
DISTRIBUTED SYSTEMS

Instructor: Prasun Dewan (FB 150, dewan@unc.edu)

2

COURSE HOME PAGE

http://www.cs.unc.edu/~dewan/734/current/index.html

3

LECTURES AND ASSIGNMENTS

Current assignment is on the web - start

working ASAP on it

No book

PPT slides and sometimes word doc

Outline of other assignments given

4

SOFTWARE

Software to be continuously updated

5

GRADE DISTRIBUTION

Exams (Two midterms, no final) 40%

Assignments (Home work) 60%

Fudge Factor (Class

participation, other factors)

10%

6

GETTING HELP

Can discuss solutions with each other at a high level

Not at the code level

Sharing of code is honor code violation

Can help each other with debugging as long as it does not lead to code
sharing

Assignments may contain solution in English (read only if stuck)

7

PIAZZA

8

DISTRIBUTED PROGRAM?

A program “involving” multiple computers

Specific computers must be bound at run time

 Program can run on a single computer

Definition involves processes

9

PROGRAM VS. PROCESS VS. THREAD

Program

Process

Execution

instance
Thread

Thread
Process is execution instance of

program, associated with program
and memory

Same program can result in multiple
processes

 Thread is also an independent activity,
but within a process, associated with a

process and a stack

Processes are independent activities that
can interleave or execute concurrently

10

DISTRIBUTION OF PROCESSES/THREADS

Process

Thread

Thread

Process

Thread

Thread

Process

Thread

Thread

Different processes can execute on
different (distributed) computers

A single process executes on one
machine

11

DISTRIBUTED PROGRAM

Process

Thread

Thread

Process

Thread

Thread

Connection

Execution instance Execution instance

Connected process pair : Some
computation of a process can be

influenced by or influence
computation of the other process

Connected process group: each
process is coupled to at least one

other process in the group

Graph crated by creating pair-wise
dependency links is not partitioned–

every node reachable from every
other node

12

LOGICAL VS. PHYSICAL INTER PROCESS

CONNECTION LINKS

Process

Thread

Thread

Process

Thread

Thread

Logical

Connection

Process

Thread

Thread

Physical coupling links are physical
inter process communication links

along which information flows in the
network

Logical links indicate computational
dependencies

Relayer

Can have logical links without physical
links

Physical links usually imply logical
links

13

DISTRIBUTED APPLICATIONS

Distributed applications?

Non distributed applications?

In today’s world, what is or should not be
distributed?

14

SOME DISTRIBUTED DOMAINS

Distributed

Repositories (Files,

Databases)

Remotely Accessible

Services (Printers,

Desktops)

Collaborative

Applications (Games,

Shared Desktops)

Distributed Sensing

(Disaster

Prediction)

Computation

Distribution (e.g.

Simulations)

Full courses on some of these areas, with concepts specific to them
(Distributed Databases, Collaborative Applications)

Will look at domain-independent concepts at the intersection of them

Will not take an application-centric view

Fundamental Issues?

15

DISTRIBUTION VS. CONCURRENCY PROGRAM

Process Process

Connection

Process

Thread

Thread

Process

Thread

Thread

Process

Thread

Thread

Connection

Distribution, no fine-
grained concurrency

Distribution and fine-
grained concurrency

(typical)

Concurrency, not
distribution

16

NON-DISTRIBUTED VS. DISTRIBUTED PROGRAM

Creates a single process logically and
physically unconnected to any other

process

Creates a pair or larger group of
connected processes

Must deal with sequential and
possibly concurrency issues

Must also deal with distribution and
usually concurrency issues

Non-Distributed Distributed

17

SYSTEMS VIEWPOINT

Operating System

Query Language, Transactions, … Database Management System

Programming Languages

System

Distributed Systems

Computer abstractions to implement
some class of programs

Processes, Files, Memory
Management , Threads…,

Arrays, Loops, Classes, …

Data Communication, Remote
Procedure Call (RPC), …

RPC assumes communication consists
of procedure requests and return value

responses

Byte/object communication consists of
byte/object of exchange

18

DISTRIBUTED SYSTEMS

Study of design and/or implementation of computer abstractions for
developing distributed programs

Why distributed systems?

Why systems?

Alternatives to understand how to program some domain of applications?

Non distributed programs?

19

ALTERNATIVES TO UNDERSTANDING

Programming: Use of a specific set of
non distributed abstractions (e.g. ,
functional, MATLAB programming)

Distributed Programming : Use of a set
of distributed abstractions (e.g.

Socket/RPC Programming)

Design and implementation of non
distribution abstractions (Object-

Oriented vs. Functional Languages,
Compilers/Interpreters)

Design and implementation of distributed
system abstractions (e.g. Data

Communication /RPC Design and/or
Implementation)

Non distributed model and algorithms
(Turing Machines, HeapSort,)

Distributed Models and Algorithms(e.g. 2-
Phase commit, Group Comm. Model)

Programming: Abstraction use

Systems: Abstraction design and/or
implementation

Theory: Models and algorithms

20

RATIONALE

Abstraction design linked to implementation: Designs are done of only
efficiently implementable abstractions

Abstractions are implemented operational models and have (the more)
practical algorithms in them

Maturity with design and implementation issues allows you to better
understand the semantics of a specific abstraction.

Abstraction Design vs. Implementation

Abstractions vs. Theory (Models, Algorithms)

Abstraction Design & Implementation vs. Use

Abstract implementations require advanced programming/ software
engineering techniques– “you cant really program if you have not written

a compiler”

21

TEACHING ABSTRACTION DESIGN &

IMPLEMENTATION?

Lectures address design; assignments, implementation (e.g.
Implement a PL interpreter in another PL)

Lectures give high-level pseudo code for complex algorithms; assignments
full implementation (e.g. compilers)

Lectures discuss code for a system of abstractions : assignments
extend/modify this code

Implementations can be complex and need instruction

Pain/gain ratio high, semester barely enough time for
compiler

Code must be understandable and ideally also elegant

22

THE XINU APPROACH TO TEACHING OS

Thread Management

Thread Synchronization

Thread Communication

Interrupt Management

Layering

Reuse of previous layers keeps code short (and hence
presentable in class)

Can unravel a system in stages to a class

Layering good for software engineering as well as pedagogical
reasons

Approach not used in
distributed computing

Need distributed system
layers

23

LAYERS EXIST IN NETWORKING

Physical Communication

Link-Level Communication

IP

UDP TCP/IP

Physical communication in networking

involves machines and used hardware

machine addresses

Physical communication in distributed

systems is between processes and indicates

routing of information among processes

24

DISTRIBUTED VS. NETWORK LAYERS

Process

Thread

Thread

Process

Thread

Thread

Logical

Connection

Process

Thread

Thread

Networking addresses physical

connections and byte communication

among processes

No separate logical connections, object

communication, synchronization, fault

tolerance

Low-level (hidden from programmers)

abstractions

25

DISTRIBUTED SYSTEM VS. NETWORKING

ABSTRACTIONS

Networked Abstractions

Distributed Abstractions

Assembly Language

Abstractions

Programming Language

Abstractions

OS Byte Communication API

Distributed Abstractions

Just as programming language

abstractions are built on top of assembly

language abstractions

Distributed system abstractions are

built on top of networked abstractions

Byte communication APIs, close to

networked abstractions, is provided by

operating systems (e.g. sockets), which

hide networking abstractions

Knowledge of assembly/networked

abstractions important to implement

PL/distributed abstractions

26

DOMAIN INDEPENDENT?

Distributed

Repositories (Files,

Databases)

Remotely Accessible

Services (Printers,

Desktops)

Collaborative

Applications (Games,

Shared Desktops)

Distributed Sensing

(Disaster

Prediction)

Computation

Distribution (e.g.

Simulations)

Will look at domain-
independent concepts at
the intersection of them

OS Byte Communication API

Distributed Abstractions

Even though OS abstractions developed to build distributed OS (file systems),
they are by definition domain-independent

27

LANGUAGE VS. OS ABSTRACTIONS
Both operating systems and programming

languages provide domain-independent
abstractions

Operating systems support processes and

language-independent abstractions for accessing

protected info and sharing information among
processes (files, IPC)

Programming languages must provide fine-
grained abstractions needed within a process

They also provide an interface to OS abstractions
through libraries or language constructs

They can also extend the OS abstractions (e.g.
typed files)

28

LANGUAGE VS. OS, DISTRIBUTED ABSTRACTIONS

Byte communication is all that operating systems
provide

Non distributed programming languages such as
C provide only OS abstractions

Distributed programming languages such as Java
provide a richer variety of abstractions

Will use Java as implementation language

Java provides threads and reflection, making it

easy to implement our own replacements and
extensions of Java abstractions

To extend and replace Java abstractions/layers,
knowledge of them useful

29

JAVA ABSTRACTIONS

Blocking byte

communication

(Sockets)

Blocking stream

object communication

(Object Stream)

Remote procedure call

(RMI)

Non blocking byte

communication

(NIO)

30

JAVA LAYERS

Go beyond Java layers?

OS Byte Communication

Blocking byte

communication

(Sockets)

Blocking stream

object communication

(Object Stream)

Non blocking byte

communication (NIO)

Remote procedure call

(RMI)

31

BEYOND JAVA LAYERS

Implementation

OS Byte Communication

Blocking byte

communication

(Sockets)

Blocking stream

object communication

(Object Stream)

Non blocking byte

communication (NIO)

Remote procedure call

(RMI)

Sync Replicated

Objects

32

GIPC: IMPROVED ABSTRACTIONS AND LAYERS

WITH OPEN SOURCE

Pair-wise Byte, and Object Communication,

Pairwise RPC

Pair-wise Synchronization

Group Communication and RPC

Group Synchronization

Scalability Fault Tolerance

GIPC layers will be replaced,
augmented with assignment

layers

33

COURSE PLAN PRINCIPLE

Cover material for next

assignment (and other relevant

material)

Do next assignment

Lectures Assignments

Boundary conditions?

34

USE NON BLOCKING I/O

Java NIO

Use NIO Tutorials and class

lectures to Implement a

Distributed Program

Lectures Assignments

Distributed Non Blocking

Simulation

Existing non

distributed

simulation

Java NIO

35

HALLOWEEN SIMULATION

Make Beau Anderson’s 401 Halloween
implementation distributed

36

USE RMI

Java RMI

Use Java Tutorials and class

lectures to Implement an RMI-

based Distributed Program

Lectures Assignments

Distributed RMI-based

Simulation

Existing non

distributed

simulation

 RMI

37

USE SYNC REPLICATED OBJECTS

Java Sync

Use class lectures and Sync to

Implement an RMI-based

Distributed Program

Lectures Assignments

Replicated Simulation

Existing non

distributed

simulation

Sync

38

BLOCKING VS. NON BLOCKING SOCKETS

Understand the differences

between blocking and non

blocking communication

Lectures Assignments

High-level buffer communication

Java (Non Blocking) Channels

High-level buffer communication

Java (Blocking) Sockets

39

RECURSION AND SERIALIZATION

 Understand serialization and

really understand recursion

Lectures Assignments

High-level object communication

High-level

Buffer comm.

Java Object

Streams

High-level object communication

High-level

Buffer comm.

Custom Object

Serialization

40

SYNCHRONIZATION AND RPC

Lectures Assignments

Remote Procedure Call

High-level Object

comm.

High-level Object Communication

with Synchronization

Java Thread

Synchronization

Remote Procedure Call

High-level Object

comm.

Java Thread

Synchronization

Use and implement

pairwise synchronization

41

GROUP COMMUNICATION AND FAULT TOLERANCE

Lectures Assignments

High-level

Object comm.

Group Communication

Fault Tolerance

RPC

High-level

Object comm.

More Functional Group

Communication

More Efficient Fault

Tolerance

RPC

Use and implement group

synchronization and fault

tolerance and group

communication

42

LAST PHASE

Lectures Assignments

High-level

Object comm.

More Functional Group

Communication

More Efficient Fault

Tolerance

RPC

Transactions?, Distributed

Hashtables?, Multiprocessor

systems?, ….

43

OBJECTIVES

At the end of the course you will …..

44

DISTRIBUTED COMPUTING

Distributed

Repositories (Files,

Databases)

Remotely Accessible

Services (Printers,

Desktops)

Collaborative

Applications (Games,

Shared Desktops)

Distributed Sensing

(Disaster

Prediction)

Computation

Distribution (e.g.

Simulations)

Internet/Cloud computing increasing relevance of the fundamental concepts

45

PRACTICAL RELEVANCE

For distributed applications, likely to use the

code you implemented than existing abstractions

Existing Java RPC does not work on Android

devices, but the one you implement will

Can send objects over NIO socket channels

Will implement many abstractions not part of

standard Java

Use Sync, which apparently is the basis of some

new Mobile platforms

46

SOFTWARE ENGINEERING PRINCIPLES

Interfaces

Factories and

Abstract factories

Existing classes will be used, inherited but not

modified directly Classes

Alternative implementations will create new

classes implementing existing interfaces

These will allow easy switching between

different implementations

Generics Implementation rather than use of generics to

unite buffer and object communication

Will be both a distributed computing

and software engineering course

47

RELEVANCE TO OS

Inter-process communication key to design of

new OS’s, even non distributed OS

Extensive use of bounded buffers

Will study and use thread synchronization in

depth

Will gain understanding of fundamental

OS concepts except memory

management

Will study how distributed OS are implemented

48

INTRODUCTION TO SYSTEMS

Design and implementation of non
distribution abstractions (Object-

Oriented vs. Functional Languages,
Compilers/Interpreters)

Design and implementation of distributed
system abstractions (e.g. Data

Communication /RPC Design and/or
Implementation)

Systems: Abstraction design and implementation

Distributed systems covers concepts from
many fields

49

EXTRA SLIDES

50

ALTERNATIVE JAVA LAYERS

OS Byte Communication

Blocking byte

communication

(Sockets)

Blocking stream

object communication

(Object Stream)

Remote procedure call

(RMI)

Non blocking byte

communication (NIO)

Remote procedure call Could have more efficient
RPC and non blocking
object communication

Non blocking object

communication

Two RPC’s?

51

IMPROVED ALTERNATIVE JAVA LAYERS

OS Byte Communication

Blocking byte

communication

(Sockets)

Blocking stream

object communication

(Object Stream)

Non blocking byte

communication (NIO)

Non blocking object

communication

Could do late binding
between RPC and lower-

level communication

Go beyond Java
abstractions?

Socket communication is
low level

NIO is even lower level

Programmers rely on usage
patterns

Cannot unite NIO and
socket at byte or object

level

Remote procedure call

52

PATTERN VS. ABSTRACTION (1-COMPUTER

PROGRAMMING)

public final static int RED = 0;

public final static int BLUE = 1;

public final static int GREEN = 2;

int color = RED;

public enum Color {RED, BLUE, GREEN};

Color color = Color. RED;

public final static int LIKE= 0;

public final static int DISLIKE = 1;

public final static int NEUTRAL = 2;

int response = NEUTRAL;

public enum Response {LIKE, DISLIKE, NEUTRAK};

Response response = Response.NEUTRAL;

Pattern

Abstraction

53

JAVA NIOTUTORIAL FOR ECHO SERVER

public void run() {

 while (true) {

 try {

 // Process any pending changes

 synchronized(this.changeRequests) {

 Iterator changes = this.changeRequests.iterator();

 while (changes.hasNext()) {

 ChangeRequest change = (ChangeRequest) changes.next();

 switch(change.type) {

 case ChangeRequest.CHANGEOPS:

 SelectionKey key = change.socket.keyFor(this.selector);

 key.interestOps(change.ops);

 }

 }

 this.changeRequests.clear();

 }

 …..

 }

:

NioServer.java

EchoWorker.java

ServerDataEvent.java

ChangeRequest.java

NioClient.java

RspHandler.java

Vast majority of tutorial readers
will copy and edit this pattern

Much better to identify a
corresponding abstraction and

implement it to understand
channels

D:/My Dropbox/src/NioServer.java
D:/My Dropbox/src/EchoWorker.java
D:/My Dropbox/src/ServerDataEvent.java
D:/My Dropbox/src/ChangeRequest.java
D:/My Dropbox/src/NioClient.java
D:/My Dropbox/src/RspHandler.java

54

PROBLEM WITH JAVA ABSTRACTION LEVEL

OS Byte Communication

Blocking byte

communication

(Sockets)

Remote procedure call

Non blocking byte

communication (NIO)

Non blocking object

communication

Blocking stream

object communication

(Object Stream)
Socket communication is

low level

NIO is even lower level

Programmers rely on usage
patterns

Cannot unite NIO and
socket at byte or object

level

New picture?

55

IMPROVED ALTERNATIVE JAVA ABSTRACTIONS

AND LAYERS

OS Byte Communication

Blocking byte

communication

(Sockets)

Remote procedure call

Non blocking byte

communication (NIO)

Can be bound to either
lower level layer

Alternative high level layer
to socket and NIO based

byte communication

New Object Communication

New Byte Communication

Picture complete? More
abstractions and layers?

Top down vs. bottom up
view point

Design and implementation
challenge

56

IMPROVED ALTERNATIVE JAVA ABSTRACTIONS

AND LAYERS

OS Byte Communication

Blocking byte

communication

(Sockets)

Remote procedure call

Non blocking byte

communication (NIO)

New Object Communication

New Byte Communication

Link setup and communication: How to create a
group of physically/logically connected processes
and communicate informing along these links?

Distributed fault tolerance: How to recover when
one end of the link goes down but the other does

not?

Process synchronization: How to block a (thread
in a) process until the information it needs to

proceed is received from a (thread in a) remote
process

Scalability: How to allow group size to increase
without degrading performance?

No direct support for group setup and
communication, scalability, fault tolerance, and

any process synchronization

57

NEW ABSTRACTIONS: DESIGN CHALLENGE

Pair-wise Byte, and Object Communication,

Pair-wise RPC

Pair-wise Synchronization

Group Communication and RPC

Group Synchronization

Scalability

Fault Tolerance

Layering?

58

DISTRIBUTION ISSUES

Process

Thread

Thread

Process

Thread

Thread

Logical

Connection

Process

Thread

Thread
Relayer

Link setup and communication: How to create a
group of physically/logically connected processes
and communicate informing along these links?

Distributed fault tolerance: How to recover when
one end of the link goes down but the other does

not?

Process synchronization: How to block a (thread
in a) process until the information it needs to

proceed is received from a (thread in a) remote
process

Thread synchronization: How to block a thread
until a condition for proceeding is enabled by a

local thread

Scalability: How to allow group size to increase
without degrading performance?

