DISTRIBUTED SYSTEMS

‘ Instructor: Prasun Dewan (FB 150, dewan@unc.edu)

NS

COURSE HOME PAGE

x Go g'E - :’ Search =

- More »» @ prasun...~ *

Comp 734: Distributed Systems

Course Overview

This course will provide an implementation-oriented study of distributed systems. Some of the topics covered will include inter-process
communication, group communication, synchronization, remote procedure call, peer to peer and centralized sessions, fire-walls, causal
broadcast, atomic broadcast, scalability, fault tolerance, replication, and transactions/concurrency control. These are foundational concepts,
which are becoming particularly relevant with the emerging areas of cloud computing and distributed games. These concepts will be
introduced as layers in a general distributed infrastructure. Your projects will implement new layers and provide alternative
implementations of some of the existing layers. When implementing a layer, you will act both as an application programmer, using
abstractions of the layers below, and a systems programmer, defining abstractions for the layers above. The number of lines of code required
by each layer will be relatively small; however the compositions of these layers will be complex.

T - o A L e ALY i oA - A2 a3 Al o e 2l fa .M Al A AN at_

http://www.cs.unc.edu/~dewan/734/current/index.html

|’

LECTURES AND ASSIGNMENTS

Schedule (Tentative)

Unit (Start Date]) Slides

Chapters

Assignment

Introduction PowerPoint 2007

Threads and Thread Coordination (Read on your PowerPoint 2007

own)

Java Non-Blocking Socket Channel 1/0

Distributed Mon-Blocking
Halloween Simulation

Java Remote Method Invocation

Distributed EMI-based
Halloween Simulation

syncreplicated Objects

No book

PPT slhides and sometimes word doc

P = =r r = r

Current assignment is on the web - start
working ASAP on it

Outline of other assignments given

GIPC 2P PowerPoint 2007

Replicated Sync-based
Halloween Simulation

Socket-based GIPC

Extendible Multi-Platform
Serialization

Svnchronous Receive, Procedure
and Function Call

SOFTWARE

Downloads

beau project.zip

Beau Halloween Simulation (Library, keep it compressed)

CoupledTrickOrTreat.zip

Coupled Halloween Simulations (Eclipse project, uncompress and link to libraries)

ObjectEditor (Library) oealll7.jar

GIPC

\

Software to be continuously updated

GRADE DISTRIBUTION

Exams (Two midterms, no final) 40%

Assignments (Home work) 60%

Fudge Factor (Class 10%
participation, other factors)

GETTING HELP

Can discuss solutions with each other at a high level

Not at the code level

Sharing of code is honor code violation

Can help each other with debugging as long as it does not lead to code
sharing

Assignments may contain solution in English (read only if stuck)

P1AZ7ZA

Getting Help and Class Discussion
We will be using Piazza for class discussion and getting help. The system is highly catered to getting you help fast and efficiently from
classmates, the TA, and myself. Rather than emailing questions to the teaching staff, | encourage you to post your questions on Piazza. If
you do not get a response within a day or two on Piazza, please send mail to help401@cs.unc.edu. But try Piazza first. Do not send mail to
an individual instructor, as that can overwhelm him - such mail will be ignored.

Before posing a question, please check if this question has been asked before. This will reduce post clutter and reduce our burden. Repeat
questions will be ignored by the instructors.

Piazza allows anyone to respond. So if you see a question that you think you can respond to, please do so, as that will reduce our burden
and help you "teach™ your fellow students.

This will be a form of class participation that will be noted when | allocate my fudge points!
Hope it works well
If you have any problems or feedback for the developers, email team@piazza.com.

Find our class page at: hitps://piazza.com/uncifall2013/comp734

DISTRIBUTED PROGRAM?

A program “involving” multiple computers

Specific computers must be bound at run time

— Program can run on a single computer

Definition involves processes

PROGRAM VS. PROCESS VS. THREAD

! Windows Task Manager .
File Options Yiew Help

Applications | Processes | Seryices | Performance | Networking | Users

Image Mame User MName CPU .. Descri
WiSyncexe dewan .00 . Windo

I wlcomm.exe dewan 0a . Windo
winlnnnn swe 1

Program

public class APZPR1iceTCTSimmlation { . z -
public =tatic String ID = "3100"; Executlon N\
public static String NAME = "Alice";) Thread
public statie int USER NUMBER = 0| Instance S~ -7
public static wvoid main (String[] args) { —

Process

Tracer.shovwInfo(truoe) ;

Process is execution instance of Processes are independent activities that

program, associated with program can interleave or execute concurrently
and memory

Thread is also an independent activity,
but within a process, associated with a
process and a stack

Same program can result in multiple

processes

DISTRIBUTION OF PROCESSES/THREADS

-

: Thread

N e =

Process

- Thread

e m w—=

—

~

-

~

“

: Thread

N e =

~

-

Process

- =

- =~

- Thread)

“

e m w—=

Different processes can execute on
different (distributed) computers

(e

-

=

-

N e =

N\
/

~

-

N e -—

\
/

A single process executes on one
machine

DISTRIBUTED PROGRAM

/’_——5\\
Thread
\~ ’/

— o -

/’_——5\\
Thread
\~ ’/

— o -

(Jonnection

Process Process

—-—— -———

- -

~

~
\
Thread |,

N

“

~

~
\
Thread ,

N

“

_— o - _— o -

Connected process pair : Some
computation of a process can be
influenced by or influence

computation of the other process
public =tatic String ID = "9100™;
public static String NAME = "Alice"; public static String NAME = "Alice";
public static int USER NUMBER i i] SER NUMBER = 0:]
public static void main (Strin Graph crated by o gEIN[W LIV SI r=:n (String[] args) {
Tracer.showInfol(troe) ; . . oy o (troe) ;
dependency links is not partitioned—

APZPTOTSession=sClientCreat

} every node reachable from every

Connected process group: each
process is coupled to at least one
other process in the group

public =tatic String 10D = "9100";

eClientCreator. cr=2atePER

other node

LOGICAL VS. PHYSICAL INTER PROCESS
CONNECTION LINKS

Physical coupling links are physical
inter process communication links
| along which information flows in the
network

Logical
Connection

N e =

Process

’_——~

”~
Thread
X — Logical links indicate computational

\ dependencies

~ e o =

@ Can have logical links without physical
links

Physical links usually imply logical
links

Relayer

DISTRIBUTED APPLICATIONS

Distributed applications?

Non distributed applications?

In today’s world, what is or should not be

distributed?

SOME DISTRIBUTED DOMAINS

Distributed
Repositories (Files,
Databases)

Remotely Accessible Collaborative

Services (Printers, Applications (Games,
Desktops) Shared Desktops)

Distributed Sensing Computation

(Disaster Distribution (e.g.
Prediction) Simulations)

Full courses on some of these areas, with concepts specific to them
(Distributed Databases, Collaborative Applications)

Will look at domain-independent concepts at the intersection of them

Will not take an application-centric view |
&
Fundamental Issues? O

DISTRIBUTION VS. CONCURRENCY PROGRAM

-

N

Connection

-

Connection

Process

N

Distribution, no fine-
grained concurrency

Concurrency, not
distribution

Distribution and fine-
grained concurrency

(typical)

&

NON-DISTRIBUTED VS. DISTRIBUTED PROGRAM

Non-Distributed Distributed

Creates a single process logically and
physically unconnected to any other
process

Creates a pair or larger group of
connected processes

Must deal with sequential and Must also deal with distribution and
possibly concurrency issues usually concurrency issues

SYSTEMS VIEWPOINT

Computer abstractions to implement
some class of programs

Processes, Files, Memory

Operating System Management , Threads...,

Query Language, Transactions, ...

Programming Languages Arrays, Loops, Classes, ...

Database Management System

Data Communication, Remote
Procedure Call (RPC), ...

Distributed Systems

RPC assumes communication consists
Byte/object communication consists of | | of procedure requests and return value
byte/object of exchange responses

DISTRIBUTED SYSTEMS

Study of design and/or implementation of computer abstractions for
developing distributed programs

Why distributed systems?

Why systems?

Alternatives to understand how to program some domain of applications?

Non distributed programs?

ALTERNATIVES TO UNDERSTANDING

Programming: Abstraction use

Programming: Use of a specific set of Distributed Programming : Use of a set

non distributed abstractions (e.g., of distributed abstractions (e.g.
functional, MATLAB programming) Socket/RPC Programming)

Systems: Abstraction design and/or
implementation

Design and implementation of non Design and implementation of distributed
distribution abstractions (Object- system abstractions (e.g. Data
Oriented vs. Functional Languages, Communication /RPC Design and/or
Compilers/Interpreters) Implementation)

Theory: Models and algorithms

Non distributed model and algorithms Distributed Models and Algorithms(e.g. 2-

(Turing Machines, HeapSort,) Phase commit, Group Comm. Model)

RATIONALE

Abstraction Design vs. Implementation

Abstraction design linked to implementation: Designs are done of only

efficiently implementable abstractions

Abstractions vs. Theory (Models, Algorithms)

Abstractions are implemented operational models and have (the more)
practical algorithms in them

Abstraction Design & Implementation vs. Use

Maturity with design and implementation issues allows you to better
understand the semantics of a specific abstraction.

Abstract implementations require advanced programming/ software
engineering techniques— “you cant really program if you have not written
a compiler”

TEACHING ABSTRACTION DESIGN &
IMPLEMENTATION?

Lectures address design; assignments, implementation (e.g.

Implement a PL interpreter in another PL)

Implementations can be complex and need instruction

Lectures give high-level pseudo code for complex algorithms; assignments
full implementation (e.g. compilers)

Pain/gain ratio high, semester barely enough time for
compiler

Lectures discuss code for a system of abstractions : assignments

extend/modify this code

Code must be understandable and ideally also elegant

THE XINU APPROACH TO TEACHING OS

ORERATING GYETEM .
DESIGN Layering

MNINU

APPROACH

Approach not used in
distributed computing

Need distributed system
layers

Reuse of previous layers keeps code short (and hence
presentable in class)

Can unravel a system in stages to a class

Layering good for software engineering as well as pedagogical
reasons

LAYERS EXIST IN NETWORKING

TCP/TP

Physical Communication

P

Link-Level Communication

Physical communication in networking
involves machines and used hardware
machine addresses

Physical communication in distributed
systems 1s between processes and indicates
routing of information among processes

DISTRIBUTED VS. NETWORK LAYERS
4 P R) . Networking addresses physical
Thread | Logical . connections and byte communication
Se_ _ __~ Connection
- among processes
Process
" Th) . . .
X~ -]ie_g_l (1 Z No separate logical connections, object
\ LN / communication, synchronization, fault
& tolerance
%
/@OO&Q
'{Q«J‘QQ)
%» Low-level (hidden from programmers)
== abstractions
(\ Thread
Process
(\ Thread

N — /

DISTRIBUTED SYSTEM VS. NETWORKING

ABSTRACTIONS

Just as programming language
abstractions are built on top of assembly
language abstractions

Distributed system abstractions are
built on top of networked abstractions

Knowledge of assembly/networked
abstractions important to implement
PL/distributed abstractions

Byte communication APIs, close to
networked abstractions, is provided by
operating systems (e.g. sockets), which

hide networking abstractions

DOMAIN INDEPENDENT?

Distribuiea
Repositories (Files,
Databas:s)

Remotely Accessible Collaborative

Services (Printers, Applications (Games,
Desktops) Shared Desktops)

Distributed Sensing Computation
(Disaster Distribution (e.g.
Prediction) Simulations)

Distributed Abstractions Will look at domain-
independent concepts at

OS Byte Communication API

Even though OS abstractions developed to build distributed OS (file systems),
they are by definition domain-independent

LANGUAGE VS. OS ABSTRACTIONS

Both operating systems and programming
languages provide domain-independent
abstractions

Operating systems support processes and
language-independent abstractions for accessing
protected info and sharing information among
processes (files, IPC)

Programming languages must provide fine-
grained abstractions needed within a process

They also provide an interface to OS abstractions
through libraries or language constructs

They can also extend the OS abstractions (e.g.
typed files)

LANGUAGE VS. OS, DISTRIBUTED ABSTRACTIONS

Byte communication is all that operating systems
provide

Non distributed programming languages such as
C provide only OS abstractions

Distributed programming languages such as Java
provide a richer variety of abstractions

Java provides threads and reflection, making it
easy to implement our own replacements and
extensions of Java abstractions

Will use Java as implementation language

To extend and replace Java abstractions/layers,
knowledge of them useful

JAVA ABSTRACTIONS

Blocking stream Blocking byte
object communication communication

(Object Stream) (Sockets)

Non blocking byte
communication

(NIO) Remote procedure call
(RMI)

JAVA LAYERS

Remote procedure call
(RMI)
Blocking stream
object communication Go beyond Java layers?
(Object Stream)

Blocking byte
communication

(Sockets)

Non blocking byte

communication (NIO)

OS Byte Communication

BEYOND JAVA LLAYERS

Sync Replicated
Objects
Remote procedure call
(RMI)
Blocking stream
object communication Implementation
(Object Stream)

Blocking byte
communication

(Sockets)

Non blocking byte
communication (NIO)

OS Byte Communication

GIPC: IMPROVED ABSTRACTIONS AND LLAYERS
WITH OPEN SOURCE

Scalability Fault Tolerance

Group Synchronization
Group Communication and RPC

Pair-wise Synchronization

GIPC layers will be replaced,
augmented with assignment

Pair-wise Byte, and Object Communication,
Pairwise RPC

COURSE PLAN PRINCIPLE

Lectures Assignments

Cover material for next
assignment (and other relevant
material)

Do next assignment

Boundary conditions?

USE NON BLOCKING I/0

[Lectures l [Assignments l

Distributed Non Blocking
Java NIO Simulation ‘

Existing non
distributed
simulation

se NIO Tu Java NIO

lectures to
Distribute

HALLOWEEN SIMULATION

SIMULATION1_PREFIXE

File Edit View Customize AHalloweenCommandProcesso Help:

-50

|move 50

Input String:

Error Messages:

Sim Feedback:

[] Animation Activated

[] statistics Activated

Make Beau Anderson’s 401 Halloween

lementation distributed

imp

USE RMI

[Assignments l

[Lectures l

Distributed RMI-based
Java RMI Simulation ‘

Existing non
distributed
simulation

se Java Tu RMI

lectures to Imp
based Distrib

USE SYNC REPLICATED OBJECTS

[Lectures l [Assignments l

Replicated Simulation
Java Sync |

Existing non
distributed
simulation

se class lect Sync

Implement a
Distribute

BLOCKING VS. NON BLOCKING SOCKETS

I Lecture.

High-level buffer communication

Java (Non Blocking) Channels

I Assignme.

High-level buffer communication

Java (Blocking) Sockets

RECURSION AND SERIALIZATION

I Lecture. I Assignme.

High-level object communication

High-level Java Object
Buffer comm. Streams

High-level object communication
Buffer comm. Serialization

SYNCHRONIZATION AND RPC

I Lecture’ I Assignme.

Remote Procedure Call

[

High-level Object Java Thread
comm. Synchronization

Remote Procedure Call

High-level Object Communication
with Synchronization

High-level Object Java Thread
Synchronizatio

GROUP COMMUNICATION AND FAULT TOLERANCE

I Lecture’ Assignme

Fault Tolerance

RPC More Efficient Fault
Tolerance

More Functional Group
Communication

High-level
Object comm.

i

High-level

RPC

Object comm.

LAST PHASE

More Efficient Fault
Tolerance

More Functional Group

Communication

High-level

OBJECTIVES

At the end of the course you will

DISTRIBUTED COMPUTING

Distributed
Repositories (Files,
Databases)

Remotely Accessible Collaborative

Services (Printers, Applications (Games,
Desktops) Shared Desktops)

Distributed Sensing Computation

(Disaster Distribution (e.g.
Prediction) Simulations)

Internet/Cloud computing increasing relevance of the fundamental concepts

PRACTICAL RELEVANCE

For distributed applications, likely to use the
code you implemented than existing abstractions

Can send objects over NIO socket channels

Existing Java RPC does not work on Android
devices, but the one you implement will

Use Sync, which apparently is the basis of some
new Mobile platforms

Will implement many abstractions not part of
standard Java

SOFTWARE ENGINEERING PRINCIPLES

Existing classes will be used, inherited but not
modified directly

Alternative implementations will create new
classes implementing existing interfaces

These will allow easy switching between

different implementations

Implementation rather than use of generics to
unite buffer and object communication

Will be both a distributed computing
and software engineering course

RELEVANCE TO OS

Inter-process communication key to design of
new OS’s, even non distributed OS

Extensive use of bounded buffers

Will study and use thread synchronization in
depth

Will study how distributed OS are implemented

Will gain understanding of fundamental
OS concepts except memory
management

INTRODUCTION TO SYSTEMS

Systems: Abstraction design and implementation

Design and implementation of non Design and implementation of distributed
distribution abstractions (Object- system abstractions (e.g. Data
Oriented vs. Functional Languages, Communication /RPC Design and/or
Compilers/Interpreters) Implementation)

Distributed systems covers concepts from
many fields

EXTRA SLIDES

ALTERNATIVE JAVA LAYERS

Remote procedure call eleinatie rnees e el Could have more efficient
(RMI) RPC and non blocking
object communication

Blocking stream : :
object communication Non blocking object

(Object Stream) communication
Two RPC’s?

Blocking byte
communication

(Sockets)

Non blocking byte
communication (NIO)

OS Byte Communication

IMPROVED ALTERNATIVE JAVA LAYERS

Could do late binding
between RPC and lower-
level communication

Remote procedure call Go beyond Java

abstractions?

.B lolstng strg o Non blocking object _
object communication D Cannot unite NIO and
communication

(Object Stream) socket at byte or object
level
Blocking byte
communication
(Sockets)

OS Byte Communication NIO is even lower level

Programmers rely on usage

Non leCkin byte Socket communication is
communication (NIO) low level

patterns

PATTERN VS. ABSTRACTION (1-COMPUTER
PROGRAMMING)

Pattern

public final static int RED = 0
public final static int BLUE =
public final static int GREEN =
int color = RED;

~ .
N .
\.

public final static int LIKE= 0,
public final static int DISLIKE
public final static int NEUTRAL
int response = NEUTRAL,

n
N
Ne N

Abstraction

public enum Color {RED, BLUE, GREEN},
Color color = Color. RED;

public enum Response {LIKE, DISLIKE, NEUTRAK},
Response response = Response.NEUTRAL;

JAVA NIOTUTORIAL FOR ECHO SERVER

public void run() {
while (true) { Vast majority of tutorial readers

try { will copy and edit this pattern
// Process any pending changes

synchronized(this.changeRequests) {
Iterator changes = this.changeRequests.i
while (changes.hasNext()) {
ChangeRequest change = (ChangeReque
switch(change.type) {
case ChangeRequest. CHANGEOPS:
SelectionKey key = change.socket.keyFor(this.selector);
key.interestOps(change.ops);

Much better to identify a
corresponding abstraction and
implement it to understand
channels

b

! NioServer.java
this.changeRequests.clear(); EchoWorker.java ,

! ServerDataEvent.java

ChangeRequest.java

NioClient.java

! RspHandler.java

D:/My Dropbox/src/NioServer.java
D:/My Dropbox/src/EchoWorker.java
D:/My Dropbox/src/ServerDataEvent.java
D:/My Dropbox/src/ChangeRequest.java
D:/My Dropbox/src/NioClient.java
D:/My Dropbox/src/RspHandler.java

PROBLEM WITH JAVA ABSTRACTION LEVEL

Remote procedure call

Cannot unite NIO and
| socket at byte or object

Blocking stream level

object communication
(Object Stream)

Non blocking object
communication Socket communication is

low level

Blocking byte
communication

(Sockets)

Non blocking byte
communication (NIO)

NIO is even lower level
Programmers rely on usage
OS Byte Communication patterns

New picture?

o

IMPROVED ALTERNATIVE JAVA ABSTRACTIONS
AND LAYERS

Alternative high level layer
to socket and NIO based
byte communication

Remote procedure call
Can be bound to either
New Object Communication lower level layer

New Byte Communication Design and implementation
challenge

Blocking byte
communication

(Sockets)

Non blocking byte

: : Picture complete? More
communication (NIO) P

abstractions and layers?

OS Byte Communication Top down vs. bottom up

view point

IMPROVED ALTERNATIVE JAVA ABSTRACTIONS
AND LAYERS

Link setup and communication: How to create a
group of physically/logically connected processes
and communicate informing along these links?

Scalability: How to allow group size to increase
without degrading performance?

Distributed fault tolerance: How to recover when
- one end of the link goes down but the other does

not?

Process synchronization: How to block a (thread
in @) process until the information it needs to

proceed is received from a (thread in a) remote
process

No direct support for group setup and
communication, scalability, fault tolerance, and
any process synchronization

NEW ABSTRACTIONS: DESIGN CHALLENGE

Fault Tolerance Pair-wise Synchronization

Group Synchronization

Group Communication and RPC Scalability

Pair-wise Byte, and Object Communication,

Pair-wise RPC Layering?

DISTRIBUTION ISSUES

Link setup and communication: How to create a
group of physically/logically connected processes
and communicate informing along these links?

> - = ~ .
Thread)\ [cosical -
~e_ _ __~- Connection " : :
Scalability: How to allow group size to increase
Process : :
P without degrading performance?
X / Distributed fault tolerance: How to recover when
OO, one end of the link goes down but the other does
25 5
@/@02 @% not:
'%)93 Process synchronization: How to block a (thread
f' — in @) process until the information it needs to
- B proceed is received from a (thread in a) remote
{ Thread [()
S __-=-" process
Process
Pl Thread synchronization: How to block a thread
(\ Thread B until a condition for proceeding is enabled by a

local thread

58

