
INTER PROCESS AND THREAD

COMMUNICATION: DESIGN

SPACE

Instructor: Prasun Dewan (FB 150, dewan@unc.edu)

2

POINTS VS. DESIGN SPACE

Xinu

Pipes

Sockets

RMI

NIO

Sync

Dimensions are issues

Value are approaches

Serialized
Streams

3

OS EXAMPLE

Sy
n

ch
ro

n
iz

at
io

n

Memory Management

4

WHY IPC DESIGN SPACE?

Xinu

Many Examples

Socket Channels

Pipes Sockets

Web Services RMI

Common mechanism and issues

Abstract model to cover all of them

Implementation of the model

5

SCOPE

Process

Thread

Thread

Process

Thread

Thread
 Inter-process coupling

 Communication among
lightweight or heavyweight

processes

 inter-process information
communication

Distributed program

6

UNIFYING BASIS?

Xinu

Pipes

Sockets

RMI

NIO

Sync

Serialized
Streams

Are there forms of IPC that are
fundamentally different from

these?

7

INTRA PROCESS SHARED MEMORY

Process

Thread

Thread

Shared

Object

e.g.: Shared object could be
result of matrix communication

How does information consumer
get notified about new

information?

Thread synchronization
mechanisms (semaphores,

conditions, …)

Receiving thread must wait

Threads in different processes?

Write sends info, read receives it

8

Process

Process

INTER PROCESS SHARED MEMORY

Process

Thread

Thread

Shared

Object

Shared file/database/memory

If not on same computer, then
need process around it

Need some other mechanism to
communicate with the process

9

SHARED MEMORY PROS AND CONS

Familiar model

Global variables considered bad

Threads other than the writer and reader can access them

Receiving thread must wait for or poll for information
(unless some notification mechanism added)

Not sufficient when threads on different computers

Inter-process notification method?

10

Process

(P2)

SOFTWARE INTERRUPTS (SIGNALS)

Process

(P1)

handler1()

handler2()

Operating System

register (1,

handler1)

interrupt

(P2, 1)

Information receiving process registers
software interrupt number and

handlers with OS

Information sender interrupts (signals)
receiving process by naming process

and handler#

OS calls software interrupt handler in
process, interrupting its current
activity, just as hardware calls

hardware-interrupt handler in CPU.

register (interupt#, handler)

interrupt (process id, interrupt#)

Uses stack of current thread

New thread created?

11

Process

(P2)

OS-PROCESS COMMUNICATION

handler1()

handler2()

Operating System

register (1,

handler1)

User wishes to kill process (CTRL-C)

An alarm set by process goes on

Some limit such as file size or virtual
time expired

12

SOFTWARE INTERRUPTS PRO AND CONS

React to OS Event

Assumes processes share an operating system thus not
suitable when processes on different computers

Receiver cannot delay processing information (Dual of
shared memory problem)

Communicates only event id, not parameters of the event

Familiar interrupt model for IPC

No way of queuing signals

Process ids (usually) make no sense on other computers

13

MESSAGE PASSING

Alternative to Shared Memory and Software Interrupts

Sockets

Many Examples

Socket Channels

Pipes HTTP

Web Services RMI

Common mechanism and issues

Abstract model to cover all of them

Traditionally: RPC not considered message passing

GIPC (Generalized IPC) based on abstract model

14

UNIFYING BASIS?

Xinu

Pipes

Sockets

RMI

NIO

Sync

Serialized
Streams

15

Process/

Thread

MESSAGE PASSING: COMMON BASIS

Process/

Thread

Port

(Mailbox)

message3

Processes /threads send each other
messages

Sender deposits message in port
queue (of varying size)

Receiver gets message from queue

Issues?

message 2 message3

message 1

Message Queue

16

DISTINGUISHING ISSUES?

Xinu

Pipes

Sockets

RMI

NIO

Sync

Serialized
Streams

17

ISSUES IN MESSAGE PASSING

Port

(Mailbox)

message3

In-order message delivery?

message 2

message 1

Message Queue

Reliable message delivery?

Port access (and message routing)?

Operations?

Buffering of messages at queue?

Synchronous vs asynchronous ?

Blocking vs non blocking?

Process/

Thread

Process/

Thread

Location of communicating threads?

18

RELIABLE VS. UN-RELIABLE

Port

(Mailbox)

message3

message 2

message 1

Message Queue

Reliable: every message sent to a
port is receivable

When reliability needed, programmer
does not need to implement it

Reliable is less space efficient
(redundancy) and time efficient

(reliability algorithm)

Reliable not always needed

Spam, load averages, telepointers

Networking handles this issue
Process/

Thread

Process/

Thread
Noise, disconnection can cause

unreliability

19

IN-ORDER VS. NOT IN-ORDER DELIVERY

Port

(Mailbox)
message 3 message2

message 1

Message Queue

Order: message received in order in
which they are sent

When order needed, programmer
does not need to implement it

In-order is less space efficient (seq #)
and time efficient (in-order algorithm)

Order not always needed

Commuting operations

Networking handles this issue, but
relevant to distributed computing as

we see later

Process/

Thread

Process/

Thread Different routes can take different
times

20

ACCESS/ROUTING

Port

(Mailbox)

Set of senders and receivers?

Process/

Thread

Process/

Thread

21

SIMPLEX BOUND PORT

Port

(Mailbox)

Communication between a pair of
processes/threads

Receiver

Sender

One is the sender and another the
receiver

A port can represent an opened file in
a file server - File server sends file

bytes to the file client

Example?

22

DUPLEX BOUND PORT

Port

(Mailbox)

Communication between a pair of
processes/threads

Sender/

Receiver

Sender/

Receiver

Either can send or receive

HTTP connection, two–player game

Example?

> 1 sender, receiver?

23

SIMPLEX INPUT PORT

Port

(Mailbox)

A single receiver, called server

Server

Client Client

Arbitrary number of senders, called
clients

Print Server

Messages from all clients queued
together (not a collection of simplex

bound ports)

Few examples where no information
comes back from server

Set of simplex ports?

Example?

24

(REPLYING) DUPLEX INPUT PORT

Port

(Mailbox)

Like simplex equivalent except server
can also send messages to clients, each

with separate queue

Server

Client Client

Http Server, File Server (open, close)

In replying duplex input port, server
can only reply back to messages,

cannot initiate sends

Example of replying?

Security, simpler API

Example of general?

Session manager, relayer

Dual of input port?

25

Process/

Thread

MESSAGE PASSING: COMMON BASIS (REVIEW)

Process/

Thread

Port

(Mailbox)

message3

Processes /threads send each other
messages

Sender deposits message in port
queue (of varying size)

Receiver gets message from queue

Issues?

message 2 message3

message 1

Message Queue

26

DUPLEX BOUND PORT (REVIEW)

Port

(Mailbox)

Communication between a pair of
processes/threads

Sender/

Receiver

Sender/

Receiver

Either can send or receive

HTTP connection, two–player game

Example?

> 1 sender, receiver?

27

(REPLYING) DUPLEX INPUT PORT (REVIEW)

Port

(Mailbox)

Like simplex equivalent except server
can also send messages to clients, each

with separate queue

Server

Client Client

Http Server, File Server (open, close)

In replying duplex input port, server
can only reply back to messages,

cannot initiate sends

Example of replying?

Security, simpler API

Example of general?

Session manager, relayer

Dual of input port?

28

SIMPLEX OUTPUT PORT

Port

(Mailbox)

A single sender, called client

Server

Client

Arbitrary number of receivers, called
servers, sharing a single queue of

received messages

Coupon distribution

Server

message3 message1

A message goes to a single server – it
is not broadcast

Broadcast?

Example?

29

DUPLEX OUTPUT PORT

Port

(Mailbox)

Like simplex output port, except
servers can send messages to client Client

SETI computation

Server Server

Few examples of one client with many
servers

Example?

30

SIMPLEX FREE PORT

Port

(Mailbox)

Client

Load distribution among servers

Server

Client

Server

Arbitrary number of receivers, called
servers, sharing a single queue of

received messages

Arbitrary number of senders, called
clients, to a single message queue

Shared pool of print servers

Examples?

31

DUPLEX FREE PORT

Port

(Mailbox)

Like simplex free port, except servers
can send messages to client Client

Web search server

Server

Client

Server

Unlike servers, clients do not share a
common message queue

General scalabale solution

Less efficient when clients on different
computers

Example?

Which machine has the queue?

32

QUEUE LOCATION IN INPUT PORT AND MESSAGE

LATENCY

Port

(Mailbox)

Server

Client Client

message 2 message3

Message Queue
Unique server has queue

Message sent from client
to server - one hop

33

DUPLEX OUTPUT PORT

Port

(Mailbox)

Client

Server Server

message 2 message3

Message Queue

Unique client, has queue

Message fetched by servers from
client - one hop

34

DUPLEX FREE PORT

Port

(Mailbox)

Client

Server

Client

Server

message 2 message3

Message Queue

No distinguished client or server

In general queue is remote from
both a client and server

Message goes from client to queue
machine, and from queue machine

to server

35

OUTPUT/FREE PORT

Port

(Mailbox)

Server

Client

Server

message3 message1

A message goes to a single server – it
is not broadcast

Broadcast?

36

message 1

MULTICAST/BROADCAST PORT (ROUTING)

Port

(Mailbox)

Client

Server

Client

Server

message 2 message3

Message Queue

A message from client goes to
multiple receivers

In theory could have a single sender

A message from server goes to specific
client

Fault tolerance

Example?

message 1

37

SESSION PORT

Port

(Mailbox)

Process

Process

Process

Process

message 2 message3

Message Queue

A message from a process goes to
every one else

“Reply” goes to sender

Multi-Player Game, Replicated File
System

Example?

message 1

message 1 message 1

38

ACCESS/ROUTING

Port

(Mailbox)

Set of senders and receivers?

Process/

Thread

Process/

Thread

Input Port

Output Port

Bound Port

Free Port

Broadcast Port

Session Port
S

im
p

le
x
 o

r

(R
e
p

ly
in

g
)

D
u

p
le

x

39

DISTINCTION BASED ON ACCESS?

Sockets

Xinu

Pipes

RMI

NIO

40

XINU

send (<thread_id>, <int expression>)

int receive ()

int recvclr ()

41

XINU: SIMPLEX INPUT PORT

Port

(Mailbox)

Each thread (process) has a single built
in input port

Server

Client Client

No need for port creation operations

Not duplex, but sender can be sent
back a message on its input port

Thread id is the port id

A la each Java monitor having a single
built in condition

Less flexible

42

PIPES: SIMPLEX BOUND PORT?

Port

(Mailbox)

Receiver

Sender man 2 pipe | more

Command interpreter connects
output of a process to input of

another process

43

DUPLEX FREE PORT

Port

(Mailbox)

Client

Server

Client

Server

Some process calls pipe() to create the
port

Children of pipe creator can send and
receive messages

Usually one child writes and another
reads

44

SOCKET/NIO ACCESS: MANY KINDS OF SOCKETS

Socket

Process

Process
Server Socket

Stream Socket

Datagram Socket

45

SERVER SOCKET: DUPLEX INPUT PORT

Server

Socket

Server

Client Client
Server socket is used to create

regular sockets

Represent a non-stream input
port handling multiple clients

Each client connects to it to
create a dedicated stream duplex

port

46

STREAM SOCKET: DUPLEX BOUND PORT?

Socket

Process

Process

47

REGULAR STREAM SOCKET: DUPLEX/FREE PORT

Socket

Process

Process Regular socket represents a
duplex port

Children processes share
descriptors, so actually free port

48

DATAGRAM SERVER SOCKET: SIMPLEX INPUT

PORT

(Datagram)

Socket

Server

Client Client

No need to create ServerSocket

Each client also creates a simplex
input port to receive replies

Address of client simplex port sent
with each message

49

RMI ACCESS?

Client Object Server Object

Server Proxy

m(p1, … pN)

m(p1, … pN)

50

RMI: REPLYING DUPLEX INPUT PORT

Server

Socket

Server

Client Client

Can imagine simplex, bound, output,
free port semantics for RMI

51

In-order message delivery?

Reliable message delivery?

Port access?

ISSUES IN MESSAGE PASSING

Port

(Mailbox)

message4

message 2 message3

message 1

Message Queue

Process/

Thread

Process/

Thread

Buffering of messages at queue?

Synchronous vs asynchronous ?

Blocking vs non blocking?

Semantics?

Location of communicating threads?

52

RMI VS. XINU?

Client Object Server Object

Server Proxy

m(p1, … pN)

m(p1, … pN)

send (<thread_id>, <int expression>)

int receive ()

int recvclr ()

53

SEND SEMANTICS?

Port

(Mailbox)

Process/

Thread

Process/

Thread

What does it mean for a
process/thread to consume a message
produced by another process/thread

message

message

Message production

Message consumption

54

REMOTE ASSIGNMENT (DATA COMMUNICATION)

Port

(Mailbox)

Process/

Thread

Process/

Thread

The result of send is to assign a sent
expression to be assigned to some

variable (typically called buffer) in the
remote process/thread

Type of expression depends on
mechanisms and whether language

support is provided to define
primitives

Message is data to be remotely
assigned to a variable

<expression>

<expression>

<var> <expression> Q?<Var> P!<Expression>

CSP (Hoare)

55

RMI VS. XINU? (REVIEW)

Client Object Server Object

Server Proxy

m(p1, … pN)

m(p1, … pN)

send (<thread_id>, <int expression>)

int receive ()

int recvclr ()

56

SEND SEMANTICS? (REVIEW)

Port

(Mailbox)

Process/

Thread

Process/

Thread

What does it mean for a
process/thread to consume a message
produced by another process/thread

message

message

Message production

Message consumption

57

REMOTE ASSIGNMENT (REVIEW)

Port

(Mailbox)

Process/

Thread

Process/

Thread

The result of send is to assign a sent
expression to be assigned to some

variable (typically called buffer) in the
remote process/thread

Type of expression depends on
mechanisms and whether language

support is provided to define
primitives

Message is data to be remotely
assigned to a variable

<expression>

<expression>

<var> <expression> Q?<Var> P!<Exprerssion>

CSP (Hoare)

58

REMOTE PROCEDURE CALL (RPC)

Port

(Mailbox)

Process/

Thread

Process/

Thread

The result of a send is to invoke some
method in the remote receiving

thread/process

Message is request to be remotely
executed

<method>
(<params>)

<method>
(<params>)

<method>
(<params>)

<method>
(<params>)

Usually built on top of object
communication

59

VARIATIONS OF REMOTE ASSIGNMENT

Socket/NIO Stream

Socket/NIO Datagram

Socket Object Stream

60

BYTE DATA COMMUNICATION

Port

(Mailbox)

Process/

Thread

Process/

Thread
Provided by OS interface

Assume expression is a byte sequence

It is assigned to a variable that can
hold such a sequence

bytes

bytes

<var> bytes

bytes bytes

61

BYTE COMMUNICATION COMMUNICATION

Port

(Mailbox)

Process/

Thread

Process/

Thread
Assume expression is a single byte

byte

byte

<var> byte

Byte blocks can be communicated
through libraries

byte byte These blocks are not known to port
queue

Socket/NIO Stream

62

BLOCK COMMUNICATION

Port

(Mailbox)

Process/

Thread

Process/

Thread

Assume expression is a variable sized
byte sequence byte block

byte block

<var> byte block

Port queue is in terms of byte blocks byte block byte block

Socket/NIO Datagram?

63

OBJECT DATA COMMUNICATION

Port

(Mailbox)

Process/

Thread

Process/

Thread
Provided by OO Language

Assume expression is a location-
independent object

It is assigned to a variable that can
hold such an object

<expression>

<expression>

<var> <expression>

Typically implemented on top of
stream or block communication

<expression>

Typically port queue does not
understand objects

64

REMOTE ASSIGNMENT VS. PROCEDURE CALL

Port

(Mailbox)

Process/

Thread

Process/

Thread

<method>
(<params>)

<method>
(<params>)

Port

(Mailbox)

Process/

Thread

Process/

Thread

<var>

<expression>

Can one simulate one with the other?

65

SIMULATING REMOTE PROCEDURE CALL

Port

(Mailbox)

Process/

Thread

Process/

Thread

<method var>

<params>

<method>

<params var>

<params>

<method>

<method>
(<params>)

<method>

<params>

Send expressions encoding
method and parameters

These are assigned to
corresponding remote variables

Side effect of assignment is to call
method with parameters

Goal is to call a method with
params

Several simulating calls for one
simulated call – less efficient if OS

involved
<method>
(<params>)

Efficiency?

66

SIMULATING REMOTE ASSIGNMENT

Port

(Mailbox)

Process/

Thread

Process/

Thread

assign (v)

assign
(<expression>)

assign
(<expression>)

<var>
assign

(<expression>)
<expression>

Define special assign method with
single formal parameter

Call this method with the
expression to be assigned to the

buffer variable

Side effect of method call is to
assign actual parameter to buffer

variable

Goal is to assign some expression
to a buffer variable

More expensive RPC to do RA.

Efficiency?

67

REMOTE PROCEDURE CALL VS. REMOTE

ASSIGNMENT

Suitable when requests must be serviced

Remote assignment can implement RPC

E.g. Next command in simulation

Simulation awkward and not efficient

E.g. join a session

Can simulate remote assignment

Remote assignment suitable when data must be sent

However, simulation awkward and not as efficient

68

OPERATIONS?

Port

(Mailbox)

Process/

Thread

Process/

Thread

<method>
(<params>)

<method>
(<params>)

Port

(Mailbox)

Process/

Thread

Process/

Thread

<var>

<expression> Executed by process that sends
expression or calls method

Every system will have a send operation

Other operations can vary

Multiple or single method may be
associated with port

Assuming multiple; in later examples, a
port names a single method

send(<port>, <expression>) call(<port>, <method>, <params>)

Nature depends on semantics and system

69

LANGUAGE/COMPILER SUPPORT: TYPE CHECKING

AND SPECIAL SYNTAX

send(<port>, <expression>) call(<port>, <method>, <params>)

Allows typed <expression> of arbitrary
type to be assigned to <var> of arbitrary

type

Allows safe method calls, where name
is port is associated with (one or more)

signatures

In example, single signature,
add(int, int), associated with port, and

procedure name is port name

send <port>(<typed expression>)

send load(5.2)

send <port/method>

(<actual params>);

send add(5,3);

send echoer(“hello”) send open(“rpc.doc”);

No language support

70

EXPLICIT RECEIVE (LANGUAGE SUPPORT)

Port

(Mailbox)

Process/

Thread

Process/

Thread

<method>
(<params>)

<method>
(<params>)

Port

(Mailbox)

Process/

Thread

Process/

Thread

<var>

<expression>

Special call by receiver to indicate
willingness to receive

receive <port>(<var>)

send <port>(<expr>)

send load(2.2)

send <port>(<actual parms>)

send add (5, 3)

receive load (newVal)

receive <type> <port>(<formal

param declarations>) {<body>}

receive int add(int p1,int p2){

 return p1 + p2 }

71

IMPLICIT RECEIVE (LANGUAGE SUPPORT)

Port

(Mailbox)

Process/

Thread

Process/

Thread

<method>
(<params>)

<method>
(<params>)

Port

(Mailbox)

Process/

Thread

Process/

Thread

<var>

<expression> System provides way to automatically
assign some known matching variable or

call some known matching procedure
when message arrives

register <port>(<var>)

send <port>(<expr>)

send load(2.2)

send <port>(<actual parms>)

send add (5, 3)

register load (newVal)

register <type> <port>(<formal

param declarations>) {<body>}

register int add(int p1,int

p2){

 return p1 + p2 }

These could have been registered by a
special register call

72

REPLY?

send <port>(<expr>) send <port>(<actual parms>)

Syntax and semantics?

reply (<expr>) reply (<actual parms>)

Last sender is implicit port

Could reply multiple times
according to this definition

73

ISSUES IN MESSAGE PASSING

Port

(Mailbox)

message4

message 2 message3

message1

Message Queue

Process/

Thread

Process/

Thread
In-order message delivery?

Reliable message delivery?

Port access?

Buffering of messages at queue?

Synchronous vs asynchronous ?

Blocking vs non blocking?

Semantics?

Location of communicating threads?

74

SYNCHRONOUS VS. ASYNCHRONOUS

operation(<parms>)

Synchronous: Operation invoker waits until the operation finishes

Asynchronous: Operation invoker does not wait until completion

Some other operation (e.g. software interrupt) needed to wait for result
or completion status

read(file)

send(loadAvgPort, 1.2)

75

SYNCHRONOUS VS. ASYNCHRONOUS VS. BLOCKING

OPERATIONS

operation(<parms>)

Blocking: Operation invoker waits, unblocking possibly before, until, or
after operation completion

Synchronous is always blocking

Blocking is not always synchronous

Logical blocking times?

read(file)

send(loadAvgPort, 1.2)

76

SYNCHRONOUS VS. ASYNCHRONOUS VS. BLOCKING

OPERATIONS (REVIEW)

operation(<parms>)

Blocking: Operation invoker waits, unblocking possibly before, until, or
after operation completion

Synchronous is always blocking

Blocking is not always synchronous

Logical blocking times?

read(file)

send(loadAvgPort, 1.2)

77

BLOCKING (LOGICAL) TIMES? A LA BINDING TIME

Binding time: When is some property bound to an entity?

E.g. when variable bound to to an address, value

Program writing, compilation, link, load, runtime

Tied to phases in the lifetime of a program

Logical times for blocking?

Phases in the lifetime of a message?

Communication pipe line?

78

Process/

Thread

Process/

Thread

<method>
(<params>)

Process/

Thread

Process/

Thread

<var>

BLOCKING TIMES?: MESSAGE PIPE LINE

system buffer

sender buffer

system buffer <expression>

<expression>

<expression>

<expression>

Sender
buffer(stack)

system buffer

<method>
(<params>)

<method>
(<params>)

system buffer
<method>
(<params>)

<method>
(<params>)

Operation started

Message in Source
System Buffer

Message in Destination
System Buffer

Destination
thread/process starts

operation

Destination
thread/process finishes

operation

send(<port>, <expression>) call(<port>, <method>, <params>)

79

BLOCKING TIMES PROS

No waiting, most
concurrency (without

using extra thread)

Sending load average

Waits until buffer
available, prevents

flooding

Sending tele-pointers

Sender knows
message did not get

lost in network

Sending load average on
unreliable port

Sender knows receiving
process did not fail or

ignore message

Sender knows
operation finished

Reservation made by airline,
file received by Dropbox

Remote animation started

Operation started

Message in Source
System Buffer

Message in Destination
System Buffer

Destination
thread/process starts

operation

Destination
thread/process finishes

operation

80

Process/

Thread

Process/

Thread

Process/

Thread

Process/

Thread

<var>

LATE BLOCKING AND BUFFERING

system buffer

sender buffer

system buffer

sender
buffer(stack)

system buffer

system buffer

Operation started

Message in Source
System Buffer

Message in Destination
System Buffer

Destination
thread/process starts

operation

Destination
thread/process finishes

operation

If sender waits, message can be
kept in user buffer until it is in

destination system buffer

send(<port>, <expression>) call(<port>, <method>, <params>)

Size of source and destination
system buffers is an issue

However, multiple messages
from thread cannot be

coalesced into one network
message

flush(port)

Coalescing more important in
byte communication

 Byte communication cannot
allow sender to wait until data

in system buffer

No flooding!

81

USING SENDER BUFFER

Async NIO has direct buffer to prevent copying

Programmer can use select to determine when buffer is available

82

SYNCHRONOUS VS. ASYNCHRONOUS RECEIVE

(SEMANTICS)

Synchronous: Operation invoker waits until the operation finishes

Asynchronous: Operation invoker initiates operation and does not wait
until completion

Synchronous receive: Receive blocks until remote assignment or
procedure call finishes

Asynchronous receive: Receive provides buffers to receive <expression>
or <method> call

Some other operation (e.g. software interrupt) needed to wait for result
or completion status

receive <port>(<var>)

receive <type> <port>(<formal

param declarations>) {<body>}

83

IMPLICIT VS. ASYNC RECEIVE (SEMANTICS)?

Port

(Mailbox)

Process/

Thread

Process/

Thread

<method>
(<params>)

<method>
(<params>)

Port

(Mailbox)

Process/

Thread

Process/

Thread

<var>

<expression> System provides way to automatically
assign some known matching variable or

call some known matching procedure
when message arrives

register <port>(<var>)

send <port>(<expr>)

send load(2.2)

send <port>(<actual parms>)

send add (5, 3)

register load (newVal)

register <type> <port>(<formal

param declarations>) {<body>}

register int add(int p1,int

p2){

 return p1 + p2 }

These could have been registered by a
special register call for all receives

In async receive, a special call made for
each message

84

BLOCKING TIMES IN SOCKETS

socket.connect(

 new InetSocketAddress(host,port));

Socket socket =

 serverSocket.accept();

Block until next client tries to
contact the server socket

Block until server accepts
connection to server socket

Block until in system buffer

inputStream = socket.getInputStream();

int retVal =

 inputStream.read(buf, offset, length);

outputStream = socket.getOutputStream();

outputStream.write(buf, offset, length);

Block until <= length >=1 bytes received

85

ASYNCHRONOUS RPC?

Asynchronous RPC semantics?

Starting remote thread

A remote animation

Example?

86

RENDEZVOUS IN SYNC RPC SEND, RECEIVE

Synchronous RPC port receive

Synchronous port send

wait

Synchronous RPC port receive

Synchronous port send
wait

Receive code executed

Receive code executed wait

Rendezvous

Rendezvous

Receiver may make the sender wait

Sender may make the receiver wait

(Ada) Rendezvous: when RPC is executing – both sender and receiver are waiting

Receive code executed

87

SYNCHRONOUS VS. ASYNCHRONOUS RECEIVE

(PROS/CONS)

Sync: no need to have separate operation to determine
when operation finishes

Receiver can block on a port on which a message does not
arrive

Sometimes receiver does not need notification, shared
memory model

Alpha/beta search optimization parameters, when receiver
next looks at them, the value may have been set

88

WAITING ON MULTIPLE RECEIPTS

receive <port1>(<var>)

receive <type1>

<port1>(<formal params>

{<body>}

receive <port1>(<var>)

receive <type1>

<port2>(<formal params>)

{<body>}

Synchronous receive  fork a thread for each receive (inefficient)

Asynchronous receive  a single thread can wait on multiple receives

A single thread/process can expect messages on multiple ports

New construct for single thread and sync receive?

89

receive … <port1> …

ABSTRACT SYNC SELECT WITH SYNC RECEIVE

receive … <portn> …

select

end

Select operation waits until a matching send arrives for one of the receives

If more than one matching send?

It completes when the receive completes

Pick one non deterministically

90

receive … <portn> …

receive … <port1> …

USUALLY RECEIVE ALL REQUESTS

select

end

Select is typically in a loop

loop

end

Each receive is executed atomically

91

GUARDED RECEIVE

receive … <port1> …

receive … <portn> …

select

end

A receive is matched if a matching send arrives and the guard evaluates to true

loop

<boolexpr>

<boolexpr>

end

guard

Use?

Ensure preconditions, block synchronous sender

92

BOUNDED BUFFER THREAD

loop

 select {

 when size < MAX_SIZE:

 receive void put(ElementType element) {

 buffer[nextIn] = element;

 nextIn = (nextIn + 1) % MAX_SIZE;

 size++;

 }

 when size > 0:

 receive ElementType get() {

 ElementType retVal =

 (ElementType) buffer[nextOut];

 nextOut = (nextOut + 1) % MAX_SIZE;

 size--;

 return retVal;

 }

 }

}
send put(“hello”); retVal = send get();

Bounded Buffer
Thread/Process

Producer Consumer

93

THREAD/PROCESS VS. MONITOR

Monitor

method1()

method2()

S

S

Process/

Thread

Process/

Thread

call

Process/

Thread

port1()

port1()

Process/

Thread

Process/

Thread

send

call

send

94

SHARED MEMORY/MESSAGE PASSING DUALITY

send put(“hello”); put(“hello”);

Guard

Synchronous RPC port receive Procedure

Condition wait

Return from RPC receive Signal and return

Synchronous RPC port send Entry procedure call

Loop and select 1 receive at a time Entry procedure

95

FLEXIBILITY COMPARISON

Guard evaluated once at start Multiple waits in entry procedure

Do we need the extra monitor flexibility?

One signal, which is a return Multiple signals

Probability not

96

EXPLICIT SYNC VS. IMPLICIT RECEIVE (PROS,

CONS)

Can be used to make sender wait when sync send

Necessary to simulate monitors

Sender has to wait

loop, select, receive needed

If other mechanisms available to make sender wait, then
implicit receive better

Usually implicit receive for RPC, and explicit receive for
remote assignment (data communication)

97

LOCATION OF COMMUNICATING THREADS?

Process

Thread

Thread

Process

Thread

Thread

98

LOCATION OF COMMUNICATING THREADS?

Process

Thread

Thread

Process

Thread

Thread

99

INTRA-PROCESS (ADDRESS SPACE)

COMMUNICATION

Process

Thread

Thread
Intra-Process: Avoids global memory

Rationale?

100

INTRA-COMPUTER MESSAGE PASSING

Process

Thread

Thread

Process

Thread

Thread

Inter-Process: Cooperating processes

ls | more

101

INTER-COMPUTER MESSAGE PASSING

Process

Thread

Thread

Process

Thread

Thread

Inter-Computer  Inter-Process

Inter-Computer: Cooperating remote processes

File, web, …, servers

102

LOCATION: APPLICATIONS

Intra-Process: Avoids global memory

Inter-Process: Cooperating processes

Inter-Computer: Cooperating remote processes

ls | more

File, web, …, servers

More flexible and distant the message passing, the
more complex the API and implementation

103

HOW TO NAME PORT?

Port

Thread B

Thread A

104

INTRA-PROCESS (ADDRESS SPACE)

COMMUNICATION

Process

Thread

Thread

In same process, shared
memory

A single port variable can
be used by all threads

Port

Handle
Port

Xinu, CSP

105

INTRA-COMPUTER MESSAGE PASSING

Process
Process

With different processes,
on same OS, different

resource (file) descriptors
name common port

Similar to naming shared
file

These can be inherited
from common parent

process (like standard I/O)
or they can have external

name like a file name

Port

Process-

specific local

handle

Process-

specific local

handle

Pipes

106

GENERAL MESSAGE PASSING: EXTERNAL NAME

Process Process

Cannot inherit handle from
common parent

Need an external name on which both
parties agree

Port

Local Handle
Remote

Handle

107

ALTERNATIVES

Not compatible if underlying communication mechanism requires handshake and
thus connection

An external name server keeps name to handle binding

Datagram Socket

Can use external name for each message, specifying machine address each time

External name may be bound to handle, which may result in handshake between
two machines and authentication and access control at connection time

Access control needed on each message

Stream Socket

Java RMI

108

CONNECTION VS. NON CONNECTION

Non connection based IPC can use any of these mechanisms

Connection based ipc uses handles, not involving external name
server, representing specific connection that defines data

associated with connection such as offset in stream and rights

109

IPC DESIGN SPACE

Shared Memory

Software Interrupts

Message Passing (Multiple Dimensions)

Send blocking times

Language support?

Buffer sizes?

RPC or RA

Explicit receive?

Select?

Reply?

Receive Blocking
times?

Reply blocking
times?

Access?

Byte, Block or
Object

In-order?

Reliable?

Location of
communicating

threads?

Naming?

