
IMPLEMENTATION OF FAULT

TOLERANT ATOMIC BROADCAST

Instructor: Prasun Dewan (FB 150, dewan@unc.edu)

2

FAULT TOLERANCE

Ability to recover from unexpected situationsAbility to recover from unexpected situations

3

ABSTRACT TECHNIQUES

Information redundancyInformation redundancy

Time redundancyTime redundancy

Physical redundancyPhysical redundancy

e.g. Hamming code

e.g. timeout and retransmission

e.g.. redundant array of independent disks

4

FAULTS IN DISTRIBUTED SYSTEMS

Crash Failure: Process works correctly until it haltsCrash Failure: Process works correctly until it halts

Omission failure: Receive or send omissionOmission failure: Receive or send omission

Timing failure: does not respond in expected periodTiming failure: does not respond in expected period

Arbitrary failure: unexpected response at arbitrary timeArbitrary failure: unexpected response at arbitrary time

5

INFORMATION REDUNDANCY IN DISTRIBUTED

SYSTEMS

Active replicationActive replication

Passive Replication: A, B, C, augmented with by AA, AAA, …; BB, BBB,
…, CC, CCC, … and if A’s state changes, the corresponding change is
made on AA and AAA. If A fails, AA takes over. If AA fails, AAA takes

over ….

Passive Replication: A, B, C, augmented with by AA, AAA, …; BB, BBB,
…, CC, CCC, … and if A’s state changes, the corresponding change is
made on AA and AAA. If A fails, AA takes over. If AA fails, AAA takes

over ….

Active replication: A, B, C, replaced by A, AA, AAA …; B, BB, BBB .., C,
CC, CCC .., and if A sends message M to B in original, A* send
message to B* in new system, and B* chooses majority result

Active replication: A, B, C, replaced by A, AA, AAA …; B, BB, BBB .., C,
CC, CCC .., and if A sends message M to B in original, A* send
message to B* in new system, and B* chooses majority result

Passive ReplicationPassive Replication

6

FAULT TOLERANCE PROBLEMS: CONSENSUS

PROBLEM

Set of processes decide on some valueSet of processes decide on some value

e.g. Who Relays, whether a transaction should be
committed, which value to choose

7

ASYNCHRONOUS VS. SYNCHRONOUS SYSTEMS

Asynchronous SystemsAsynchronous Systems

No bound on the time required to respond to a messageNo bound on the time required to respond to a message

Synchronous SystemsSynchronous Systems

Bound on the time required to a messageBound on the time required to a message

8

IMPOSSIBILITY RESULTS IN IN DISTRIBUTED

SYSTEM

Asynchronous SystemsAsynchronous Systems

Cannot achieve consensus as long as one faulty processCannot achieve consensus as long as one faulty process

Synchronous SystemsSynchronous Systems

Can achieve consensus as long as ratio of total/faulty
processes is above a certain threshold (M faulty in 3M + 1

total processes)

Can achieve consensus as long as ratio of total/faulty
processes is above a certain threshold (M faulty in 3M + 1

total processes)

Do not know if a process is faulty or taking too long

Rounds of communication with timeouts

9

CONSISTENCY PROBLEM IN BROADCAST

FIFO FIFO

Messages Mi1, M2 sent by P are received in
order by every receiver Q

Messages Mi1, M2 sent by P are received in
order by every receiver Q

Causal BroadcastCausal Broadcast

If P sends a message M2 after seeing M1 then M2
is received after M1 in every receiver Q

If P sends a message M2 after seeing M1 then M2
is received after M1 in every receiver Q

Atomic BroadcastAtomic Broadcast

If P received M2 after M1, then so does every other
process Q

If P received M2 after M1, then so does every other
process Q

10

ATOMIC BROADCAST

Communication HistoryCommunication History

Privilege-BasedPrivilege-Based

Fixed SequencerFixed Sequencer

Moving SequencerMoving Sequencer

Destination AgreementDestination Agreement

11

FIXED SEQUENCER

Unicast-BroadcastUnicast-Broadcast

P unicasts M to S, which sends M with Sequence Number to all
processes including P, which deliver messages in order

P unicasts M to S, which sends M with Sequence Number to all
processes including P, which deliver messages in order

Broadcast-BroadcastBroadcast-Broadcast

P broadcasts M to sequencer and all destinations. Sequencer sends sequence
number and hashcode of M to all destinations. Destinations deliver messages based

on sequence number

P broadcasts M to sequencer and all destinations. Sequencer sends sequence
number and hashcode of M to all destinations. Destinations deliver messages based

on sequence number

Unicast-Unicast-BroadcastUnicast-Unicast-Broadcast

P unicasts message to sequencer, which unicasts sequence number to it. P
broadcasts message with sequence number

P unicasts message to sequencer, which unicasts sequence number to it. P
broadcasts message with sequence number

12

TECHNIQUES IN DISTRIBUTED SYSTEMS

Active replicationActive replication

Passive Replication: A, B, C, augmented with by AA, AAA, …; BB, BBB,
…, CC, CCC, … and if A’s state changes, the corresponding change is
made on AA and AAA. If A fails, AA takes over. If AA fails, AAA takes

over ….

Passive Replication: A, B, C, augmented with by AA, AAA, …; BB, BBB,
…, CC, CCC, … and if A’s state changes, the corresponding change is
made on AA and AAA. If A fails, AA takes over. If AA fails, AAA takes

over ….

Active replication: A, B, C, replaced by A, AA, AAA …; B, BB, BBB .., C,
CC, CCC .., and if A sends message M to B in original, A* send
message to B* in new system, and B* chooses majority result

Active replication: A, B, C, replaced by A, AA, AAA …; B, BB, BBB .., C,
CC, CCC .., and if A sends message M to B in original, A* send
message to B* in new system, and B* chooses majority result

Passive ReplicationPassive Replication

Atomic broadcast without fault means that all processes will have the
same state at quiescence

Atomic broadcast without fault means that all processes will have the
same state at quiescence

13

FAULT TOLERANT ATOMIC BROADCAST

Asynchronous SystemsAsynchronous Systems

Synchronous SystemsSynchronous Systems

If we can do fault tolerant atomic broadcast, then we could have
consensus, which is impossible

If we can do fault tolerant atomic broadcast, then we could have
consensus, which is impossible

Reliable vs unreliable communicationReliable vs unreliable communication

Application-level vs network based broadcastApplication-level vs network based broadcast

14

FIXED SEQUENCER, UNICAST BROADCAST:
BASIC IDEA AND ASSUMPTIONS

Assume each message has been sent to each of the current session members–
no latecomer

Assume each message has been sent to each of the current session members–
no latecomer

Assume synchronous system, when a process fails, within a specified time
(chosen by TCP/IP) period all other processes know because of probe messages,

and any in-transit messages are discarded

Assume synchronous system, when a process fails, within a specified time
(chosen by TCP/IP) period all other processes know because of probe messages,

and any in-transit messages are discarded

Next relayer chosen based on purely local information, no expensive
synchronization done but it is possible to solve the consensus problem
Next relayer chosen based on purely local information, no expensive

synchronization done but it is possible to solve the consensus problem

Peer to peer: any process can act as a relayer, no special sequencerPeer to peer: any process can act as a relayer, no special sequencer

Assume no erroneous or malicious code or hardwareAssume no erroneous or malicious code or hardware

15

NON FAULT TOLERANT ARCHITECTURE WITH

SEPARATION OF CONCERNS

Session PortSession Port

Client ObjectClient Object

Relayer ObjectRelayer Object

Relayer ElectorRelayer Elector

Connection

Manager

Connection

Manager

Awareness?Awareness?

Client object can be composed of model, in
and out couplers, reference relayer elector
Client object can be composed of model, in
and out couplers, reference relayer elector

16

CONNECTIONS

Session PortSession Port

Client ObjectClient Object Relayer ObjectRelayer Object

Relayer ElectorRelayer Elector

Connection

Manager

Connection

Manager

Relayer elector is session port unaware Relayer elector is session port unaware

Connection manager responds to join and
leave commands and calls relayer elector

to get current relayer

Connection manager responds to join and
leave commands and calls relayer elector

to get current relayer

Client reference (possibly subclassed)
relayer connector if relayer elector is

simply a function call

Client reference (possibly subclassed)
relayer connector if relayer elector is

simply a function call

17

EVENTS

Sent-broadcast: A message sent by a relayer-client to a relayer.

Received-broadcast: A message received by a relayer from a relayer-client.

Sent-relay: A message sent by a relayer to a relayer-client.

Received-relay: A message received by a relayer-client from a relayer.

Process left: A process has left the session.

Process joined: A process has left the session.

18

BASIC FAULT-TOLERACE ALGORITHM

Client algorithmClient algorithm

When the leaving of a relayer is detected, the next
broadcast is sent to the new relayer

Server algorithmServer algorithm

When the leaving of a relayer is detected, the client
object is removed from the list of clients

Assumption: A relayer does not die in the middle of
sending messages

Assumption: A relayer does not die in the middle of
sending messages

Passive voice?Passive voice?

Session PortSession Port

Client ObjectClient Object

Relayer ObjectRelayer Object

Relayer ElectorRelayer Elector

Connection

Manager

Connection

Manager

19

FAULT TOLERANT ARCHITECTURE WITH

SEPARATION OF CONCERNS

FT Manager responds to leave command
by changing destination of broadcasts and

updating client map

FT Manager responds to leave command
by changing destination of broadcasts and

updating client map

Can be subclass of Relayer Elector and
same connections

Can be subclass of Relayer Elector and
same connections

Assumption: A relayer does not die in the
middle of sending messages

Assumption: A relayer does not die in the
middle of sending messages

Session PortSession Port

Client ObjectClient Object

Relayer ObjectRelayer Object

Relayer ElectorRelayer Elector

Connection

Manager

Connection

Manager

Master and

Slave FT

Manager

Master and

Slave FT

Manager

20

REACTING TO PARTIAL BROADCAST

2. Any message sent by the dead relayer to a remote
client should be received by all clients

1. Any message sent by a remote client to the dead
relayer should be received by all clients

Key idea: one or more clients has the message(s) that
old relayer partially broadcast, which can be

rebroadcast using the old relayer

Key idea: one or more clients has the message(s) that
old relayer partially broadcast, which can be

rebroadcast using the old relayer

1. Sent messages must be buffered

2. Received messages must be buffered

Passive Replication RequirementsPassive Replication Requirements

21

CHANGES TO BASIC ALGORITHM

Client algorithmClient algorithm

When the leaving of a relayer is detected,
synchronization phase is entered and one or more

messages are rebroadcast

Server algorithmServer algorithm

Each relayed message wrapped with current sequence
number before being sent to client object

When messages are sent/received, they are buffered
and the sequence numbers of received messages used

to determine what is rebroadcast

When the leaving of a relayer is detected, the new
relayer goes into a synchronization phase before doing

new relay

Architecture
changes?

Architecture
changes?

Session PortSession Port

Client ObjectClient Object

Relayer ObjectRelayer Object

Relayer ElectorRelayer Elector

Connection

Manager

Connection

Manager

Master and

Slave FT

Manager

Master and

Slave FT

Manager

During synchronization phase new messages are
buffered and at end of phase they are sent

22

FILTER OBJECTS

Session PortSession Port

Client ObjectClient Object

Relayer ObjectRelayer Object

Relayer ElectorRelayer Elector

Connection

Manager

Connection

Manager

Master and

Slave FT

Manager

Master and

Slave FT

Manager

Send and

Receive Filter

Send and

Receive Filter

23

CONNECTIONS

Session PortSession Port

Client ObjectClient Object Relayer ObjectRelayer Object

FT ManagerFT Manager

Connection

Manager

Connection

Manager

FiltersFilters

As Filters are GIPC aware, best to
no FT logic in them

As Filters are GIPC aware, best to
no FT logic in them

Separate receive and send filterSeparate receive and send filter

FT manager can be separated into
master and slave FT managers

FT manager can be separated into
master and slave FT managers

24

MESSAGE EVENTS

Sent-broadcast: A message sent by a relayer-client to a relayer.

Received-broadcast: A message received by a relayer from a relayer-client.

Sent-relay: A message sent by a relayer to a relayer-client.

Received-relay: A message received by a relayer-client from a relayer.

Receive finish synchronization message: A message received by the master FT
manager to the slave FT manager to indicate synchronization is over

Send finish synchronization message: A message received by the master FT
manager to the slave FT manager to indicate synchronization is over

Must somehow generate (application-specific) sent-broadcasts and sent-relay
messages and distinguish them from synchronization messages

Must somehow generate (application-specific) sent-broadcasts and sent-relay
messages and distinguish them from synchronization messages

25

FILTER OBJECT

We can specify the messages generated by client and relay objectsWe can specify the messages generated by client and relay objects

Needs a way to distinguish between messages are internally communicated by
GIPC and those generated by client and relay object

Needs a way to distinguish between messages are internally communicated by
GIPC and those generated by client and relay object

26

CONNECTIONS

Session PortSession Port

Client ObjectClient Object Relayer ObjectRelayer Object

FT ManagerFT Manager

Connection

Manager

Connection

Manager

FiltersFilters

As Filters are GIPC aware, best to
no FT logic in them

As Filters are GIPC aware, best to
no FT logic in them

Separate receive and send filterSeparate receive and send filter

FT manager can be separated into
master and slave FT managers

FT manager can be separated into
master and slave FT managers

Client/Relayer

Headers

Client/Relayer

Headers

27

GIPC AND RPC CALLS

Assume that client and relay objects make remote procedure callsAssume that client and relay objects make remote procedure calls

The messages passes to filter objects are instances of SerializableCall

The toHeader() method of such a call tells its signature which can be specified in
a list

28

GIPC AND RPC CALLS

Server algorithmServer algorithm

Each relayed message wrapped with current
sequence number before being sent to client object

Each sent-relay in response to a received-broadcast
must be assigned the same sequence number

Server FT manager Keeps track of N, the number of
clients

Assigns sequence number on received-broadcast and
wraps the next N sent-relay messages with N

29

CONCURRENCY ISSUES

Server algorithmServer algorithm

During synchronization phase new messages are
buffered and at end of phase they are sent

Synchronized method can broadcast,

30

THREADS

Sent-broadcast: A message sent by a relayer-client to a relayer.

Received-broadcast: A message received by a relayer from a relayer-client.

Sent-relay: A message sent by a relayer to a relayer-client.

Received-relay: A message received by a relayer-client from a relayer.

Receive finish synchronization message: A message received by the master FT
manager to the slave FT manager to indicate synchronization is over

Send finish synchronization message: A message received by the master FT
manager to the slave FT manager to indicate synchronization is over

Original transmission and retransmission can occur in different threadsOriginal transmission and retransmission can occur in different threads

App threadApp thread

RPC threadRPC thread

RPC threadRPC thread

RPC threadRPC thread

Select ThreadSelect Thread

Retransission in select thread Retransission in select thread

31

BUFFERING

Client algorithmClient algorithm

Sent/received messages are buffered and the
sequence numbers of received messages used to

determine what is rebroadcast

32

REPLICATED VS. DISTRIBUTED BUFFERING

A client buffers all received messages and unbuffers messages it knows have beenA client buffers all received messages and unbuffers messages it knows have been

A client buffers messages it has sent and at most one message from te current relayerA client buffers messages it has sent and at most one message from te current relayer

Effcient but less flexible:
assumes synchronized
broadcast (GIPC group

function call)

Effcient but less flexible:
assumes synchronized
broadcast (GIPC group

function call)

No fault occurs during synchronization phase – one fault
at a time assumption

No fault occurs during synchronization phase – one fault
at a time assumption

Last sequence number sent with every broadcast and periodically a special
synchronization message sent with sequence number

Last sequence number sent with every broadcast and periodically a special
synchronization message sent with sequence number

Unbuffers messages it knows have been received by all sitesUnbuffers messages it knows have been received by all sites

When a message is echoed back or a relayer message is received, previous message is
unbuffered..

When a message is echoed back or a relayer message is received, previous message is
unbuffered..

Replicated BufferingReplicated Buffering

Distributed BufferingDistributed Buffering

33

MORE WRAPPING

Need a way to know its message has been bounced
back or that a relayer message has been received

Wrap message with message with unique (host and
local sequence number) which must be unwrapped

Distributed BufferingDistributed Buffering

34

DISTRIBUTED BUFFERING

Client algorithmClient algorithm

When the leaving of relayer is detected, the slave FT Manager sends the buffered
message with the highest sequence number (relayer or local)

Server algorithmServer algorithm

When the leaving of a relayer is detected, the master FT manager chooses the
maximum received message and sends it to all clients that have not received the

message or all sites and sends a finish synchronization message

A relayed message is discarded if its sequence number is not expected

35

KEY IDEAS

Passive ReplicationPassive Replication

Synchronous SystemsSynchronous Systems

Client, Relayer, FT Manager, Filter, Connection Manager ArchitectureClient, Relayer, FT Manager, Filter, Connection Manager Architecture

Partial vs. Complete BroadcastPartial vs. Complete Broadcast

Distributed vs. Replicated BufferingDistributed vs. Replicated Buffering

