Comp 734 - Assignment 2:

Socket-based Buffer Input Ports
Date Assigned: Wed Oct 12, 2011
Completion Date: Wed Oct 26, 2011
The GIPC download contains an implementation of buffer input ports based on NIO channels. In other words, the client and server port drivers user NIO. Create an additional set of drivers, in a separate project, that use reliable byte stream sockets for communication. You cannot use object streams. Implement this assignment in two stages:
First, create drivers for simplex buffer input ports.

Next, create drivers for duplex buffer input ports.

The slides and code are restricted currently to simplex buffer input ports. By next week you should have the material for duplex buffer input ports.

For your implementation, you should need to lookup any aspect of sockets or GIPC not covered in class.

I will keep updating the GICC download. Hence, please do not modify code in this project. It will be best to create your own project, which can have the same packages as GIPC, and add code this project. You will need to add the GIPC project to your project by going to Project(Properties and then selecting Java Build Path, and finally selecting the Projects tab, as shown below:
[image: image1.png]type filter text

Java Build Path

(& Source | = Projects | mi Libraries

T Orderand Eport

Required projects on the build path:

& util

Feel free to reformat the GIPC code for better reading. I will keep posting improved updates.

Start on this project asap as in the next two weeks, you also have an exam.

It is possible I will not cover duplex ports on Monday, in which case we will move the date to Nov 1.
Here is a suggested concrete path to follow for this assignment.

1. Some of you have never used sockets before. Several of you who have used sockets, have used object streams. In this assignment, you have to communicate byte buffers. Study the notes (data communication) on how ByteBuffer works and also how you can send bytes on sockets. Write a simple echo server program of the form shown in class that uses sockets. This part does not require any knowledge of GIPC. This is the most difficult part of the assignment and you should complete it by the next class on Monday, 10/17.
2. Now implement simplex buffer input ports. This means you have to do the following:

a. Provide a socket based implementation of the GIPC interface: inputport.datacomm.simplex.buffer.SimplexBufferServerInputPortDriver<ServerSocket, Socket>. To implement this interface you need to use the skeleton interface inputport.datacomm.simplex.buffer. SimplexBufferServerInputPort<ServerSocket, Socket> class and its implementation inputport.datacomm.simplex.buffer. AGenericSimplexBufferServerInputPort<ServerSocket, Socket> . For a model of how this implementation is to be done, look at the class: inputport.datacomm.simplex.buffer.nioAnNIOSimplexBufferServerInputDriver. This class is much more complicated than the one you will create, but shows how to interact with the server skeleton class.
b. Provide a socket based implementation of SimplexBufferClientInputPortDriver<Socket> in package inputport.datacomm.simplex.buffer. To implement this interface you need to use the skeleton class inputport.datacomm.simplex.buffer. AGenericSimplexBufferClientInputPort<Socket> and the interface it implements. For a model of how this implementation is to be done, look at the class: inputport.datacomm.simplex.buffer.nioAnNIOSimplexBuffeClientInputDriver. This class is much more complicated than the one you will create, but shows how to interact with the client skeleton class.
c. Provide a socket based implementation of the Factory interface: inputport.datacomm.simplex.SimplexInputPortFactory<ByteBuffer>. For a model of how this is to be done, look at AnNIOSimplexBufferInputPortFactory in package inputport.datacomm.simplex.buffer.nio. Again, this might be more complicated than the one you create.
d. Test your code using the server program AServerBufferSimplexInputPortLauncher, and the client programs AnAliceBufferSimplexInputPortLauncher and ABobBufferSimplexInputPortLauncher in the package inputport.datacomm.simplex.buffer.example. You will have change the class ASimplexBufferInputPortLauncher (in the same package) to use the socket factory rather than the NIO factory.

e. Once you have mastered this part, the duplex part should follow similar lines, and I will give more instructions if necessary.

To do part 2, you should read ahead in the notes on data communication. Or you can wait until the next class.
3. Now implement duplex ports in a similar fashion.

As you do the assignment, you can try to hack your way through it by looking at NIO and trying to do something isomorphic to it in your socket code, or you can try to understand the architecture of gipc and see what you need to do. My goal is to make sure you understand the architecture, which is typical of systems such as these, and the assignment has been designed to prevent the hacking approach, though it may work. My goal is also to make sure you understand the difference between sockets and nio. As there are important differences, the codes are not going to be isomorphic,
So what I would do is try and understand what the skeleton needs from the driver and work from there, rather than trying to mimic the socket code. Remember socket and nio offer very different programming abstractions, so it would help to look at the slides to understand the exact differences between the two.
One thing missing in the slides is that byte buffers have a way to put and extract ints in them. The routines are called putInt and getInt. These routines together with what was taught in class should be enough to do the assignment.
My advice is to first get the echo server implemented, then look at the slides to understand the differences between sockets and nio, and then look at the slides describing gipc , and then start adding sockets to gipc. When you look at the slides, take special care to understand what that skeleton needs from the driver (in terms of downcalls and upcalls), as that is the part you will focus on.
You should submit a document containing an overview of your implementation and screen shots tracing the important components of your implementation (using Tracer). The tracing should demonstrate all functionality you tested.
The document should answer the following questions. Please include the questions along with the answers.
1. What threads are created by the simplex server and drivers and the duplex server and driver?

2. What code is shared among the four drivers? Be sure to identify any helper classes you created to support code sharing.
3. How do you handle scatter/gather and gather/scatter?
4. How did you test scatter/gather and gather/scatter? (See slides 44-47 in the NIO PPT document)
5. What socket events trigger the disconnected and not connected up calls in the skeleton?
6. How do you handle the connect and disconnect down calls in the driver from the skeleton?
