
DISTRIBUTED SYSTEMS

Instructor: Prasun Dewan (FB 150, dewan@unc.edu)

2

COURSE HOME PAGE

http://www.cs.unc.edu/~dewan/734/current/index.htmlhttp://www.cs.unc.edu/~dewan/734/current/index.html

3

LECTURES AND ASSIGNMENTS

Current assignment is on the web - start

working ASAP on it

Current assignment is on the web - start

working ASAP on it

No bookNo book

PPT slides and sometimes word docPPT slides and sometimes word doc

Outline of other assignments givenOutline of other assignments given

4

SOFTWARE

Software to be continuously updatedSoftware to be continuously updated

5

GRADE DISTRIBUTION

Exams (Two midterms, no final) 40%

Assignments (Home work) 60%

Fudge Factor (Class

participation, other factors)

10%

6

GETTING HELP

Can discuss solutions with each other at a high levelCan discuss solutions with each other at a high level

Not at the code levelNot at the code level

Sharing of code is honor code violation Sharing of code is honor code violation

Can help each other with debugging as long as it does not lead to code
sharing

Can help each other with debugging as long as it does not lead to code
sharing

Assignments may contain solution in English (read only if stuck)Assignments may contain solution in English (read only if stuck)

7

PIAZZA

8

DISTRIBUTED PROGRAM?

A program “involving” multiple computersA program “involving” multiple computers

Specific computers must be bound at run timeSpecific computers must be bound at run time

 Program can run on a single computer Program can run on a single computer

Definition involves processesDefinition involves processes

9

PROGRAM VS. PROCESS VS. THREAD

Program

Process

Execution

instance
Thread

Thread
Process is execution instance of

program, associated with program
and memory

Process is execution instance of
program, associated with program

and memory

Same program can result in multiple
processes

Same program can result in multiple
processes

Thread is also an independent activity,
but within a process, associated with a

process and a stack

Thread is also an independent activity,
but within a process, associated with a

process and a stack

Processes are independent activities that
can interleave or execute concurrently

Processes are independent activities that
can interleave or execute concurrently

10

DISTRIBUTION OF PROCESSES/THREADS

Process

Thread

Thread

Process

Thread

Thread

Process

Thread

Thread

Different processes can execute on
different (distributed) computers

Different processes can execute on
different (distributed) computers

A single process executes on one
machine

A single process executes on one
machine

11

DISTRIBUTED PROGRAM

Process

Thread

Thread

Process

Thread

Thread

Connection

Execution instance Execution instance

Connected process pair : Some
computation of a process can be

influenced by or influence
computation of the other process

Connected process pair : Some
computation of a process can be

influenced by or influence
computation of the other process

Connected process group: each
process is coupled to at least one

other process in the group

Connected process group: each
process is coupled to at least one

other process in the group

Graph crated by creating pair-wise
dependency links is not partitioned–

every node reachable from every
other node

Graph crated by creating pair-wise
dependency links is not partitioned–

every node reachable from every
other node

12

LOGICAL VS. PHYSICAL INTER PROCESS

CONNECTION LINKS

Process

Thread

Thread

Process

Thread

Thread

Logical

Connection

Process

Thread

Thread

Physical coupling links are physical
inter process communication links

along which information flows in the
network

Physical coupling links are physical
inter process communication links

along which information flows in the
network

Logical links indicate computational
dependencies

Logical links indicate computational
dependencies

RelayerRelayer

Can have logical links without physical
links

Can have logical links without physical
links

Physical links usually imply logical
links

Physical links usually imply logical
links

13

DISTRIBUTED APPLICATIONS

Distributed applications?Distributed applications?

Non distributed applications?Non distributed applications?

In today’s world, what is or should not be
distributed?

In today’s world, what is or should not be
distributed?

14

SOME DISTRIBUTED DOMAINS

Distributed

Repositories (Files,

Databases)

Remotely Accessible

Services (Printers,

Desktops)

Collaborative

Applications (Games,

Shared Desktops)

Distributed Sensing

(Disaster

Prediction)

Computation

Distribution (e.g.

Simulations)

Full courses on some of these areas, with concepts specific to them
(Distributed Databases, Collaborative Applications)

Full courses on some of these areas, with concepts specific to them
(Distributed Databases, Collaborative Applications)

Will look at domain-independent concepts at the intersection of themWill look at domain-independent concepts at the intersection of them

Will not take an application-centric viewWill not take an application-centric view

Fundamental Issues?Fundamental Issues?

15

DISTRIBUTION VS. CONCURRENCY

Process Process

Connection

Process

Thread

Thread

Process

Thread

Thread

Process

Thread

Thread

Connection

Distribution, no fine-
grained concurrency
Distribution, no fine-
grained concurrency

Distribution and fine-
grained concurrency

(typical)

Distribution and fine-
grained concurrency

(typical)

Concurrency, not
distribution

Concurrency, not
distribution

16

NON-DISTRIBUTED VS. DISTRIBUTED PROGRAM

Creates a single process logically and
physically unconnected to any other

process

Creates a single process logically and
physically unconnected to any other

process

Creates a pair or larger group of
connected processes

Creates a pair or larger group of
connected processes

Must deal with sequential and
possibly concurrency issues

Must deal with sequential and
possibly concurrency issues

Must also deal with distribution and
usually concurrency issues

Must also deal with distribution and
usually concurrency issues

Non-DistributedNon-Distributed DistributedDistributed

17

SYSTEMS VIEWPOINT

Operating SystemOperating System

Query Language, Transactions, …Query Language, Transactions, …Database Management SystemDatabase Management System

Programming LanguagesProgramming Languages

SystemSystem

Distributed SystemsDistributed Systems

Computer abstractions to implement
some class of programs

Computer abstractions to implement
some class of programs

Processes, Files, Memory
Management , Threads…,
Processes, Files, Memory
Management , Threads…,

Arrays, Loops, Classes, … Arrays, Loops, Classes, …

Data Communication, Remote
Procedure Call (RPC), …

Data Communication, Remote
Procedure Call (RPC), …

RPC assumes communication consists
of procedure requests and return value

responses

Byte/object communication consists of
byte/object of exchange

18

DISTRIBUTED SYSTEMS

Study of design and/or implementation of computer abstractions for
developing distributed programs

Study of design and/or implementation of computer abstractions for
developing distributed programs

Why distributed systems?Why distributed systems?

Why systems?Why systems?

Alternatives to understand how to program some domain of applications? Alternatives to understand how to program some domain of applications?

Non distributed programs?Non distributed programs?

19

ALTERNATIVES TO UNDERSTANDING

Programming: Use of a specific set of
non distributed abstractions (e.g. ,
functional, MATLAB programming)

Programming: Use of a specific set of
non distributed abstractions (e.g. ,
functional, MATLAB programming)

Distributed Programming : Use of a set
of distributed abstractions (e.g.

Socket/RPC Programming)

Distributed Programming : Use of a set
of distributed abstractions (e.g.

Socket/RPC Programming)

Design and implementation of non
distribution abstractions (Object-

Oriented vs. Functional Languages,
Compilers/Interpreters)

Design and implementation of non
distribution abstractions (Object-

Oriented vs. Functional Languages,
Compilers/Interpreters)

Design and implementation of distributed
system abstractions (e.g. Data

Communication /RPC Design and/or
Implementation)

Design and implementation of distributed
system abstractions (e.g. Data

Communication /RPC Design and/or
Implementation)

Non distributed model and algorithms
(Turing Machines, HeapSort,)

Non distributed model and algorithms
(Turing Machines, HeapSort,)

Distributed Models and Algorithms(e.g. 2-
Phase commit, Group Comm. Model)

Distributed Models and Algorithms(e.g. 2-
Phase commit, Group Comm. Model)

Programming: Abstraction useProgramming: Abstraction use

Systems: Abstraction design and/or
implementation

Systems: Abstraction design and/or
implementation

Theory: Models and algorithmsTheory: Models and algorithms

20

RATIONALE

Abstraction design linked to implementation: Designs are done of only
efficiently implementable abstractions

Abstraction design linked to implementation: Designs are done of only
efficiently implementable abstractions

Abstractions are implemented operational models and have (the more)
practical algorithms in them

Abstractions are implemented operational models and have (the more)
practical algorithms in them

Maturity with design and implementation issues allows you to better
understand the semantics of a specific abstraction.

Maturity with design and implementation issues allows you to better
understand the semantics of a specific abstraction.

Abstraction Design vs. ImplémentationAbstraction Design vs. Implémentation

Abstractions vs. Theory (Models, Algorithms)Abstractions vs. Theory (Models, Algorithms)

Abstraction Design & Implementation vs. UseAbstraction Design & Implementation vs. Use

Abstract implementations require advanced programming/ software
engineering techniques– “you cant really program if you have not written

a compiler”

Abstract implementations require advanced programming/ software
engineering techniques– “you cant really program if you have not written

a compiler”

21

TEACHING ABSTRACTION DESIGN &

IMPLEMENTATION?

Lectures address design; assignments, implementation (e.g.
Implement a PL interpreter in another PL)

Lectures address design; assignments, implementation (e.g.
Implement a PL interpreter in another PL)

Lectures give high-level pseudo code for complex algorithms; assignments
full implementation (e.g. compilers)

Lectures give high-level pseudo code for complex algorithms; assignments
full implementation (e.g. compilers)

Lectures discuss code for a system of abstractions : assignments
extend/modify this code

Lectures discuss code for a system of abstractions : assignments
extend/modify this code

Implementations can be complex and need instructionImplementations can be complex and need instruction

Pain/gain ratio high, semester barely enough time for
compiler

Pain/gain ratio high, semester barely enough time for
compiler

Code must be understandable and ideally also elegantCode must be understandable and ideally also elegant

22

THE XINU APPROACH TO TEACHING OS

Thread ManagementThread Management

Thread SynchronizationThread Synchronization

Thread CommunicationThread Communication

Interrupt ManagementInterrupt Management

Layering Layering

Reuse of previous layers keeps code short (and hence
presentable in class)

Reuse of previous layers keeps code short (and hence
presentable in class)

Can unravel a system in stages to a classCan unravel a system in stages to a class

Layering good for software engineering as well as pedagogical
reasons

Layering good for software engineering as well as pedagogical
reasons

Approach not used in
distributed computing
Approach not used in
distributed computing

Need distributed system
layers

Need distributed system
layers

23

LAYERS EXIST IN NETWORKING

Physical CommunicationPhysical Communication

Link-Level CommunicationLink-Level Communication

IPIP

UDPUDP TCP/IPTCP/IP

Physical communication in networking

involves machines and used hardware

machine addresses

Physical communication in networking

involves machines and used hardware

machine addresses

Physical communication in distributed

systems is between processes and indicates

routing of information among processes

Physical communication in distributed

systems is between processes and indicates

routing of information among processes

24

DISTRIBUTED VS. NETWORK LAYERS

Process

Thread

Thread

Process

Thread

Thread

Logical

Connection

Process

Thread

Thread

Networking addresses physical

connections and byte communication

among processes

Networking addresses physical

connections and byte communication

among processes

No separate logical connections, object

communication, synchronization, fault

tolerance

No separate logical connections, object

communication, synchronization, fault

tolerance

Low-level (hidden from programmers)

abstractions

Low-level (hidden from programmers)

abstractions

25

DISTRIBUTED SYSTEM VS. NETWORKING

ABSTRACTIONS

Networked AbstractionsNetworked Abstractions

Distributed AbstractionsDistributed Abstractions

Assembly Language

Abstractions

Assembly Language

Abstractions

Programming Language

Abstractions

Programming Language

Abstractions

OS Byte Communication API OS Byte Communication API

Distributed AbstractionsDistributed Abstractions

Just as programming language

abstractions are built on top of assembly

language abstractions

Just as programming language

abstractions are built on top of assembly

language abstractions

Distributed system abstractions are

built on top of networked abstractions

Distributed system abstractions are

built on top of networked abstractions

Byte communication APIs, close to

networked abstractions, is provided by

operating systems (e.g. sockets), which

hide networking abstractions

Byte communication APIs, close to

networked abstractions, is provided by

operating systems (e.g. sockets), which

hide networking abstractions

Knowledge of assembly/networked

abstractions important to implement

PL/distributed abstractions

Knowledge of assembly/networked

abstractions important to implement

PL/distributed abstractions

26

DOMAIN INDEPENDENT?

Distributed

Repositories (Files,

Databases)

Remotely Accessible

Services (Printers,

Desktops)

Collaborative

Applications (Games,

Shared Desktops)

Distributed Sensing

(Disaster

Prediction)

Computation

Distribution (e.g.

Simulations)

Will look at domain-
independent concepts at
the intersection of them

Will look at domain-
independent concepts at
the intersection of them

OS Byte Communication API OS Byte Communication API

Distributed AbstractionsDistributed Abstractions

Even though OS abstractions developed to build distributed OS (file systems),
they are by definition domain-independent

Even though OS abstractions developed to build distributed OS (file systems),
they are by definition domain-independent

27

LANGUAGE VS. OS ABSTRACTIONS

Both operating systems and programming

languages provide domain-independent
abstractions

Both operating systems and programming

languages provide domain-independent
abstractions

Operating systems support processes and

language-independent abstractions for accessing

protected info and sharing information among
processes (files, IPC)

Operating systems support processes and

language-independent abstractions for accessing

protected info and sharing information among
processes (files, IPC)

Programming languages must provide fine-
grained abstractions needed within a process
Programming languages must provide fine-
grained abstractions needed within a process

They also provide an interface to OS abstractions
through libraries or language constructs

They also provide an interface to OS abstractions
through libraries or language constructs

They can also extend the OS abstractions (e.g.
typed files)

They can also extend the OS abstractions (e.g.
typed files)

28

LANGUAGE VS. OS, DISTRIBUTED ABSTRACTIONS

Byte communication is all that operating systems
provide

Byte communication is all that operating systems
provide

Non distributed programming languages such as
C provide only OS abstractions

Non distributed programming languages such as
C provide only OS abstractions

Distributed programming languages such as Java
provide a richer variety of abstractions

Distributed programming languages such as Java
provide a richer variety of abstractions

Will use Java as implementation languageWill use Java as implementation language

Java provides threads and reflection, making it

easy to implement our own replacements and
extensions of Java abstractions

Java provides threads and reflection, making it

easy to implement our own replacements and
extensions of Java abstractions

To extend and replace Java abstractions/layers,
knowledge of them useful

To extend and replace Java abstractions/layers,
knowledge of them useful

29

OBJECTIVES

At the end of the course you will …..At the end of the course you will …..

30

DISTRIBUTED COMPUTING

Distributed

Repositories (Files,

Databases)

Remotely Accessible

Services (Printers,

Desktops)

Collaborative

Applications (Games,

Shared Desktops)

Distributed Sensing

(Disaster

Prediction)

Computation

Distribution (e.g.

Simulations)

Internet/Cloud computing increasing relevance of the fundamental conceptsInternet/Cloud computing increasing relevance of the fundamental concepts

31

PRACTICAL RELEVANCE

For distributed applications, likely to use the

code you implemented than existing abstractions

For distributed applications, likely to use the

code you implemented than existing abstractions

Existing Java RPC does not work on Android

devices, but the one you implement will

Existing Java RPC does not work on Android

devices, but the one you implement will

Can send objects over NIO socket channelsCan send objects over NIO socket channels

Will implement many abstractions not part of

standard Java

Will implement many abstractions not part of

standard Java

Use Sync, which apparently is the basis of some

new Mobile platforms

Use Sync, which apparently is the basis of some

new Mobile platforms

32

SOFTWARE ENGINEERING PRINCIPLES

Interfaces Interfaces

Factories and

Abstract factories

Factories and

Abstract factories

Existing classes will be used, inherited but not

modified directly

Existing classes will be used, inherited but not

modified directlyClasses Classes

Alternative implementations will create new

classes implementing existing interfaces

Alternative implementations will create new

classes implementing existing interfaces

These will allow easy switching between

different implementations

These will allow easy switching between

different implementations

GenericsGenerics Implementation rather than use of generics to

unite buffer and object communication

Implementation rather than use of generics to

unite buffer and object communication

Will be both a distributed computing

and software engineering course

Will be both a distributed computing

and software engineering course

33

RELEVANCE TO OS

Inter-process communication key to design of

new OS’s, even non distributed OS

Inter-process communication key to design of

new OS’s, even non distributed OS

Extensive use of bounded buffersExtensive use of bounded buffers

Will study and use thread synchronization in

depth

Will study and use thread synchronization in

depth

Will gain understanding of fundamental

OS concepts except memory

management

Will gain understanding of fundamental

OS concepts except memory

management

Will study how distributed OS are implementedWill study how distributed OS are implemented

34

INTRODUCTION TO SYSTEMS

Design and implementation of non
distribution abstractions (Object-

Oriented vs. Functional Languages,
Compilers/Interpreters)

Design and implementation of non
distribution abstractions (Object-

Oriented vs. Functional Languages,
Compilers/Interpreters)

Design and implementation of distributed
system abstractions (e.g. Data

Communication /RPC Design and/or
Implementation)

Design and implementation of distributed
system abstractions (e.g. Data

Communication /RPC Design and/or
Implementation)

Systems: Abstraction design and implementationSystems: Abstraction design and implementation

Distributed systems covers concepts from
many fields

Distributed systems covers concepts from
many fields

