
BYTE DATA COMMUNICATION

Instructor: Prasun Dewan (FB 150, dewan@unc.edu)

2

CASE STUDIES

XINU IPC: Design and Implementation

Java Sockets

Java Non-blocking IO

Unix Pipes

3

XINU LOW-LEVEL MESSAGE PASSING

Focus is on simplicity of design and use

4

LOCATION OF COMMUNICATING THREADS

Process

Thread

Thread

Multiple address spaces not
supported in XINU

Also true in Several PC OS’s

No notion of a separate process;
process = thread

Intra-address communication

5

OPERATIONS

send (<thread_id>, <int expression>) Non blocking

int receive () Synchronous

int recvclr ()
Non blocking, polling, returns either

message if it exists, otherwise a
special value

Implementation?

6

DATA STRUCTURE

stack

registers

program counter

priority

status

int receivedWord

bool hasMessage

Thread

7

SEND OPERATION

send (tid, intExpression>)

If (! wordReceived) {
 receivedWord = intExpression;
 hasMessage = true;
 if (waiting(tid)) {
 ready(tid))
}

send (tid, 5)

send (tid, 6)

Thread

stack

registers

program counter

priority

status

int receivedWord

bool hasMessage false

5

true

8

RECEIVE OPERATION

int receive ()

If (!wordReceived) {
 status = RECEIVE;
 blockAndResched(currentPid);
}

receive()

hasMessage= false;
return receivedWord;

5
stack

registers

program counter

priority

status

int receivedWord

bool hasMessage false

5

true

CURRENT RECEIVE

false

READY

Thread

9

RECVCLR OPERATION

Thread

stack

registers

program counter

priority

status

Int received word

bool hasMessage

int receive ()

false

If (!word received) {
 return NO_VAL
}

receive()

CURRENT

hasMesage= false;
return receivedWord;

NO_VAL

10

UNIX PIPES

User command

API call

User command exposes part of
the functionality of API call

11

UNIX PIPES

Focus is on Late Binding of Teletype I/O Source and Sink

Stream-based communication

12

INTRA-COMPUTER MESSAGE PASSING

Process

Thread

Thread

Process

Thread

Thread

13

SIMPLEX PIPE?

Pipe

Receiver

Sender man 2 pipe | more

Command interpreter connects
output of a process to input of

another process

14

NAMING?

Pipe

Client

Server

Client

Server

How do writers and readers name the
pipe?

Memory is (usually) not shared by
processes

Child process inherits file descriptors
(and environment variables) from

parent process

15

FILE AND ENVIRONMENT TABLE

Child

Process

Parent

Process

Variable Value

CLASSPATH /usr/java/lib;/lib

PATH /usr/java/bin;/bin

Index Resource

0 STD_IN

1 STD_OUT

2 STD_ERROR

File Table Environment

Index Resource

0 STD_IN

1 STD_OUT

2 STD_ERROR

Variable Value

CLASSPATH /usr/java/lib;/lib

PATH /usr/java/bin;/bin

create
(fork() +
exec()) Copy

Copy

16

Index Resource

0 STD_IN

1 STD_OUT

2 STD_ERROR

SHARING PIPE DESCRIPTORS

Child

Process

Parent

Process

Index Resource

0 STD_IN

1 STD_OUT

2 STD_ERROR

3 PIPE_IN

4 PIPE_OUT

File Table

Index Resource

0 STD_IN

1 STD_OUT

2 STD_ERROR

3 PIPE_IN

4 PIPE_OUT

Copy

pipe(int[2])

create
(fork() +
exec())

How I/O Redirection?

17

COPYING FILE TABLE ENTRIES

Child

Process

Parent

Process

Index Resource

0 STD_IN

1 STD_OUT

2 STD_ERROR

3 PIPE_IN

4 PIPE_OUT

File Table

Index Resource

0 STD_IN

1 PIPE_OUT

2 STD_ERROR

3 PIPE_IN

4 PIPE_OUT

create
(Fork +
Exec) Copy

pipe(int[2])

Can copy file table entry to
another position (standard

input/output) and can close it.

18

I/O REDIRECTION DETAILS

Child

Shell

Shell

Process

Index Resource

0 STD_IN

1 STD_OUT

2 STD_ERROR

cat file | more

fork creates new process
executing same program as

process executing fork
fork()

Child

Shell

Index Resource

0 STD_IN

1 STD_OUT

2 STD_ERROR

3 PIPE_IN

4 PIPE_OUT

Index Resource

0 STD_IN

1 STD_OUT

2 STD_ERROR

3 PIPE_IN

4 PIPE_OUT

Index Resource

0 STD_IN

1 PIPE_OUT

2 STD_ERROR

Index Resource

0 PIPE_IN

1 STD_OUT

2 STD_ERROR

exec
(“ls”)

exec
(“more”)

ls more

exec makes same
process execute

another program,
keeping the file table

Index Resource

0 STD_IN

1 STD_OUT

2 STD_ERROR

3 PIPE_IN

4 PIPE_OUT

19

PIPE (REVIEW)

Pipe

Client

Server

Client

Server

How do writers and readers name the
pipe?

Memory is (usually) not shared by
processes

Child process inherits file descriptors
(and environment variables) from

parent process

20

FILE AND ENVIRONMENT TABLE (REVIEW)

Child

Process

Parent

Process

Variable Value

CLASSPATH /usr/java/lib;/lib

PATH /usr/java/bin;/bin

Index Resource

0 STD_IN

1 STD_OUT

2 STD_ERROR

File Table Environment

Index Resource

0 STD_IN

1 STD_OUT

2 STD_ERROR

Variable Value

CLASSPATH /usr/java/lib;/lib

PATH /usr/java/bin;/bin

create
(fork() +
exec()) Copy

Copy

21

Index Resource

0 STD_IN

1 STD_OUT

2 STD_ERROR

SHARING PIPE DESCRIPTORS (REVIEW)

Child

Process

Parent

Process

Index Resource

0 STD_IN

1 STD_OUT

2 STD_ERROR

3 PIPE_IN

4 PIPE_OUT

File Table

Index Resource

0 STD_IN

1 STD_OUT

2 STD_ERROR

3 PIPE_IN

4 PIPE_OUT

Copy

pipe(int[2])

create
(fork() +
exec())

How I/O Redirection?

22

COPYING FILE TABLE ENTRIES (REVIEW)

Child

Process

Parent

Process

Index Resource

0 STD_IN

1 STD_OUT

2 STD_ERROR

3 PIPE_IN

4 PIPE_OUT

File Table

Index Resource

0 STD_IN

1 PIPE_OUT

2 STD_ERROR

3 PIPE_IN

4 PIPE_OUT

create
(Fork +
Exec) Copy

pipe(int[2])

Can copy file table entry to
another position (standard

input/output) and can close it.

23

I/O REDIRECTION DETAILS (REVIEW)

Child

Shell

Shell

Process

Index Resource

0 STD_IN

1 STD_OUT

2 STD_ERROR

cat file | more

fork creates new process
executing same program as

process executing fork
fork()

Child

Shell

Index Resource

0 STD_IN

1 STD_OUT

2 STD_ERROR

3 PIPE_IN

4 PIPE_OUT

Index Resource

0 STD_IN

1 STD_OUT

2 STD_ERROR

3 PIPE_IN

4 PIPE_OUT

Index Resource

0 STD_IN

1 PIPE_OUT

2 STD_ERROR

Index Resource

0 PIPE_IN

1 STD_OUT

2 STD_ERROR

exec
(“ls”)

exec
(“more”)

ls more

exec makes same
process execute

another program,
keeping the file table

Index Resource

0 STD_IN

1 STD_OUT

2 STD_ERROR

3 PIPE_IN

4 PIPE_OUT

24

Process/

Thread

SEND/RECEIVE BLOCKING TIMES?: MESSAGE PIPE

LINE

sender buffer

system buffer byte

byte Operation started

Message in Source
System Buffer

Bounded buffer semantics write(fd, byte)

Sender waits for non full
buffer

Receiver waits for non
empty buffer

Allows lazy evaluation

Do not to computation that
is not needed

25

BLOCKING TIMES?: MESSAGE PIPE LINE

static void main (String args[] {
 while (true) {
 printf(“infinite output”);
 }
}

infinite_output_producer

infinite_output_producer | head - 2

infinite_output_producer blocks
after filling buffer

head grabs first two lines from
buffer, closes pipe, and

terminates

Parent shell process waiting for
head unblocks and kills

infinite_output_producer

26

PIPES: IMPLEMENTATION

Pipes

Pre 4.2 Unix BSD

Sockets

4.2 Unix BSD

Pipes

27

PIPES: PROS AND CONS

Processes on same computer with
common ancestor

I/O Redirection to Different Processes

28

SOCKETS

Introduced by Berkeley Unix (4.2 BSD)

All OS’s seem to have them in their basic form

Languages such as Java provide a layer above them

29

SOCKETS

Focus is on generality and integration with
File and Teletype I/O

30

NAMING AND SHARING IN PIPES

Child

Shell

Shell

Process

Index Resource

0 STD_IN

1 STD_OUT

2 STD_ERROR

cat file | more

fork()

Child

Shell

Index Resource

0 STD_IN

1 STD_OUT

2 STD_ERROR

3 PIPE_IN

4 PIPE_OUT

Index Resource

0 STD_IN

1 STD_OUT

2 STD_ERROR

3 PIPE_IN

4 PIPE_OUT

Index Resource

0 STD_IN

1 PIPE_OUT

2 STD_ERROR

Index Resource

0 PIPE_IN

1 STD_OUT

2 STD_ERROR

exec
(“ls”)

exec
(“more”)

ls more
Different hosts?

Index Resource

0 STD_IN

1 STD_OUT

2 STD_ERROR

3 PIPE_IN

4 PIPE_OUT

31

NEED TO CONNECT DESCRIPTORS

Process

Socket 1

Some how message sent to socket in one process must be received at
socket in a another process with no common ancestor

Need external names

External

Name

Process

Socket 1

External

Name

32

EXTERNAL NAME

AF_INET address family: host, port number (Java, Unix)

AF_UNIX address family: file name (Unix)

Process

Socket 1

External

Name

Process

Socket 1

External

Name

33

EXTERNAL NAME

Somehow message sent to socket 1 must be received at
socket 2

Process

Socket 1

External

Name

Process

Socket 1

External

Name

34

DATAGRAM SOCKET: SEND GIVES DESTINATION

Process

Socket 1

External

Name

Process

Socket 1

External

Name

DatagramPacket packet= new DatagramPacket(buf, offset,

length host, port);

datagramSocket.send(packet);

DatagramPacket packet= new DatagramPacket(buf, offset,

length);

datagramSocket.receive(packet);

DatagramSocket datagramSocket=

 new DatagramSocket();

DatagramSocket datagramSocket=

 new DatagramSocket();

35

DATAGRAM SOCKET SHARING

Datagram

Socket

Receiver

on

arbitrary

machine

Sender on

arbitrary

machine

Sender on

arbitrary

machine

Datagram

Socket

DatagramPacket packet=

 new DatagramPacket(buf, offset, length);

datagramSocket.receive(packet);

DatagramPacket packet=

 new DatagramPacket(buf, offset, length host, port);

datagramSocket.send(packet);

36

DATAGRAM SOCKET FOR DATAGRAMS

Datagram

Socket

Sender on

arbitrary

machine

Receiver

on

arbitrary

machine

Receiver

on

arbitrary

machine

Datagram

Socket

DatagramPacket packet=

 new DatagramPacket(buf, offset, length host, port);

datagramSocket.send(packet);

DatagramPacket packet=

 new DatagramPacket(buf, offset, length);

datagramSocket.receive(packet);

Convenience method when destination host
and port are repeated?

37

DATAGRAMS: DATAGRAM SOCKET AND SPECIAL

CALLS

Process

Socket 1

External

Name

Process

Socket 1

External

Name

DatagramPacket packet= new DatagramPacket(buf, offset,

length host, port);

datagramSocket.send(packet);

DatagramPacket packet= new DatagramPacket(buf, offset,

length);

datagramSocket.receive(packet);

DatagramSocket datagramSocket=

 new DatagramSocket();

DatagramSocket datagramSocket=

 new DatagramSocket();

38

Process

Socket 1

External

Name

Process

Socket 1

External

Name

DATAGRAMS: SOCKET AND SPECIAL CALLS

inputStream = socket.getInputStream();

int retVal =

 inputStream.read(buf, offset, length);

outputStream = socket.getOutputStream();

outputStream.write(buf, offset, length);

Socket socket=

 new Socket(host, port, false);

Socket socket=

 new Socket(host, port, false);

39

DATAGRAM SOCKET SHARING

Datagram

Socket

Receiver

on

arbitrary

machine

Sender on

arbitrary

machine

Sender on

arbitrary

machine

Datagram

Socket

No private channels

E.g. open file

40

FROM DATAGRAM TO STREAM SOCKET

Process Process

Server

Socket

Handle

Socket

Handle

Socket

Handle

ServerSocket serverSocket =

 new ServerSocket(port);

serverSocket.bind(

 new InetSocketAddress(port));

Socket socket = new Socket();

socket.connect(

 new InetSocketAddress(host, port));

Socket socket =

 serverSocket.accept();

External

Name

outputStream = socket.getOutputStream();

outputStream.write(buf, offset, length);

41

STREAM SOCKET SHARING

Socket

Receiver

on

arbitrary

machine

Sender on

arbitrary

machine

Sender on

arbitrary

machine

ServerSocket Socket Socket

Server socket is used to create
stream-based socket

Each client connects to it to
create a dedicated connection

A data (file) server would create
single server socket

“Open” data source operation
would connect to server socket

Stream-based socket would
represent opened source, which

can be read and written

42

RELIABILITY AND IN-ORDER?

Datagram sockets: no guarantee,
built on top of UDP, message size

limit

Stream sockets: in-order reliable
on top of TCP/IP

Do not have to change IPC
mechanism to change guarantee

Makes sockets complex, Java
separating them

socket = new Socket(host, port, isStream);

socket = new DatagramSocket();

43

READ/WRITE

Socket

Process

Process

Explicit operations to send and
receive information

Integrated with File and Standard
I/O

inputStream = socket.getInputStream();

int retVal =

 inputStream.read(buf, offset, length);

outputStream = socket.getOutputStream();

outputStream.write(buf, offset, length);

44

IMPLICIT VS NON IMPLICIT

Non connection based ipc can use both implicit and
explicit addressing

Connection based ipc uses implcicit addressing of
destination streams and offset within stream

May also define access rights with which connection
was opened

45

Process/

Thread

Process/

Thread

<var>

SEND BLOCKING TIMES?: MESSAGE PIPE LINE

system buffer

sender buffer

system buffer

Operation started

Message in Source
System Buffer

Message in Destination
System Buffer

Destination
thread/process starts

operation

Destination
thread/process finishes

operation

outputStream.write(buf, offset, length);

Semantics should be like file
and terminal I/O

In older systems, file I/O
blocked until data on disk

(synchronous)

Inefficient, specially if stream
I/O

Block until in system buffer

If stream socket, then
message will get through

46

RECEIVE BLOCKING TIMES

inputStream = socket.getInputStream();

int retVal =

 inputStream.read(buf, offset, length);

Block until <= length >=1 bytes received

retVal indicates actual length

Idea is to not block beyond next network message
arrival

Give max value so buffer not overwritten

If expecting message of certain size, must loop

47

BLOCKING OPERATIONS

socket.connect(

 new InetSocketAddress(host,port));

Socket socket =

 serverSocket.accept();

Block until next client tries to
contact the server socket

Block until server accepts
connection to server socket

Block until in system buffer

inputStream = socket.getInputStream();

int retVal =

 inputStream.read(buf, offset, length);

outputStream = socket.getOutputStream();

outputStream.write(buf, offset, length);

Block until <= length >=1 bytes received

48

SOCKET BLOCKING

All operations involve some blocking

What if we want no blocking?

In Java, heavyweight threads can be created

In Unix several primitives for single thread to not
block

In Java special NIO layer for blocking and non
blocking for sockets (and other I/O resources)

49

NIO

Sockets (blocking)

NIO (blocking and non blocking)

Even more flexibility than sockets

How do add non blocking

50

BLOCKING OPERATIONS

socket.connect(

 new InetSocketAddress(host,port));

Socket socket =

 serverSocket.accept();

Block until next client tries to
contact the server socket

Block until server accepts
connection to server socket

Block until in system buffer

inputStream = socket.getInputStream();

int retVal =

 inputStream.read(buf, offset, length);

outputStream = socket.getOutputStream();

outputStream.write(buf, offset, length);

Block until <= length >=1 bytes received

51

receive … <port1> …

XINU VS ADA

receive … <portn> …

select

end

Each arm statically registers and interest
in an operation on a port, and provides
variables and code for completing the

operation

Select chooses which of the enabled
operations is executed

int recvclr ()

Non blocking, polling, returns either
message if it exists, otherwise a

special value

52

COMBINING THE TWO IDEAS

select

end

Select-like concept to register interest in
receive and other operations

Select will not choose operation to execute,
it will tell programmers which operations

are ready

int recvclr ()

Like rcvclr, no operation will ever
block

But will not poll, instead will execute
operation that is ready - guaranteed

to succeed at least partly

Non blocking ready operation such as
rcvclr can then be used without blocking

receive … <port1> …

receive … <portn> …

53

receive … <port1> …

FORM OF SELECT IN NIO

receive … <portn> …

select

end

 Objects for arm and selector

Interest in a port and operation, and execution of operation decoupled

Selector blocks and on unblocking tells its user which of the interested
(operation, resource)pairs are enabled and thus ready for execution

Can dynamically register with a selector interest in an operation (e.g. receive, ,
send, accept) on a resource (e.g. port, file)

54

SELECTOR

Selector Set<SelectionKey> selectedKeys()

SelectionKey register(Selector s, int
ops) Selectable

Channel

Selection

Key

int select()

Selector wakeup()

SelectableChannel channel ()

configureBlocking(boolean)

Selector selector = Selector.open();

Registers interest in (resource,
operation) pair referenced by a key id

SelectionKey key =

selectableChannel.register(selector,

SelectionKey.OP_ACCEPT);

Resource on which async operation may be
executed (replaces Socket, ServerSocket, File)

Single selector for all operations
Blocking call waiting until at least one

registered pair is enabled by some
event, and returning # of such pairs

Keys of actual enabled operations

Key to selectable channel, which can
be used to execute enabled operation

immediately

Unblock select, usually after a new
registration

55

SERVERSOCKET AND SOCKET CHANNELS

Selectable

Channel

Server

Socket

Channel

Socket

Channel

Server

Socket
Socket

ServerSocket socket()

int read(ByteBuffer b)

int write(ByteBuffer b)

Socket socket()

IS-A

HAS-A

InputStream
getInputStream()

OutputStream
getOutputStream()

IS-A

HAS-A

ServerSocketChannel serverSocketChannel =
 ServerSocketChannel.open();

SocketChannel socketChannel =
 SocketChannel.open();

Operations at channel level are
non blocking

Why channel I/O operations?

SocketChannel accept()

Socket accept()

(finish)connect()

56

DATAGRAM CHANNEL

Selectable

Channel

Datagram

Channel

Datagram

Socket

DatagramSocket socket()

IS-A

HAS-A

DataframChannel datagramSocketChannel =
 DatagramChannel.open();

send(DatagramPacket p)

receive(DatagramPacket p)

int read(ByteBuffer b)

int write(ByteBuffer b)

57

CHANNEL VS. STREAM I/O

inputStream = socket.getInputStream();

int retVal = inputStream.read(buf, offset, length);

outputStream = socket.getOutputStream();

outputStream.write(buf, offset, length);

int retVal = socketChannel.read(byteBuffer);

int retVal = socketChannel.write(byteBuffer)

ByteBuffer, like packet, encapsulates buf, offset, and length

Write writes only as many bytes as available in source buffer when in async mode

Channel unlike stream and like Unix file/socket can be read and written

IPC mechanism may not complete operation and same buffer may be used for multiple
batch operations

System can use the buffer directly instead of creating own source or destination buffer

58

Process/

Thread

Process/

Thread

receiver
buffer

DIRECT VS. NON DIRECT

system buffer

sender buffer

system buffer

Direct Buffer: System tries to use sender and
receiver buffer directly without creating

intermediate source or system non direct buffer

Buffer copying is an expensive operation

In synchronous sends safe to avoid copying. In
asynchronous, requires careful programming

Use direct buffer only when performance is an
issue and buffer is long lived

Direct buffer allocation from kernel space so
more costly

59

ALLOCATING DIRECT VS. NON DIRECT

ByteBuffer ByteBuffer.allocateDirect(capacity)

ByteBuffer ByteBuffer.allocate(capacity)

ByteBuffer ByteBuffer.wrap(bytes[])

Direct

Indirect

60

limit

DATA STRUCTURE

capacity position mark

Position of next element to be read or written

Storage for contents

Size of (available) contents

Read may not yield expected bytes, write may not empty all bytes

May use the same buffer for multiple serial operations
or batch operations, need to mark position of first unconsumed byte

mark <= position <= limit <= capacity

61

limit

DATA STRUCTURE

capacity position

size of buffer

first element not be read or written by ipc / app

next element to be read or written by ipc/app int position

int limit

int capacity

ByeBuffer

byte[] contents

mark

isMarked

mark

Position of first unaccessed byte

62

WRITING

ByeBuffer

position

Puts data in it

Invokes channel write

Makes buffer ready for reading by IPC
mechanism

byteBuffer.put(“hello”.getBytes()) put(byte[])

h e l l o

limit

byteBuffer.flip()
flip()

capacity

Application makes buffer ready for writing by it

byteBuffer.clear() clear()

channel.write(buf)  2

mark

63

READING

ByeBuffer

position

Application invokes channel read, channel writes

Reads buffer

Makes buffer ready for reading by it

byteBuffer.read(byteBuffer) get(byte[])

h e l l o

limit

byteBuffer.flip()

capacity

Application makes buffer ready for writing by IPC

byteBuffer.clear()

byte[] bytes = new byte[byteBuffer.remaining()]

byteBuffer.get(bytes)

mark

64

limit

MARKING

int position

int limit

int capacity

ByeBuffer

byte[] contents

capacity position mark

mark

marked

mark position of first unconsumed op mark()

byteBuffer.mark()

Same buffer may be used for multiple batch
operations before result is consumed

Receiving same logical data in multiple physical
chunks

65

OPERATIONS

ByeBuffer

flip()

clear() position = 0, limit = capacity, marked = false

limit = position, position = 0, marked = false

Int remaining() limit – position

mark() mark = position, marked = true

reset() position = mark, if marked

rewind() position = 0, marked = false

put(bytes[] b) For each byte, write next byte at pos, pos++

get(bytes[] b) For each byte, read next byte at pos, and pos++

position(int p) position = p

limit(int l) limit = l

66

NIO EVALUATION

More flexible than even Java sockets

Hence more complex

Even the normal case requires tutorials
describing normal patterns of user

Selection must be done in a single complex
thread

