
Comp 734 - Assignment 2:
Non-Blocking vs. RMI

Date Assigned: Tue Sep 1, 2015

Completion Date: Tue Sep 15, 20135, 11:55pm

The goal of the assignment is to show you the difference between two IPC mechanisms

that are at the extremes of the IPC mechanism in performance and programmability: NIO

and RMI.

Part 1: Performance of NIO Implementation
Programmatic Input: Change your implementation to allow input commands to be

provided programmatically. So far, you have used the processCommand() method of the

simulation command processor to programmatically change its state. As you have

noticed, this method does not fire events, which is useful when you are replaying a

command broadcast by another site. The method setInputString() has the same behavior

except that it also fires (vetoable) events. Use this method to execute on all simulations in

a session a command supplied by the program.

Local Execution: Change your implementation to allow pure local execution of

commands. In this mode, your client behaves like the original simulation you extended –

it does not transmit any message in response to a command.

Timings at input site: After adding the above two features (local execution and

programmatic input), the next task is to use them to time the execution of a series of input

commands at the site issuing these commands under various conditions. Time the

execution of a series of 500 input commands under the following conditions:

1. Local execution: the simulation executes the commands locally without sending

any messages to remote sites.

2. Distributed 1-User Session: the simulation sends the commands through its

communication layers (that means if you have a server, the commands go to the

sever, and if you have a P2P implementations, the commands go to the session

layer in the client). However, there is no other simulation in the session.

3. Distributed 4-User Session: Same as above except that there are 4 simulations in

the session (including the one issuing the commands).

Ideally, you would like to visually see the effects of these commands on the screen. If you

are executing the move command, you can give it a small increment (e.g. 1) and provide

separate commands to move in the x and y direction.

Part 2: RMI Implementation

1. Support distributed session of the kind you implemented in Assignment 1 using

RMI instead of NIO.

2. Repeat the steps of Part 1 above on the RMI implementation.

 Part 3: Discussion

Some of the issues you should think about and discuss for Part 2 are:

(a) What are the remote objects in the various processes involved in the RMI

implementations?

(b) Are there any processes other than the simulation processes involved in

mediating the connection and communication between the simulation

processes? Again, you can use a server (the easy approach) or try and create a

P2P system.

(c) Trace the sequence of actions that take place in each process when a user

command is entered.

(d) What are some of the features you have implemented beyond what was asked?

In addition, you should report and discuss the times you measured for both NIO and RMI,

explaining the differences between them if possible. In your discussion, give both the

differences you would have expected and the ones you found.

Submission Instructions
(a) For part 2, create a YouTube video, demonstrating the working of the RMI-

version of the program. The video can be submitted as a private or public link in

piazza. If Piazza and YouTube make you uncomfortable, you can create a shared

folder or use email.

(b) Answer the questions posed and submit a printout of these answers in my mail

box or in class.

(c) Submit your code on Sakai (the assignment will be created before Tuesday).

