
Comp 734 - Assignment 5:
Synchronous Receive and Remote

Method Call
Date Assigned: Nov 7, 2013

Part 1 Submission Date: Nov 14, 2011

Part 1 and 2 Completion Date: Thu Nov 21, 2011

In the last assignments, you learnt how to communicate objects on GIPC ports. In this
assignment you will add synchronous receive and use it to implement synchronous function and
procedure calls.

Part 1: Explicit and Synchronous Receive
Most of the existing GIPC code you will use for this part is in the package:
inputport.datacomm.duplex.object.

Create extensions of the client and server duplex object ports that provide an explicit
synchronous blocking receive. It takes as an argument the name of the sender, and waits until a
message from that sender arrives. Its return value should be such that the receiver can retrieve
the sent object from it. Thus, the return value can either directly be the object sent or a special
kind of GIPC message in which the sent object is a property.

It should be possible for multiple threads to concurrently perform receive operations. When a
message arrives, it should go to (a) the first synchronous receive waiting for it, and (b) all
listeners registered to receive the message.

Provide also an implicit synchronous receive, which calls the explicit receive using the sender
name returned by getSender(). In the case of a client port, this method always returns the
server.

This part essentially involves using monitors, bounded buffers (implementations of Java
BlockingQueue such as ArrayBlockingQueue), and GIPC Duplex Object ports to implement
your new abstraction.

 The interfaces of your new server and client ports will extend DuplexClientInputPort and
DuplexServerInputPort interfaces, respectively. The implementations of the two ports should
be layered on top of the existing implementations of the duplex server and client object ports,
respectively. Your new implementations can either inherit from or delegate to the existing
implementations. Inheritance will be easier, delegation more flexible.

If you use inheritance, you need to know that the standard GIPC implementations of
DuplexClientInputPort<Object> and DuplexServerInputPort<Object> are
ADuplexObjectClientInputPort and ADuplexObjectServerInputPort, respectively. If you
are using delegation, you can be more flexible and simply use the values returned by
DuplexObjectInputPortSelector.createDuplexServerInputPort() and
DuplexObjectInputPortSelector.createDuplexClientInputPort().

If you use inheritance, you will have to use a separate class to be a receive listener of the object
port. If you use delegation, use the Eclipse facility to generate delegate methods, which is
available in the menu provided to generate getters and setters.

Define a factory class to instantiate your two ports. It should implement the interface:
DuplexInputPortFactory. It can be modeled after (and extend) the existing GIPC factory:
ADuplexObjectInputPortFactory.

As in the previous assignment, override

protected void initPortLaucherSupports()

in your testing launchers to trace and use your code for both the serializer and duplex object
ports.

Submission Part 1
Explain how you handle blocking and unblocking of a synchronous receive. In particular, explain
how your code handles a received message. Show test cases with traces illustrating your
algorithm.

Part 2.1: Synchronous Remote Function Call
Most of the existing GIPC code you will use for parts 2.1 and 2.2 is in the package:
inputport.rpc.duplex

Create a new implementation of a duplex RPC input port that provides an alternative
implementation of the remote function call object. You do not have to create a new class for
the RPC port. Instead, you have to define only a new factory class for such a port that uses your
implementation of the duplex object port of part 1, and the remote call completer (executing at
the local site) described below. The interface of your new factory is:
DuplexRPCInputPortFactory. Your new factory class can be modeled after (and inherit from)
the existing implementation of this interface: ADuplexRPCInputPortFactory.

The interface DuplexSentCallCompleter The current implementation of a remote function
call, ADuplexSentCallCompleter , uses monitors to wait for the returned value. It implements
the interface DuplexSentCallCompleter. Provide an alternative implementation of the
interface to use sync receive calls to do the waiting. You will have to define a factory to
instantiate your implementation of this interface. The factory for this object is selected by the

abstract factory, DuplexSentCallCompleterSelector. Your new factory can be modeled after
(and extend) ADuplexSentCallCompleterFactory.

You can simply extend the GIPC duplex sent call completer class. If you do so, your responsibility
is to override the constructor and one or more of the methods isReturnValue(),
processReturnValue() and returnValueOfRemoteFunctionCall(). As its name indicates,
returnValueOfRemoteFunctionCall is called by GIPC to make the caller block until the return
value is received. This means that, in general, a sent call completer must have a chance to
process messages received from the remote site. The method processReturnValue() must be
overridden to do this extra processing, which can involve doing nothing. The method
isReturnValue() determines if a message is a return value. The constructor of this class takes
as an argument a DuplexRPCInputPort. The method getDuplexInputPort() of this port can
be used for returning your implementation of the duplex object port of part 1.

As in the previous part, override

protected void initPortLaucherSupports()

in your launchers to trace and use your code for this and the previous parts.

Part 2: Synchronous Procedure Call
Again, you will create a new implementation of the duplex RPC input port by defining a new
factory that creates a new composition of objects. Currently, a remote function call is
synchronous but a remote procedure call is asynchronous. Your new implementation of a
duplex RPC input port will support synchronous procedure (and function) calls.

This time you will provide an alternative implementation of both the sent call completer
(executing at the local site) and the received call invoker (executing at the remote site).

As mentioned above, you will have to provide yet another implementation of
DuplexSentCallCompleter, which can be an extension of the one you created above. This
time, you will have to override, the method returnValueOfRemoteProcedureCall()
which is called by the local site to wait for the procedure call to complete.

To support synchronous procedure calls you will have to trap the invocation of the call at the
remote site. You can do so by providing an alternative implementation of the interface
ReceivedCallInvoker, selected by the abstract factory ,
SynchronousDuplexReceivedCallInvokerSelector. You can simply extend the existing
classesexisting classes ADuplexReceivedCallInvoker and
ADuplexReceivedCallInvokerFactory

 You will have to override the method handleProcedureReturn() by taking an appropriate
action. The method handleFunctionReturn() (which you do not have to modify) of
ADuplexReceivedCallInvoker shows how function returns are handled.

As always, you will override

protected void initPortLaucherSupports()

in your launchers to use and test your GIPC-based code.

Execution Behavior and Performance
Use your launchers to implement the 4-user case of the previous assignment in which all of your
GIPC implementations are exercised. Compare these timings with those obtained using the
predefined GIPC implementations.

In your launchers, add the following code to initPortLaucherSupports():
 DuplexReceivedCallInvokerSelector.

setReceivedCallInvokerFactory(new ADuplexReceivedCallInvokerFactory());
The default factory assigned to this selector is an instance of:
AnAsynchronousDuplexReceivedCallInvokerFactory.

Compare the code of the two factories and explain the impact of making this change. Now
observe the behavior of the 4-user case when you make this change and explain why you or do
not see change.

Submission Part 2.1 and 2.2
1. In the printout you submit:

a. Include what you submitted for part 1.
b. Explain how your implementations of the two subparts work.
c. Explain if your implementations rely on a received message going to both a

synchronous receive and all listeners for the message?
d. Provide the performance comparison mentioned above.
e. Discuss the impact of replacing

AnAsynchronousDuplexReceivedCallInvokerFactory with
ADuplexReceivedCallInvokerFactory.

f. Give a trace of your code of part 2 showing the major steps in it.
2. Create a Youtube video demonstrating the 4-user GIPC synchronous case of the

previous assignment in which all of your GIPC implementations of part 2 are exercised.
In this video, convince me through the blocking tracer and/or the debugger that the
procedure calls are synchronous.

3. Submit your code on Sakai.

