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ABSTRACT
In general, collaboration infrastructures have supported
sharing of an object based on its logical structure.
However, current implementations assume an implicit
binding between this logical structure and particular
system-defined abstractions. We present a new composable
design based on programming patterns that eliminates this
binding, thereby increasing the range of supported objects
and supporting extensibility.

INTRODUCTION
The development of distributed collaborative applications
is a challenging task and requires a number of
implementation solutions that are not readily available in
generic distributed system toolkits. To simplify and lower
the cost of development of collaboration software, a large
number of collaborative infrastructures have been built.
Although their solutions vary, the approaches they have
taken can be classified in two broad categories.

One of the approaches emphasizes automation by
supporting a fixed number of system-defined shared
abstractions, for which the system provides various
collaboration services. However, applications developed
using these abstractions are inherently limited in scope and
capabilities. For example, systems such as XTV that
support sharing of the (system-defined) abstraction of a
window provide a high level of automation but are
fundamentally suited for WYSIWIS collaboration. The
main problem here is that the infrastructure uses the sharing
of the user interface of the object as a means of sharing the
object itself and, therefore, the two cannot be separated.

The other approach emphasizes flexibility by providing
lower-level primitives for sharing arbitrary, programmer-
defined abstractions. This however, comes at the price of
higher development cost, as the programmer must
manually implement the sharing services. For example,

broadcast methods [13] provide a basis for implementing
sharing of arbitrary objects, however, it is the responsibility
of the developer to implement the specific mechanism.

The outlined approaches can also be viewed as representing
two extreme design points in a fundamental trade-off
between the system knowledge about the shared object and
the kind of support it can provide. That is, the more a
system knows about the object, the more specialized
service it can provide. Inversely, the less it assumes about
the object, the wider range of objects it can accommodate.
For example, if two users are editing the same document
simultaneously, and the document is opaque to the system,
any two concurrent updates are conflicting. At the same, if
the system knows that a document consists of a sequence of
sections, it will consider simultaneous modifications to be
in conflict only if they are within the same section. Further
subdivisions of document (e.g., subsections, sentences, and
words) present even better opportunities to provide fine-
grained collaboration services.

In an attempt to integrate the described approaches, a
number of systems, such as GroupKit [10], provide two-
level support for sharing: Applications using a set of
system-defined object types get an automatic high-level
sharing mechanism, whereas applications requiring
programmer-defined types are given lower-level
collaboration primitives to implement the desired behavior.
This hybrid approach, however, does not reconcile the
other two–it merely provides them under one roof.
Therefore, the problem of designing a single mechanism
that provides both automation and flexibility without the
described limitations is still open and is the subject of this
work. Specifically, we are interested in providing such a
sharing mechanism for object-based systems.

The first idea that helps us address this problem builds on
the fact that collaboration services can be automated
without full knowledge of the object semantics. For
example, the concurrency control semantics mentioned
above can be implemented by simply knowing the structure
of the object. Thus, from a collaboration point of view, the
structure of the shared object is more important than the
particular semantics it implements.



The second idea is to provide flexibility by developing a
component-based architecture that permits incremental
modifications to the system. The idea of component-based
architectures is not new; our contribution is its application
to the domain of collaboration.

We have developed an approach for creating collaboration
infrastructures based on these two ideas. The approach
builds on the notion of a bean by extracting the logical
stricture of an object based on patterns in the signatures of
the public methods of the object. The second idea addresses
the problem of flexibility within the infrastructure itself,
that is, giving the developer the ability to change every
aspect of the collaboration services. To achieve this we
present a component-based architecture that permits
incremental modifications to the system. We have
implemented the approach in a system supporting three
important collaboration services: coupling, merging, and
access control.

The rest of this paper is organized as follows. In the next
section, we briefly survey a list of influential systems in the
CSCW domain and identify the relationships among the
design choices of these systems and their advantages and
limitations. Next, we use these design choices to identify a
set of generic requirements for collaborative and show that
none of the existing systems meets all of these
requirements. Following that, we describe a new approach
for meeting these requirements and present two concrete
implementations of the approach that support coupling and
merging, respectively. Finally, we summarize our findings
and outline future extensions of this work.

RELATED WORK
The first prerequisite for building any distributed
application is the availability of a standard communication
mechanism. The TCP/IP socket-based communication
provides the basic means of remote message delivery and
enables the development of any distributed application.
However, its relatively low-level interface essentially
forces the development of application-specific message
protocols.

To illustrate the problems with using TCP/IP, consider how
it can support sharing of replicas of a document object that
has a title, a sequence (ordered list) of sections, and a set of
keywords and is an instance of the following class:
class Document {

 String getTitle();
 void   setTitle(String title);

 Section getSection(int i);
 void    setSection(int i,Section s);
 int     getSectionCount();
 void    insertSection(int i,Section s);
 void    removeSection(int i);

 void     addKeyword(String key);
 void     removeKeyword(String key);
 String[] getKeyword();

}

Programmers using TCP/IP must implement a message
protocol to encode updates performed on the object, such

as changing the title or adding a new section. A separate
concern here is organizing group communications to
propagate the updates, and yet another concern is ensuring
consistency. Solving these problems involves tedious and
routine work that involves writing code for operations, such
as message parsing, that are not part of the main application
functionality.

To free the application-programmers from defining such a
message protocol, the abstraction of remote procedure calls
(RPC) was introduced [2]. RPC bridges the gap in the
abstraction level between the application and the network
interface by reducing the programming effort of remote
access to a procedure call. For instance if we use Java’s
standard RMI (remote method invocation) mechanism, we
could export any of the above methods and invoke them
remotely instead of encoding them as messages.

To automate group communication, many collaboration
systems provide multicasting facilities. Corona [12], for
example, is a server-based general-purpose multicast
system that provides support for maintaining group
membership and for message delivery. If we apply this
approach to our document problem, we would be relieved
from the burden of organizing the lower-level details of
communication but we would still be responsible for
designing the communication protocol among the client
replicas and ensuring consistency.

Integrating the ideas of group communications and RPC,
GroupKit [10] provides a higher-level collaboration
abstraction–multicast RPC–that allows a procedure call to
be automatically invoked on multiple hosts. An analogous
idea has been applied to objects and has resulted in the
implementation of broadcast methods, such as the ones
provided by the Xerox's Colab [13] system. To appreciate
the advantages of this system, let us consider how it can
help in sharing of the example object. We could declare all
of the methods that modify the state of the object
(setTitle, setSection, insert/removeSection,
add/ removeKeyword) as broadcast. As a result, if all
instances in the object group start with the same state, they
will be kept consistent at all times (assuming that
broadcasts are atomic and excluding non-idempotent
operations). Thus, we achieved one commonly used form
of sharing at a very low programming cost. However, given
two versions of the same document, broadcast methods
alone would be of little help in restoring consistency.

Since this operation-centric mechanism is not suited for all
collaboration scenarios, other systems have taken a more
data-centric approach by providing a system-defined shared
abstraction. In shared window systems, such as XTV [1]
and DistView [9], collaboration is achieved through
automatic sharing of application windows. Hence, to
implement our document-sharing example, all we need is
any single-user implementation of a text editor and a shared
window system. Unfortunately, a shared window system is
not a silver bullet for our sharing problems. It is inherently
limited by the fact that it cannot allow sharing of an object
without also forcing the sharing of its user interface. For



instance, it cannot allow two different users to share the
document object but scroll to different parts of it.

Choosing a different shared abstraction does not help
much. To illustrate this, consider GroupKit’s [10] shared
environments, which are dictionary-style data structures
containing keys and associated values. The main feature of
these environments is that all replicas are automatically
kept consistent, and the application can register callbacks to
learn about events of interest, such as insertions and
deletions. To use the automatic sharing of GroupKit in our
example, we would have to cast the document structure
into an environment. However, this is both difficult and
unnatural as the structure is inherently recursive and
requires certain ordering.

Sync [8] provides a more flexible solution by embedding
generic collaboration capabilities into several base classes
that can be combined with each other to create a larger
variety of structures. In particular, the system provides
classes for replicated records, sequences, and dictionaries.
An application developed using these classes requires
virtually no additional support to use the merging
framework provided by the system. On the other hand, the
framework exhibits the problems of shared window
systems and GroupKit if a programmer-defined class must
be shared. For instance, we cannot take our document
object as it is and ask Sync to provide merging services.
Instead, we must decompose it into a replicated record
containing a string, a replicated sequence, and a replicated
dictionary field. Further subdivisions of the document
hierarchy must follow the same rules. In summary, we are
faced with the choice of casting the shared data structure
into a predefined set of primitives, or implementing it using
a custom-built sharing mechanism.

Thus, what we need is a mechanism to flexibly share
arbitrary programmer-defined types. Such a mechanism has
been implemented in Suite [3]. It allows the developer to
choose any data representation and still get fine-grained
structure-based collaboration services. The problem with
Suite, however is that it is a C-based system and, therefore,
does not support objects. Hence, constructing our shared
document involves redefining it in terms of C data types.
Another concern is the fact that Suite is designed as a
monolithic system and changing aspects of the provided
collaboration functions is difficult and error-prone.

To address the latter problem, Prospero [4] uses
computational reflection as a means of allowing the
application to change the implementation of the
collaboration toolkit. Another way to achieve this is to
break the system into smaller components and define
interfaces among them. In this case, modifications are
introduced by replacing components with compatible ones.
If all components adhere to the specified interfaces, the
overall system correctness should not be compromised. For
instance, JComposer [5] was initially implemented as a
single-user CASE editing tool but due to its component-
based design was seamlessly extended to a collaborative
application. Furthermore, the implemented collaboration

services can be independently used to create collaborative
versions of other editing applications.

Each of the described systems has made its own set of
design choices based on initial assumptions and target
application domains. Based on our discussion so far, we
can identify the following collaborative infrastructure
requirements.

INFRASTRUCTURE REQUIREMENTS
Automation. As with most development environments,
automation is the primary purpose of collaborative
infrastructures. Typically, automation is measured by the
amount of code a programmer has to write to build a
particular application. In the case of a collaborative
environment, it is a measure the developer’s effort to
achieve multi-user behavior with respect to the single-user
case.

Flexibility. The flexibility requirement is so broad that we
must consider different aspects of it to classify different
systems. We distinguish among four different types of
flexibility.

• Semantics flexibility. This refers to the generic
capabilities of the infrastructure to offer an
implementation platform for a full range of
collaborative services. To evaluate a system with
respect to this requirement, we ask the question: what
range of collaboration behavior can be achieved using
the mechanisms supplied by the toolkit?

• Extensibility. It is not reasonable for any system to
assume that it provides an exhaustive list of features
covering all possible applications and scenarios.
Hence, it is important to allow programmers to devise
their own extensions and to customize system
behavior.

• Composability. This is an extension of the previous
requirement–a composable system allows the
developer to take any part of the system and replace it
with a custom one. An important issue here is the
granularity at which this process takes place–ideally, it
should be restricted only to those logical components
that need to be changed.

• Abstraction flexibility. As part of the task to lower the
development cost, infrastructures must support sharing
of as many types of objects as possible–in particular
programmer-defined object types.

Reuse. Often, the development of multi-user applications
starts with a fully implemented single-user version of it.
Therefore, the extent to which existing functionality is
reused has a direct impact on the complexity and cost of the
application development.

Standard language support. It is important to avoid
(whenever possible) additional support from the language,
such as specialized compilers or interpreters. Thus, the
implementation of the collaboration infrastructure should
not be bound to a specialized language interpreter and can
be modified independently.



Table 1 evaluates each of the described systems with
respect to the derived requirements. When a requirement
can be met to different extents, we use high(H),
medium(M) and low (L) to approximate the degree to
which the requirement can be met. The main purpose of
this evaluation is to establish benchmarks that will help us
in evaluating the success of the proposed new design. Table
1 clearly shows that none of the presented systems meets
all of the requirements to a high degree. Therefore, our goal
is to design a system that satisfies each requirement at least
as well as the best system in the category.
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TCP/IP L H H L Y H Y
RPC/RMI L H H L Y H N/Y
Corona M H H L Y M Y
Multicast RPC M H H L Y H Y
XTV/DistView H M L L Y H Y
Sync H M L L N L Y
Suite H M L L Y L N
JComposer L M H H N H Y

Table 1 System evaluation

PROPERTIES AND PATTERNS
Let us consider first how a high-level of automation and
semantics flexibility can be provided for programmer-
defined objects. To understand how this goal can be
achieved, consider the two approaches we have seen above
in the treatment of object semantics in current collaboration
infrastructures.

The first one assumes nothing about the object semantics
and leaves the development of sharing mechanisms entirely
in the hands of the programmer. This leads to an open
system where flexibility is not restricted but the lack of
semantic information limits the automation opportunities.

The second approach takes the opposite assumption as a
starting point–object semantics is fixed up front (through a
set of system-defined objects) and appropriate
collaboration services are provided. This leads to a much
higher degree of automation but may pose flexibility
problems if the supplied primitives are inadequate for a
particular application, or code reuse is an issue.

The key to automation is the automated discovery of object
structure. Once the structure is derived, we can use existing
techniques to provide means of supporting variable-grained
collaboration functions.

Our solution is based on the observation that an object is
not an opaque entity but represents a logical structure.
Therefore, what is needed are ways to extract this structure
without violating the data encapsulation principle. As it

turns out, the JavaBeans framework [6] provides a basis for
implementing this approach.

Simple and indexed properties
The main goal of JavaBeans is to define a generic
component-based architecture for Java programs. An
application built according to the architecture consists of
(Java) beans–objects that adhere to a particular
programming style that permits their automated
customization and composition. Beans are programmed
using certain conventions that allow an external agent,
called the introspector, to decompose them into
components called properties.

'Properties are discrete, named attributes of a Java Bean
that can affect its appearance or its behavior' [6]. This is a
very broad definition that can be applied to a wide range of
objects. However, for the purposes of describing the logical
structure of an object we need a more precise property
definition. Therefore, by summarizing the discussion in [6],
we give the following definition.  An (object) property is a
named attribute of an object that adheres to a well-defined
semantics and is implemented by a set of dedicated
methods.

The main benefit of this more formal definition is that it
specifies that properties are externally recognizable by the
appearance of a specific group of methods, and requires
that these methods implement a pre-defined semantics.
Intuitively, we can think of a property as representing an
abstract data type with the corresponding methods
implementing the individual operations on the type.

By default, Java recognizes two types of properties–simple
and indexed. A simple property is defined by a pair of 'get'
and 'set' methods of the following form:

<PropertyType> get<PropertyName>()
void set<PropertyName>(<PropertyType> value)

The 'get' method corresponds to a read operation and
returns the current value of the property, whereas the 'set'
method defines a write operation that assigns a new value
to the property. Thus, if a matching 'get'/'set' pair is found
during the object analysis, then a read-write property
named propertyName of type PropertyType is
discovered. In some cases, one of the methods may be
absent in which case the property is considered as write-
only/read-only respectively.

Indexed properties are a natural extension of simple
properties and approximate standard array semantics in
procedural languages. Whenever a simple property of an
array type is discovered, it is considered to be an indexed
property. The object is then searched for a second pair of
get/set methods that manipulate individual elements by
their index.

The main advantage of this property-based view of the
object is that it enables the logical decomposition of a bean
object by representing it as a collection of properties with
predefined semantics. However, the standard JavaBeans
model exhibits a number of limitations that stem from the



fact that property naming conventions and semantics are
hardwired into the system:

• Legacy code must either be rewritten to comply with
the exact specification, or interfacing code must be added.
In general, even previous versions of the Java APIs have
not followed such strict conventions. Well-written systems
usually follow similar conventions but may use other
keywords. For example, instead of ’get’, developers may
have used other verbs to describe the reading of a property–
'read', 'check', etc. Similarly, write operations may be
represented by methods starting with 'write', 'update', 'reset',
etc., instead of 'set'. To accommodate such classes within
JavaBeans framework, the developer must supply
additional BeanInfo classes for each of the original classes.

• Typing information is not used in defining the property
name. For example, given the following method signatures,
public void set(Parent newParent);
public void set(Editor newEditor);

the standard Java introspection will not recognize them as
defining two write-only properties–parent and editor. It is
natural to interpret the above signatures as shorthand for

public void setParent(Parent newParent);
public void setEditor(Editor newEditor);

which would be interpreted as defining properties.

Finally, and most importantly, the set of recognizable
properties is limited and the system provides no means of
extending it. It is not hard to argue that the existing Java
support for properties is not general enough for our
purposes. A quick look at the widely used Vector and
Hashtable classes that are part of the JDK reveals that,
according to the standard Java Introspection, they have no
identifiable properties of their own. One possible solution
is to replace all Vector and Hashtable occurrences in the
source with appropriately written adapter classes. An
adapter class is a direct descendant of the class it replaces
and defines additional methods that adhere to the
JavaBeans naming conventions and, therefore, has
properties. However, this solution is fundamentally
unsuitable, as it does not capture the dynamic nature of the
Vector class–its ability to incrementally change its
structure through the addition/removal of individual
elements.

To overcome the outlined limitations, we extend the
standard JavaBeans property model to allow for a more
flexible specification.

Generalized properties and programmer-defined
patterns
In an effort to gain flexibility, we split the problem of
specifying a property from its interpretation. Therefore, we
introduce the notion of programming patterns as a means
of generalizing the JavaBeans naming conventions. A
programming pattern (or pattern) is a set of method naming
conventions, whose purpose is to expose aspects of the
structure and the semantics of an object. In particular,
patterns can be used to advertise object properties. Thus,

Java's get/set naming conventions are just a special case of
using patterns.

Our next problem is to provide a mechanism that is flexible
enough to accommodate the description of arbitrary
(programmer-defined) properties through patterns. For that
purpose, we use a declarative property specification
language, which is explained below.

We adopt the de facto standard mixedCase naming
convention as the basis for our pattern analysis.
Specifically, we assume that method names consist of one
or more tokens. The beginning of each token is marked by
a capital letter following a small letter or, in case there is
more than one consecutive capital letters, by a capital letter
followed by a small letter. For example, getUIGenerator
is decomposed into three tokens (get-ui-generator).
The rest of this paper discusses pattern matches only at the
token granularity.

The first step in the property specification is to define
method signature patterns (method patterns) that select
candidate methods. The patterns are based on a canonical
string representation of method signatures of the form
<return_type> method_name(arg1_type, …,argN_type)

In addition, method patterns contain free pattern variables
that are assigned string values and are denoted by enclosing
them in a pair of dots. For example, to define the standard
Java Introspection ’get’/’set’ methods we use the following
declarations:
getter = <.GetType.> get.Prop.()
setter = <void> set.Prop.(.SetType.)

Pattern variables are assigned upon the completion of a
successful match, and contain the maximum length match
(which may span several tokens). For example, if the above
getter declaration is matched against the method int
getXPos(), the values of the pattern variables would be as
follows GetType == "int" and Prop == "xPos".

The second step is to define the conditions under which
candidate methods are grouped together to define
properties. To illustrate this, consider the following
declaration, which completes the description of the
standard Java properties1.
property
  type = simple
  methods = getter, setter
  constraints
    getter.Prop == setter.Prop
    getter.GetType == setter.SetType
  handler = colab.bus.SimplePropertyHandler
  name = getter.Prop
end

                                                          
1 The actual system implementation discussed in the case
studies uses XML to represent the property definitions. For
the sake of brevity, we have used simplified syntax in this
discussion.



The specification states that a property of type simple is
defined whenever two methods can be found such that they
match the getter/setter patterns, and their respective pattern
variables satisfy the given constraint equalities. Recall that
the reason for extracting properties of an object was to
perform several structure-based functions such as diffing
and merging automatically. This processing tends to be
done recursively, with a different object handling each
level of the structure. The type of this object depends on
the property. The handler of a property is the class of the
object that performs the structure-based operations for the
property. It is looked up by the handler of the parent of the
property. After looking it up, the handler can instantiate it
and invoke appropriate (operation-specific) methods in it.
The last line gives a rule for deriving a public name for the
property that helps distinguish it from other properties
derived by the same specification.

Recall that one of the shortcomings of the JavaBeans
model was the inability to provide alternative patterns for
the same type of property. To show how we handle this
issue, consider describing the special case of boolean
properties. As an exception to standard JavaBeans naming
conventions, the system allows the ’get’ method to have
following form:
boolean is<PropertyName>();

Describing this exception in our model is straightforward–
all we need is an alternative definition for the getter
method and the rest of the definitions will work as before:
getter = <boolean> is.Prop.()

Our next order of consideration is identifying a set of
properties that should, by default, be supported by the
infrastructure. Given our goal of achieving the level of
support of current systems, we choose a model that
parallels that of Sync, which provides the largest set of
structures. Since simple properties already express the
same structure as Sync’s replicated records, we only need
to define properties analogous to its replicated sequence
and dictionary types.

For that purpose, we use sequence and table properties. A
sequence, as already discussed, represents a mapping
between natural numbers and object elements, thus
introducing an implicit ordering among the elements. A
table consists of a series of associated key-value pairs of
objects. Both sequences and tables can have a variable
number of elements. Although sequences can be viewed as
a special case of tables, their widespread use warrants
separate treatment.

Following our pattern approach, we detect a sequence
property by the presence of a pair of get/set methods that
access/assign individual sequence elements, a size method
that returns the number of elements, and a pair of
insert/delete methods that introduce structural changes by
inserting/removing elements.

Similarly, to distinguish a table property, we search the
object for a get method, as well as a pair of put/remove
methods. The only notable difference with sequences is that

we need an additional elements method that returns an
enumeration of all current elements.

Thus, our model provides default implementations of four
types of properties–simple, indexed, sequence, and table.
(Indexed properties are entirely subsumed by sequences but
are included for compatibility reasons.) However, the
programmer is free to modify/extend the set of supported
properties by providing appropriate specifications and
implementing the property-specific part of the
collaboration services. To incorporate new types of
properties  in the collaborative application, the developer
invokes the system-provided PropertyIntrospector, which
reads in the specifications, registers the corresponding
handler classes, and performs the pattern matches on the
shared objects.

The discussion so far showed how object structure can be
used to reconcile the requirements of abstraction flexibility
and automation. Our evaluation table, however, shows that
to meet all requirements we also need to resolve the
conflicts among the requirements of composability,
automation, and reuse.

Composition requires that objects communicate using a
well-defined generic protocol. Furthermore,
communication should be indirect to avoid unnecessary
object dependencies that limit composability. Thus, we
adopt an event-based approach that satisfied these two
requirements and discuss its implication for our
collaboration model.

EVENTS
Once again the original JavaBeans framework provides the
basis for our event model. Recall that, in JavaBeans, there
is only one type of operation (write) that leads to state
changes. Therefore, there is a single type of event
(PropertyChangeEvent) that covers all updates and, by
convention, is issued by the bean object after each property
modification. However, given our extended set of
recognizable properties, we need an appropriate extension
of the event model. For each new property, we need a new
event object that can encode the specific operations
performed on the property. In general, such an event
includes the type of the operation, e.g., insert, and its
arguments, e.g., {“Bob Smith”, 1}. Thus, the event model
closely matches the supported properties.

Another requirement that bean objects must fulfill to enable
event-based communication is to maintain a current list of
listeners and to propagate each update event to all of them.
For that purpose, beans export a pair of add/remove
methods through which interested listener objects can
register to receive events.

Thus, a well-behaved bean in our model (as opposed to in
the JavaBeans model) must meet two obligations–event
announcement and event distribution that, strictly speaking,
are not part of its main functionality. This leads to a
conflict with both the reuse and automation requirements–
legacy code cannot be expected to follow the bean event



model and additional programming effort is needed to build
this communication model into objects.

The event distribution can easily be automated by
delegating it to a specialized object that maintains the
listener list and propagates event notices (JavaBeans
provides similar functionality). As it turns out, the event
announcement is a stronger requirement and is harder to
automate. Nevertheless, one of our case studies shows that,
in asynchronous collaboration scenarios, it is feasible to
fully relieve the bean object from its event announcement
and distribution commitments by using an external agent to
generate the events on its behalf. The key idea here is to
exploit the property structure of the object and to deduce
update operations from consecutive snapshots of the
object’s state.

The following section illustrates the use of our overall
framework in the implementation of two concrete
collaboration services–coupling and merging. It also refines
the architecture for these specific services.

CASE STUDIES
The goal of our coupling experiment was to design a
generic property-based coupling service, and to use it to
provide different levels of coupling to an application based
on the popular model-view-controller (MVC) paradigm.

We chose an existing Java implementation of a (single-
user) drawing editor and used it to understand how the
property-based architecture can handle reuse. The original
application was organized as follows. Its model consist of a
(hash)table where all of the shape objects (ovals,
rectangles, text, etc.) in the current drawing are stored.
Individual shapes are accessed through globally unique
identifiers assigned at creation time. The view maintains an
up-to-date graphical representation of the objects on the
screen by refreshing the image every time a modification to
the model occurs. The controller keeps track of user
actions and translates them into operations on the model.

Our first experiment was to add model coupling to the
application without making changes to the original code. In
particular, we could not assume that the model object
provides event notification. Therefore, we used a property-
based implementation of an object diff-ing service similar
in idea to the UNIX diff tool. The main difference is that
diff works on text files, whereas our service works on
objects: given two versions of a (property-based) object–
old and updated–the object diff returns a list of operations
such that, if applied to the old version, the two objects
become consistent. We encoded the operations as event
notices identical to the ones a proper bean would generate
to describe them.

The overall architecture of the system is depicted in Figure
1. We used a generic implementation of a coupling service
that keeps a group of distributed bean objects consistent as
follows. Each site has a local coupling agent that listens for
property update events from local object replicas and
transmits them to all processes in the session. At the remote
sites, the events are translated back into (property-based)

operations that are applied to the corresponding objects and
their shadow copies (previous versions).

Figure 1 Diff-based model coupling

The underlying communication service uses an RMI-based
multicast server that delivers events to a group of clients.
However, the coupler interacts with the communication
layer using the bean event model, and, therefore, is not
bound to this particular implementation.

The full solution works by combining the coupling and the
diff-ing services–the diff object maintains a shadow copy
of the shared object and, whenever prompted, performs a
diff operation on the shadow copy and the new version of
the object. The result is sent to the local coupler in the form
of property update events and processed as described
above.

The only open question is how to trigger the
synchronization process. One simple solution is to let the
user do it explicitly by pressing a button, or selecting a
menu item. Another is to use a timer and initiate the
process periodically. In our case however, the application
provided an interesting option–to add the diff object as
another view and, hence, be indirectly notified whenever
the user performs an update. Thus, we effectively simulated
a scenario where the user initiated synchronization after
each operation.

Although this scheme performed reasonably well in that
there was no noticeable performance degradation in our
case study, it is obvious that it is not efficient–the diff
object must traverse the whole object structure every time it
is invoked. Consequently, this approach is inherently
suitable for a more asynchronous collaboration scenario.

In our second experiment, we wanted to add view coupling
to the drawing tool by reusing the same coupling service.
Fundamentally, view coupling implies a more synchronous
collaboration scenario and, therefore, requires explicit
event notification. The initial intuition was that the
widespread use of events in UI toolkits would make the
task easier. Indeed, the standard Java user interface
library–the AWT–promptly provides event notification
about any UI events of interest, such as resizing a window
or pressing a button. Unfortunately, its UI components do
not follow the JavaBeans naming conventions and cannot
be directly attached to our coupling service.
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To address this mismatch, we built adapter classes for each
of the UI objects used in the application such that they
correctly follow the bean naming conventions and translate
AWT events into property change events. For example, a
COMPONENT_RESIZED event is translated into a change to
the object’s size property and communicated accordingly.
Figure 2 illustrates the new configuration.

Figure 2 View coupling with bean adapters

Since the adapter classes can be used with any AWT-based
Java application, the only application-specific developer
effort was to attach the adapters to the base components. In
practice, this translates into one additional method
invocation per application window as the subcomponents
are automatically handled in a recursive manner.

It is interesting to measure the effort involved in writing the
adapter classes, as it can help in estimating the effort in
converting a conventional object-based application into a
bean-based one. Overall, it took us 430 lines of code
distributed over eight classes. To a great extent the task was
simplified by organizing the adapters into an inheritance
hierarchy, parallel to the one of the original objects. Thus,
the bulk of the code (~150 lines) was concentrated in one
base class dealing the generic beans. The rest were
relatively easy to implement, as most of the code was
routine.

Another potential concern for the described implementation
is the cost of performing the property matches for the
shared objects. Indeed, the time to discover object
properties for classes with a lot of methods can be
significant. For example, this process can take 1.5s for the
java.awt.Frame class. Fortunately, all the information is
class specific and , therefore, can be derived off-line. Thus,
the application is only burdened by the cost of loading it
from a file at startup time.

In a separate experiment, we modified the original version
of Sync [8] to show the reuse of existing infrastructure
components, and to explore the issues involved. Recall that
the architecture of Sync relies on the inheritance
mechanism to provide sharing of application objects. In
other words, for an object to be shared automatically, it
must be subclass of the system-defined
ReplicatedSequence or ReplicatedDictionary
classes. The main problems of this approach become
apparent when it is applied to existing code. Due to the
single inheritance model of Java, adding Sync’s services to

a single-user application is a cumbersome procedure, as it
typically involves a major overhaul of the inheritance
hierarchy of the whole application.

More generally, Sync’s problem is that it ties the supported
object structures (record, sequence, and dictionary) to
particular class abstractions. Hence, to support abstraction
flexibility, we must implement a model that permits the
separation of the object structure discovery from the rest of
the system. To illustrate this transition, let us consider the
implementation of our document example under the
original and updated versions of Sync.

Figure 3 Original Sync architecture

Figure 3 presents the implementation of a shared document
(MyDocument) according to the original Sync architecture.
For the sake of brevity, we assume that the document
consists simply of a sequence of sections. Thus, it is
sufficient to make MyDocument a subclass of the system-
provided ReplicatedSequence, which will keep a log
of all updates to the sequence elements (represented by the
shaded rectangle). Synchronization takes place whenever
the user initiates it through the SyncClient, which queries
the client replica for the log since the last synchronization.
The log is then communicated to the SyncServer (which
maintains the master copy) and eventually reaches the
server replica. Depending on the current merge policy in
place, the server selectively accepts the client updates, and
sends back to the client a list of changes that must be
applied to the client replica so that the two version reach a
consistent state (the list may include updates from other
clients).

Figure 4 shows how the original version of Sync is
transformed into  a pattern-based one through introduction
of an adapter class. The main difference is that the shared
object is no longer tied to a particular inheritance hierarchy.
Instead, it implements a set of methods that are
characteristic of a sequence pattern, such as
insertElementAt and deleteElementAt. In addition,
it issues events whenever updates to its elements are
performed.

The other new element in the architecture is the presence of
the SequenceDelegate object. Its function is to provide
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means of reusing the existing Sync implementation. In
essence, it mediates the synchronization process by
maintaining a shadow copy of the local replicated object.
As suggested by the figure, the SequenceDelegate is a
direct descendant of one of Sync’s base classes—
ReplicatedSequence—and, as such, is automatically
shared with its peer objects. It holds a reference to the user
object—MyDocument—and is registered to receive update
notifications from it.

Figure 4 Pattern-based Sync architecture

To illustrate how the synchronization process works, let us
follow it step by step. Suppose that a new element is
inserted into the client replica of MyDocument. The replica
issues an event informing its listeners about the change.
Thus, the local SequenceDelegate object is notified and
performs a corresponding insert in its own shadow copy.
The operation is automatically logged by Sync and later
transmitted to the server. As a result, the server shadow
copy is automatically updated. This triggers an invocation
of the ‘insert’ method on the server replica of the shared
object, which brings the two replicas to a consistent state.

Here we showed how an adapter class for the sequence
property was added. Similarly, we added adapter classes
for simple properties and hashtables for a total of about 900
lines of code in the adapter classes, which allowed us to
reuse, without modification, approximately 9000 lines of
Sync code.

A potential drawback of adding the adapter code is that its
overhead might noticeably degrade the system
performance. Therefore, we did an experiment with a
drawing application and took measurements to quantify the
effect of the added code on the overall cost of merging. As
it turns out, in our experiment, merging took the same time
in both the original Sync and its pattern-based extension
with adapter classes (about 70 milliseconds.). It is not clear
if the adapter classes will add negligible overhead for
collaboration functions such as coupling that are less
expensive than merging.

Thus, the merging experiment shows that it is possible to
implement our approach using existing implementation of
an infrastructure.

EVALUATION
To convince ourselves that the presented architecture
indeed meets the identified requirements, let us examine
them one by one and compare our accomplishments with
that of other systems.

Our first requirement was to support a high degree of
automation in application development. In the coupling
example, we demonstrated the addition of collaboration
services that is achieved at minimal development cost.
Furthermore, our approach supports the incremental
development of collaborative applications where the level
of support rises as a function of how much information the
application provides. As our example showed, it is possible
to add asynchronous collaboration just by using standard
patterns in the object design. Adding the standard
JavaBeans support for properties is sufficient for some
objects to get synchronous sharing. Extending this support
to include dynamic properties enables the full range of
collaboration functions to be used.

Recall that the first aspect of infrastructure flexibility was
that of semantics flexibility. To satisfy this requirement, we
modeled the supported logical structures after that of Sync,
which subsumes the logical structures provided by other
systems.  Thus, we do not claim any contributions with
respect to this requirement, and provide the same
expressive power as Sync.

With the respect to abstraction flexibility, like Suite, we
support programmer-defined types. While Suite supported
conventional programmer-defined types, we support object
types. Our approach cannot handle arbitrary programmer-
defined types–only those only those that have logical
structures supported by us, and follow conventions that can
be encoded in our pattern-based language. Thus, it supports
more object types than existing systems but not all possible
object types.

Composition was another focus of this work and our two
experiments show that we provide a high degree of
composability comparable to that of JComposer. The main
difference is that, in addition to addressing composition of
the application and the collaboration infrastructure, we also
address composability within the infrastructure itself. In
our coupling example we showed how a generic coupler
can be attached to two different application modules. At the
same time, the coupling service implementation can be
easily substituted without affecting other aspects of the
system. This is possible because the application does not
know specifics of the services that can be attached to it. It
is unaware that it is being coupled or merged.

Our case studies show that our approach is coherent with
the goals of code reuse. In the first case, we were able to
provide collaboration functions at virtually no cost to the
application—the specialized adapter code written can itself
be reused for any AWT-based user interface.  In the second
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case, we addressed the reuse of existing collaboration
function in the infrastructure and were able to achieve that
at a modest cost.

Finally, we did not go outside the limits of the Java
language by adding non-standard features that require
specialized processing. We based our work on the standard
JavaBeans architecture and designed our extensions so that
existing bean components can be directly integrated with
our framework.

CONCLUSIONS AND FUTURE WORK
In this paper, we described a novel approach to building
collaborative infrastructures. By reviewing previous work
in the area, we derived a set of generic infrastructure
requirements, related to automation, flexibility, and reuse
that have not been simultaneously addressed by existing
systems. Furthermore, we discussed the relationship
between the design choices of these systems and their
limitations. We showed that using the structure of shared
objects is important in supporting flexible collaboration
services but current systems have not been successful in
providing a flexible mechanism for specifying that
structure.

To overcome this problem, we described an infrastructure
design that is based on using programming patterns as a
means of extracting the logical structure of shared objects
without exposing details of their implementation. This
approach is complemented by the adoption of an event-
based communication model that promotes a component-
based implementation of both the application and the
collaboration framework.

We concluded our discussion by showing example
applications of our approach to two specific collaboration
service–coupling and merging–and evaluating the results
with respect to the initial requirements. In fact, we have
implemented another service, access control, using this
architecture and the JavaBeans vetoable events. We did not
describe it because of lack of space.

Our ongoing research efforts are aimed at extending this
work in several directions. In the short term, we are
working on integrating the described diff-ing and merging
services, as they naturally complement each other. We also
plan to fit other collaboration services, such as concurrency
control and undo/redo into our model.

Another line of study is to apply this pattern-based
approach to the integration object-based programming and
data specification languages, such as XML. Specifically,
we would like to create an XML structure directly from an
object based on the logical structure we extract [11].

In the longer term, we would like to also explore the use of
predefined patterns to generate objects. That is, given a
pattern specification, the user could fill in the pattern
variables and the system could create a skeleton class
definition that relieves the developer from routine work and
guarantees a certain style of programming.

So far, we implicitly assumed that objects behave nicely
and their properties implement the expected semantics. An

open issue here is the ability of the system to test the
advertised object behavior. One possible solution is to use
axiomatic specifications, as described in [7].

Finally, in this paper, we have not addressed architectural
flexibility–the ability to support multiple architectures and
dynamically adapt the architecture of an application. This is
the subject of another project of our group, and we would
like to eventually integrate it with this work.
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