Next I would change the

program to interact with Beau’s simulations.

Submission Instructions
For each submission date, create a YouTube video, demonstrating the working of your

program, (b) answer the questions posed and submit a printout of these answers in my

mail box or in class, and (c) submit your code on Sakai (the assignment will be created

before Tuesday). The video can be submitted as a private or public link in piazza. If

Piazza and YouTube make you uncomfortable, you can create a shared folder or use

email. I used the following software to make videos:
http://sourceforge.net/projects/camstudio/files/legacy/Camstudio2-0.exe/download

http://www.cs.unc.edu/~dewan/oe/colab/distribution/oeall22.jar
http://www.cs.unc.edu/~dewan/734/current/Downloads/beau_project.zip
http://www.cs.unc.edu/~dewan/734/current/Downloads/CoupledTrickOrTreat.zip
https://github.com/pdewan/GIPC.git
http://rox-xmlrpc.sourceforge.net/niotut/
http://rox-xmlrpc.sourceforge.net/niotut/
http://sourceforge.net/projects/camstudio/files/legacy/Camstudio2-0.exe/download

