IMPLEMENTATION OF FAULT
TOLERANT ATOMIC BROADCAST

‘ Instructor: Prasun Dewan (FB 150, dewan@unc.edu)

(\
=
)
?

FAULT TOLERANCE

ABSTRACT TECHNIQUES

e.g. Hamming code

e.g. timeout and retransmission

e.g.. redundant array of independent disks

FAULTS IN DISTRIBUTED SYSTEMS

INFORMATION REDUNDANCY IN DISTRIBUTED
SYSTEMS

Active replication

Active replication: A, B, C, replaced by A, AA, AAA ...; B, BB, BBB .., C,
CC, CCC.., and if A sends message M to B in original, A* send
message to B* in new system, and B* chooses majority result

Passive Replication

Passive Replication: A, B, C, augmented with by AA, AAA, ...; BB, BBB,
..., CC, CCC, ... and if A’s state changes, the corresponding change is
made on AA and AAA. If A fails, AA takes over. If AA fails, AAA takes

over

FAULT TOLERANCE PROBLEMS: CONSENSUS
PROBLEM

Set of processes decide on some value

e.g. Who Relays, whether a transaction should be
committed, which value to choose

ASYNCHRONOUS VS. SYNCHRONOUS SYSTEMS

IMPOSSIBILITY RESULTS IN IN DISTRIBUTED
SYSTEM

Asynchronous Systems

Cannot achieve consensus as long as one faulty process

Do not know if a process is faulty or taking too long

Synchronous Systems

Can achieve consensus as long as ratio of total/faulty
processes is above a certain threshold (M faulty in 3M + 1
total processes)

Rounds of communication with timeouts

CONSISTENCY PROBLEM IN BROADCAST

FIFO

Messages Mil, M2 sent by P are received in
order by every receiver Q

Causal Broadcast

If P sends a message M2 after seeing M1 then M2
is received after M1 in every receiver Q

ATOMIC BROADCAST

Communication History

Privilege-Based

Moving Sequencer

Destination Agreement

FIXED SEQUENCER

Broadcast-Broadcast

P broadcasts M to sequencer and all destinations. Sequencer sends sequence
number and hashcode of M to all destinations. Destinations deliver messages based
on sequence number

Unicast-Unicast-Broadcast

P unicasts message to sequencer, which unicasts sequence number to it. P
broadcasts message with sequence number

TECHNIQUES IN DISTRIBUTED SYSTEMS

Active replication

Active replication: A, B, C, replaced by A, AA, AAA ...; B, BB, BBB .., C,
CC, CCC.., and if A sends message M to B in original, A* send
message to B* in new system, and B* chooses majority result

Atomic broadcast without fault means that all processes will have the
same state at quiescence

FAULT TOLERANT ATOMIC BROADCAST

FIXED SEQUENCER, UNICAST BROADCAST:
BASIC IDEA AND ASSUMPTIONS

Assume each message has been sent to each of the current session members—
no latecomer

Assume synchronous system, when a process fails, within a specified time
(chosen by TCP/IP) period all other processes know because of probe messages,
and any in-transit messages are discarded

Next relayer chosen based on purely local information, no expensive
synchronization done but it is possible to solve the consensus problem

Assume no erroneous or malicious code or hardware

Peer to peer: any process can act as a relayer, no special sequencer

NON FAULT TOLERANT ARCHITECTURE WITH
SEPARATION OF CONCERNS

ct can be composed o
uplers, reference rela
Client Object

Relayer Elector

Session Port

=
-
=2
—
=

Connection

Manager

CONNECTIONS

Client Object Relayer Object
ector is session por

Connection
Manager

Session Port manager responds

ands and calls rela
get current relay

erence (possibly su
onnector if relayer
imply a function ca

Relayer Elector

EVENTS

Sent-broadcast: A message sent by a relayer-client to a relayer.

Received-broadcast: A message received by a relayer from a relayer-client.

Sent-relay: A message sent by a relayer to a relayer-client.

Received-relay: A message received by a relayer-client from a relayer.

Process left: A process has left the session.

Process joined: A process has left the session.

BASIC FAULT-TOLERACE ALGORITHM

Client algorithm

When the leaving of a relayer is detected, the next Session Port
broadcast is sent to the new relayer

Server algorithm

Client Object

When the leaving of a relayer is detected, the client
object is removed from the list of clients

Relayer Elector

Passive voice?

Connection
mption: A relayer does not die in the midd Manager
sending messages

FAULT TOLERANT ARCHITECTURE WITH
SEPARATION OF CONCERNS

Session Port

=
-
=2
e e
=

er responds to leave c
ng destination of broad
updating client map

Client Object

subclass of Relayer Elec

Relayer Elector same connections

n: A relayer does not
dle of sending messa

Connection

Manager

REACTING TO PARTIAL BROADCAST

Passive Replication Requirements

1. Any message sent by a remote client to the dead
relayer should be received by all clients

2. Any message sent by the dead relayer to a remote
client should be received by all clients

Key idea: one or more clients has the message(s) that
old relayer partially broadcast, which can be
rebroadcast using the old relayer

1. 2Sent messages must be buffered

2. 2 Received messages must be buffered

CHANGES TO BASIC ALGORITHM

Client algorithm

When the leaving of a relayer is detected,
synchronization phase is entered and one or more
messages are rebroadcast

Session Port

When messages are sent/received, they are buffered
and the sequence numbers of received messages used
to determine what is rebroadcast

During synchronization phase new messages are
buffered and at end of phase they are sent

Client Object

Relayer Elector

Server algorithm

Each relayed message wrapped with current sequence
number before being sent to client object

When the leaving of a relayer is detected, the new
relayer goes into a synchronization phase before doing
new relay

Connection

Manager

Architecture
changes?

a

0&
=
)

?

FILTER OBJECTS

Session Port

Client Object

Relayer Elector

Connection
Manager

Send and
Receive Filter

CONNECTIONS

are GIPC awa
FT logic in th

Client Object Relayer Object

receive and s

Connection By Session Port
Manager

r can be sepa
nd slave FT

MESSAGE EVENTS

Sent-broadcast: A message sent by a relayer-client to a relayer.

Received-broadcast: A message received by a relayer from a relayer-client.

Sent-relay: A message sent by a relayer to a relayer-client.

Received-relay: A message received by a relayer-client from a relayer.

Send finish synchronization message: A message received by the master FT
manager to the slave FT manager to indicate synchronization is over

Receive finish synchronization message: A message received by the master FT
manager to the slave FT manager to indicate synchronization is over

Must somehow generate (application-specific) sent-broadcasts and sent-relay
messages and distinguish them from synchronization messages

FILTER OBJECT

CONNECTIONS

are GIPC awar
FT logic in th

Client Object Relayer Object

Connection Session Port
Manager

receive and s

er can be sepa
nd slave FT m

FT Manager

Client/Relayer
Headers

GIrc AND RPC CALLS

Assume that client and relay objects make remote procedure calls

The messages passes to filter objects are instances of SerializableCall

The toHeader() method of such a call tells its signature which can be specified in
a list

GIrc AND RPC CALLS

Server algorithm

Each relayed message wrapped with current
sequence number before being sent to client object

Each sent-relay in response to a received-broadcast
must be assigned the same sequence number

Server FT manager Keeps track of N, the number of
clients

Assigns sequence number on received-broadcast and
wraps the next N sent-relay messages with N

CONCURRENCY ISSUES

Server algorithm

During synchronization phase new messages are
buffered and at end of phase they are sent

Synchronized method can broadcast,

THREADS

Sent-broadcast: A message sent by a relayer-client to a relayer.

App thread

Received-broadcast: A message received by a relayer from a relayer-¢

RPC thread

Sent-relay: A message sent by a relayer to a relayer-client.

RPC thread

Received-relay: A message received by a relayer-client from a relay

RPC thread

Send finish synchronization message: A message received by the mas
manager to the slave FT manager to indicate synchronization is ov

Select Thread

Receive finish synchronization message: A message received by the master F1

manager to the slave FT manager to indicate synchronization is over

Original transmission and retransmission can occur in different threads

Retransission in select thread

BUFFERING

Client algorithm

Sent/received messages are buffered and the
sequence numbers of received messages used to
determine what is rebroadcast

REPLICATED VS. DISTRIBUTED BUFFERING

Replicated Buffering

A client buffers all received messages and unbuffers messages it knows have been

Unbuffers messages it knows have been received by all sites

Last sequence number sent with every broadcast and periodically a special
synchronization message sent with sequence number

Distributed Buffering

A client buffers messages it has sent and at most one message from te current relayer

When a message is echoed back or a relayer message is received, previous message is

unbuffered..

Effcient but less flexible:
assumes synchronized
broadcast (GIPC group

function call)

No fault occurs during synchronization phase — one fault
at a time assumption

MORE WRAPPING

Distributed Buffering

Need a way to know its message has been bounced
back or that a relayer message has been received

Wrap message with message with unique (host and
local sequence number) which must be unwrapped

DISTRIBUTED BUFFERING

Client algorithm

When the leaving of relayer is detected, the slave FT Manager sends the buffered
message with the highest sequence number (relayer or local)

A relayed message is discarded if its sequence number is not expected

Server algorithm

When the leaving of a relayer is detected, the master FT manager chooses the
maximum received message and sends it to all clients that have not received the
message or all sites and sends a finish synchronization message

KEY IDEAS

