
COMP 401 

Prasun Dewan
1
  

20. Command Objects 

We will see here that some of the concepts we use to define objects such as types (classes/interfaces) 

and actions (methods) can themselves be considered as objects with types and actions of their own.  

Such objects allow a tool such as ObjectEditor to understand and use, or reflect on, arbitrary objects, 

even instances of types defined after the tool was compiled.  

We will also study a variation of the action object, called a command object, which has the same 

relationship with an action object that a command such as “Do your home work.” has with the verb 

“Do”.  It encapsulates an action invocation. 

Command objects, in turn, will allow us to define and understand threads, which are non blocking 

method invocations that support interleaved or concurrent activities. Threads, in turn, allow us to create 

animations that do not block or freeze the rest of the user-interface.  

A variation of command objects will allow us to implement undo and redo of an action invocation. We 

will see that command objects allow us to create (part of) an undo/redo implementation that can work 

for arbitrary applications. 

Reflection 
To motivate action and type objects, consider the following user-interface. 

 

The program implementing this user-interface prints the values of all properties of an instance of 

BMISpreadshet and an instance of Point. The property, Class, is inherited from Object and is filtered out 

by ObjectEditor when it displays an Object. 
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We would like to write a program, that like, ObjectEditor can display the properties of arbitrary objects. 

Thus, it should know nothing about the types BMISpreadsheet and Point. It should contain a 

printProperties() method that takes as argument instances of BMISpreadsheet, Point or any other type, 

as shown below.  

 

This, in turn, means that that the argument of printProperties() must be Object. Yet we want it to call 

methods such as getBMI() and getX() that are not defined by Object. We can do so by casting the 

argument to specific types such as BMISpreadsheet or Point, but as mentioned above, printProperties() 

has no knowledge of these types. Action and type objects allow us to have our cake and eat it too by 

allowing invocations of type-specific operations on objects without using casts. The following code 

illustrates them. 

 

The method invokes the getClass() method on its argument to determine the class of the object and 

stores the return value in objectClass. This method returns a type object describing the class of the 

object. The type of the type object is the Java class named Class. This class defines the getMethods() 

operation, which returns an array of action objects describing the methods of the class.  The type of the 

action object is the class Method. printProperties() invokes getMethods() on objectClass, and passes 

each element of the returned array  to isGetter() to determine if it describes a getter method. If it does, 

printProperties() calls propertyName() to get the name of the associated property, and  methodInvoke() 

to get the value of the property.  

public static void main(String[] args) {

BMISpreadsheet bmi = new ABMISpreadsheet(1.77, 75);

printProperties(bmi);

Point point = new ACartesianPoint(50, 34);

printProperties(point);

}

public static void printProperties(Object object) {

System.out.println("Properties of:" + object);

Class objectClass = object.getClass();

Method[] methods = objectClass.getMethods();

Object[] nullArgs = {};

for (int index = 0; index < methods.length; index++) {

Method method = methods[index];

if (isGetter(method)) {

Object retVal = methodInvoke(object, method, 

nullArgs);

System.out.println(propertyName(method) + ":" + 

retVal);

}

}

System.out.println();

}



Here objectClass, like a type parameter of a generic, is a variable that can be associated with different 

types.  The difference is that it a generic type parameter is a compile-time variable while a variable of 

type Class is a runtime variable. 

It is possible to write methodInvoke(), propertyName(), and isGetter() because the class Method 

provides operations to  invoke the method it describes, and determine the name, return type, and  

parameter types of the method, as shown below.  

 

 

 

The substring(i) operation invoked by propertyName() on string, s, returns the string 

s.charAt(i)…s.charAt(s.length() – 1). 

The invoke() operation provided by Method executes the method it encapsulates, and takes as 

arguments the object on which the method is to be invoked and an array of the formal arguments to be 

passed to the method. When we study exceptions, we will understand more thoroughly what the 

try/catch exactly means. For now it is enough to know that the invoke() throws IllegalAcessException 

error if the called method is not visible to its caller, and the InvocationTargetException if the called 

method does not match the arguments or throws any exception. 

Invoking operations on a type (action) object is called type (action) reflection as it allows the caller to 

understand or reflect upon the type (action). Several object-oriented languages such as Smalltalk, Java, 

Python and C# support reflection. The figures below show some of the operations supported by these 

languages on type and action objects.  

public static String GETTER_PREFIX = "get";

public static boolean isGetter (Method method) {

return method.getParameterTypes().length == 0 && 

method.getReturnType() != Void.TYPE &&

method.getName().startsWith(GETTER_PREFIX);

}

public static String propertyName(Method getter) {

return getter.getName().substring(GETTER_PREFIX.length());

}

public static Object  methodInvoke(Object object, Method 

method, Object[] args ) {

try {

return method.invoke(object, args);

} catch (IllegalAccessException e) {

e.printStackTrace();

return null;

} catch (InvocationTargetException e ) {

e.printStackTrace();

return null;

}

}



  

A type object encpasulating some type T cannot support an operation to get all of the subtypes of T as 

these are not known and could be distributed all over the world. If the associated type is an 

instantiatable class, then the type object can support an operation to instantiate the class. 

The execute() operation provided by an action object (called invoke() by  Java) takes as arguments the 

target object and actual parameters of the encapsulated method. A command object is a variation of a 

command object that has the target object and actual parameters embedded in it. The following 

animation example motivates such an object and the concept of a Java thread, which is built on top of 

the concept of a command object. 

Animating Shuttle 
Consider again the shuttle location object we created earlier. Suppose we create a variation of it, 

AnAnimatingShuttleLocation, that provides an additional method, animateFromOrigin (Figure 

8), that animates the path the shuttle took from the origin to its current position. As we don’t know 

actually know this exact path, we will make the simplifying assumption that the shuttle first went 

vertically up to its current Y position (Figure 9), and then horizontally went to its current X position 

(Figure 10). 

Before we try to code this object, let us first define what exactly it means for a method to animate the 

shuttle from one location to another one. It could imply that the method: 

moves the shuttle a distance, D, in a straight line towards the destination. 

checks if the shuttle has reached its destination. If yes, the method terminates; otherwise it 

repeats the above two steps. 

Type Object = Embedded 
Type

getName()

getMethods()

getInterfaces()

getSuperType()

getSubTypes()

newInstance()

Action Object = Embedded 
Operation

execute (targetObject, params)

getParameterTypes()

getReturnType()

getName ()



However, this algorithm does not work as the computer will execute the steps so fast that the user will 

not see the intermediate positions of the shuttle – the shuttle will seem to reach its destination 

instantly. Thus, we need the method to pause for some time after step 1. 

 In summary, the method: 

moves the shuttle a distance, D, in a straight line towards the destination. 

pauses for some time T to make the shuttle stays at its current location. 

checks if the shuttle has reached its destination. If yes, the method terminates; otherwise it 

repeats the above three steps. 

We will assume that D is given by a named constant and time T is specified by the user-defined property, 

AnimationPauseTime. 

int animationPauseTime; 

 public int getAnimationPauseTime() { 

  return animationPauseTime; 

 } 

  

 

Figure 1. Instance of AnAnimatingShuttleLocation 



 public void setAnimationPauseTime(int newVal) { 

  animationPauseTime = newVal; 

 } 



  

 

 

Figure 2. Animating the vertical shuttle motion 



  

 

 

Figure 3. Animating the horizontal shuttle motion 



In the remainder of this discussion, we will assume that time is specified in milliseconds. Thus, in Figure 

8, the AnimationPauseTime specifies a pause time of 5000 milliseconds or 5 seconds. The large pause 

time gave us enough time to take a screen dump of each intermediate position of the shuttle. For the 

animation to appear smooth, the pause time should be about 30 milliseconds.  

The repetition of the three steps shows the role loops play in solving this problem. However, what we 

have learnt so far is not sufficient to completely code it. How do we make the program pause, that is, do 

nothing for some period of time, pauseTime?  The following is one way to do so: 

void sleep(int pauseTime) { 

int numberOfAssignments = pauseTime; //ASSIGNMENT_TIME 

  for (int i = 0; i < numberOfAssignments; i++) { 

  int dummy = 0; // nonsense assignment 

} 

We could repeatedly make an unnecessary assignment in a loop until we have made enough to take 

time pauseTime. This “solution” has two problems. First, we would have to change our code each time 

we execute it on a computer of different power. Second, and more important, we unnecessarily use the 

computer executing the loop. It is for this reason that such a loop is called busy waiting. 

What we really need is an operation that asks the operating system to suspend or put to sleep our 

program for pauseTime so that it can execute some other applications during this time. Java provides 

such an operation, Thread.sleep(pauseTime), and the following recoding of our sleep method 

shows its use: 

void sleep(int pauseTime) { 

try { 

  Thread.sleep(pauseTime); 

 } catch (Exception e) { 

// program may be forcibly interrupted while sleeping 

e.printStackTrace(); 

   } 

}; 

A sleeping method may be woken up not only when its regular alarm goes off, but also because of some 

unexpected condition such as the user terminating the program. To signal an abnormal waking up, 

Thread.sleep(pauseTime) throws an InterruptedException. We have therefore enclosed the 

call to it in a try-catch block. 



In this course, we have tried to avoid using library calls we do not know how to implement. An exception 

is being made for the sleep() call above, as its implementation is extremely complex, and in fact, not 

possible in Java.  Again, we will understand the try catch block when we learn about exceptions. 

We can now code our animation algorithm, as shown below. 

 

 

We have a separate loop for moving in the X and Y direction. Each loop keeps track of the next X/Y 

position. In each iteration, this position is used to change the X/Y coordinate of the shuttle, and the 

position is incremented it by the distance ANIMATION_STEP. If the next X/Y position exceeds the final 

X/Y position, the loop exits, and thus does not change the shuttle coordinate. Therefore, after the loop, 

the method moves the shuttle to the final position.  

Interleaving Activities 
Unfortunately, the above implementation of animateFromOrigin() does not work. When we ask 

ObjectEditor to execute a method, it waits for the method to finish execution, just as any calling method 

waits for a called method to finish execution. During this period the user-interface is frozen – the display 

is not updated, and we cannot use any of the ObjectEditor menus. We have not noticed this so far 

public void animateFromOrigin() {

animateFromOrigin(ANIMATION_STEP, 

getAnimationPauseTime());

}

public void animateFromOrigin(int animationStep, int

animationPauseTime) {

int curX = 0;

int curY = 0;

setLabelX(windowX(curX));

setLabelY(windowY(curY));

while (curY < getShuttleY()) {

// loop make sure we don’t go past final Y position

sleep(animationPauseTime);

curY += animationStep;

setLabelY(windowY(curY));

}

// move to destination Y position

setLabelY(windowY(getShuttleY()));

while (curX < getShuttleX()) {

sleep(animationPauseTime);

curX += animationStep;

setLabelX(windowX(curX));

}

setLabelX(windowX(getShuttleX()));

}



because our methods returned quickly. The method animateFromOrigin is different because of the 

time-consuming loops it executes. Figure 11 shows what happens. 

While animateFromOrigin is executing, the menu is frozen and the display is not updated. When the 

method finishes executing, the display is updated, at which point the shuttle is back at its original 

position. Thus, the effect of executing the method is a long pause as ObjectEditor suspends its activities 

for the time it takes to complete the “animation," that is, the time it takes to complete all the sleeps in 

the method.  

During animation two interleaved activities must take place. One activity executes the loops, setting the 

intermediate X and Y positions of the label. The second activity (executed by ObjectEditor) displays the 

intermediate X and Y positions. These activities are interleaved in that one activity does not wait for the 

other one to finish. Instead, after executing one or more steps of one activity, the computer can execute 

some steps of the other activity, and then return to the first activity to execute its remaining steps. This 

is shown in the figure below. 

 

Figure 4. Instance of AnAnimatingShuttleLocation when animateFromOrigin is called 



 

Here we see two activities, one that changes the X and Y coordinates of the shuttle, and another that 

refreshes the display to make the shuttle move. The arrows point to the next steps to be executed by 

each of these activities. The CPU can next executes a few steps of the first activity. 

 

It can then switch to the second activity and execute steps in it. 

public synchronized void animateFromOrigin(int animationStep, int

animationPauseTime) {

int curX = 0;

int curY = 0;

setLabelX(windowX(curX));

setLabelY(windowY(curY));

while (curY < getShuttleY()) {

// loop make sure we don’t go past final Y position

sleep(animationPauseTime);

curY += animationStep;

setLabelY(windowY(curY));

}

// move to destination Y position

setLabelY(windowY(getShuttleY()));

while (curX < getShuttleX()) {

sleep(animationPauseTime);

curX += animationStep;

setLabelX(windowX(curX));

}

setLabelX(windowX(getShuttleX()));

}

propertyChange(PropertyChangeEvent event } {

refresh(event);

}

public synchronized void animateFromOrigin(int animationStep, int

animationPauseTime) {

int curX = 0;

int curY = 0;

setLabelX(windowX(curX));

setLabelY(windowY(curY));

while (curY < getShuttleY()) {

// loop make sure we don’t go past final Y position

sleep(animationPauseTime);

curY += animationStep;

setLabelY(windowY(curY));

}

// move to destination Y position

setLabelY(windowY(getShuttleY()));

while (curX < getShuttleX()) {

sleep(animationPauseTime);

curX += animationStep;

setLabelX(windowX(curX));

}

setLabelX(windowX(getShuttleX()));

}

propertyChange(PropertyChangeEvent event } {

refresh(event);

}



 

It can then resume execution of the first activity, executing a few of the remaining steps in it. 

 

public synchronized void animateFromOrigin(int animationStep, int

animationPauseTime) {

int curX = 0;

int curY = 0;

setLabelX(windowX(curX));

setLabelY(windowY(curY));

while (curY < getShuttleY()) {

// loop make sure we don’t go past final Y position

sleep(animationPauseTime);

curY += animationStep;

setLabelY(windowY(curY));

}

// move to destination Y position

setLabelY(windowY(getShuttleY()));

while (curX < getShuttleX()) {

sleep(animationPauseTime);

curX += animationStep;

setLabelX(windowX(curX));

}

setLabelX(windowX(getShuttleX()));

}

propertyChange(PropertyChangeEvent event } {

refresh(event);

}

public synchronized void animateFromOrigin(int animationStep, int

animationPauseTime) {

int curX = 0;

int curY = 0;

setLabelX(windowX(curX));

setLabelY(windowY(curY));

while (curY < getShuttleY()) {

// loop make sure we don’t go past final Y position

sleep(animationPauseTime);

curY += animationStep;

setLabelY(windowY(curY));

}

// move to destination Y position

setLabelY(windowY(getShuttleY()));

while (curX < getShuttleX()) {

sleep(animationPauseTime);

curX += animationStep;

setLabelX(windowX(curX));

}

setLabelX(windowX(getShuttleX()));

}

propertyChange(PropertyChangeEvent event } {

refresh(event);

}



Real-Life Analogy, Priorities and Thread Blocking 
Interleaving of computer activities is analogous to real-life multi-tasking. The figure below shows a 

supermom switching between doing work and looking after the kid and dog.

 

In this scenario, we can expect the mother to give higher propriety to the child’s needs than to her work 

or the dog’s needs. Similarly, computer activities can have different proprieties. An interactive task such 

as editing is given higher than a non-interactive task such as scanning the disk for viruses. Moreover, just 

as the mother would switch from looking after the kid when he sleeps, the computer would switch from 

a computer activity when it sleeps or makes executes some other blocking or waiting operation such as 

waiting for information from a server. 

Interleaving vs. Concurrency 
It is possible to not only interleave but also, on a multi-processor/multi-core computer, execute the 

activities concurrently on different CPUs. Taking the above example, given the following execution state 

of the two activities: 

 

 

Smile at 
baby

Read 
email

Feed dog

Feed baby

Reply to 
email

Hug 
baby

public synchronized void animateFromOrigin(int animationStep, int

animationPauseTime) {

int curX = 0;

int curY = 0;

setLabelX(windowX(curX));

setLabelY(windowY(curY));

while (curY < getShuttleY()) {

// loop make sure we don’t go past final Y position

sleep(animationPauseTime);

curY += animationStep;

setLabelY(windowY(curY));

}

// move to destination Y position

setLabelY(windowY(getShuttleY()));

while (curX < getShuttleX()) {

sleep(animationPauseTime);

curX += animationStep;

setLabelX(windowX(curX));

}

setLabelX(windowX(getShuttleX()));

}

propertyChange(PropertyChangeEvent event } {

refresh(event);

}



In the next computer execution step or cycle, both pointers can advance concurrently.

 

Concurrent execution is analogous to us using different limbs to perform different activities 

simultaneously, as shown below. 

 

Such concurrency is expected to be the key to harness the power of future computers. It is getting 

increasingly difficult to increase the power of a single CPU - therefore the power of computers is being 

primarily increased by adding additional CPUs. These CPUs can be kept busy only if there are enough 

threads to execute concurrently. 

A computer can both interleave and concurrently execute activities. Given the following three activities: 

public synchronized void animateFromOrigin(int animationStep, int

animationPauseTime) {

int curX = 0;

int curY = 0;

setLabelX(windowX(curX));

setLabelY(windowY(curY));

while (curY < getShuttleY()) {

// loop make sure we don’t go past final Y position

sleep(animationPauseTime);

curY += animationStep;

setLabelY(windowY(curY));

}

// move to destination Y position

setLabelY(windowY(getShuttleY()));

while (curX < getShuttleX()) {

sleep(animationPauseTime);

curX += animationStep;

setLabelX(windowX(curX));

}

setLabelX(windowX(getShuttleX()));

}

propertyChange(PropertyChangeEvent event } {

refresh(event);

}



 

In the next execution cycle, the instructions of the top two activities can be simultaneously executed by 

two CPUs. 

 

In the next cycle, the top and bottom activities can be executed simultaneously by the two processors. 

public synchronized void animateFromOrigin(int animationStep, int

animationPauseTime) {

int curX = 0;

int curY = 0;

setLabelX(windowX(curX));

setLabelY(windowY(curY));

while (curY < getShuttleY()) {

// loop make sure we don’t go past final Y position

sleep(animationPauseTime);

curY += animationStep;

setLabelY(windowY(curY));

}

// move to destination Y position

setLabelY(windowY(getShuttleY()));

while (curX < getShuttleX()) {

sleep(animationPauseTime);

curX += animationStep;

setLabelX(windowX(curX));

}

setLabelX(windowX(getShuttleX()));

}

propertyChange(PropertyChangeEvent event } {

refresh(event);

}

propertyChange(PropertyChangeEvent event } {

refresh(event);

}

public synchronized void animateFromOrigin(int animationStep, int

animationPauseTime) {

int curX = 0;

int curY = 0;

setLabelX(windowX(curX));

setLabelY(windowY(curY));

while (curY < getShuttleY()) {

// loop make sure we don’t go past final Y position

sleep(animationPauseTime);

curY += animationStep;

setLabelY(windowY(curY));

}

// move to destination Y position

setLabelY(windowY(getShuttleY()));

while (curX < getShuttleX()) {

sleep(animationPauseTime);

curX += animationStep;

setLabelX(windowX(curX));

}

setLabelX(windowX(getShuttleX()));

}

propertyChange(PropertyChangeEvent event } {

refresh(event);

}

propertyChange(PropertyChangeEvent event } {

refresh(event);

}



 

This scenario corresponds to a juggler using two hands to juggle three balls. 

 

An extra hand would not be useful in this scenario because when a ball is in the air, it does not need 

service from a hand. Similarly, when a computer activity is waiting for user input or sleeping, it does not 

need service from a processor. Thus, we often do not sacrifice performance by having fewer CPUs than 

executable activities. 

public synchronized void animateFromOrigin(int animationStep, int

animationPauseTime) {

int curX = 0;

int curY = 0;

setLabelX(windowX(curX));

setLabelY(windowY(curY));

while (curY < getShuttleY()) {

// loop make sure we don’t go past final Y position

sleep(animationPauseTime);

curY += animationStep;

setLabelY(windowY(curY));

}

// move to destination Y position

setLabelY(windowY(getShuttleY()));

while (curX < getShuttleX()) {

sleep(animationPauseTime);

curX += animationStep;

setLabelX(windowX(curX));

}

setLabelX(windowX(getShuttleX()));

}

propertyChange(PropertyChangeEvent event } {

refresh(event);

}

propertyChange(PropertyChangeEvent event } {

refresh(event);

}



Processes vs. Threads 
There are two kinds of interleaved/concurrent activities – processes and threads. 

  

Each time a main class is executed, a process is created for executing the program. In the figure above, 

the two javaw.exe entries correspond to two main classes executed by the user. 

We can use Eclipse debugger to show the threads created for executing a program. 

 

If we put a breakpoint on a statement, we can see the various threads active when control transfers to 

the statement. Here we see not only the thread that will execute the statement, but also threads, such 

as the AWT-Windows and AWT-Shutdown threads, that perform background activities started by Java.   

Thread and Command Objects 
Like methods and classes, threads are a fundamental part of Java needed for creating executable 

programs. They are not simply library packages that can be replaced by our own code. However, as in 

the case of methods and classes, Java provides runtime objects to manipulate them. A thread object is 

an instance of the class Thread and is associated with an executing thread. It provides operations to 

start, suspend, resume, interrupt (the sleep of), and change the priority of the associated thread.   



 

To understand how we can create a Thread object and an associated activity, let us return to the 

animation example.  

Recall that the animation required two interleaved threads. One thread executes the loops, setting the 

intermediate X and Y positions of the label. The second thread displays the intermediate X and Y 

positions and processes menu and other actions of the user-interface.  

Our implementation of the parameterless animateFromOrigin() executed the parameterized 

animateFromOrigin() as part of the user-interface thread. The former method blocked the user-interface 

thread until the latter finished executing loops. 

 

The solution is to create a new thread for executing the parameterized animateFromOrigin(), allowing 

the original user-interface thread to update the display and process user-commands while the 

animation loops execute as part of the new thread. Thus, we need a way to tell Java to execute the call 

animateFromOrigin(ANIMATION_STEP, getAnimationPauseTime()) in a separate thread, and associate 

this thread with a new instance of Thread. 

A straightforward approach is to create an instance of Thread and pass it information about the call to 

be executed as a separate thread. A call could be described by a Method instance describing the method 

to be executed and an array containing the actual parameters of the call, as shown in the figure. 

 

However, this approach is not supported in Java, for several reasons. It uses reflection, which was 

introduced in Java after threads were invented, and more important, is expensive and checks the 

compatibility between a method and its actual parameters at runtime, throwing 

suspend()

resume()

changePriority()

interrupt()

start()

Thread

public void animateFromOrigin() {

animateFromOrigin(ANIMATION_STEP, 

getAnimationPauseTime());

}

public void animateFromOrigin() {

Thread thread = new

Thread(animateFromOriginMethod, this,  

makeParams(ANIMATION_STEP, getAnimationPauseTime())); 

thread.start();

}



InvocationTargetException if the check fails. A better approach, then, is to pass to the Thread 

constructor a single object that represents a checked method call. Such an object is called a command 

object. Like an action object, it encapsulates an embedded operation, and provides an execute() method 

to invoke the operation. In addition, it encapsulates the actual arguments and target object of the 

operation, which are passed to it in its constructor. Thus, while the execute() operation of an action 

object takes the target object and arguments as parameters, the execute() operation of a command 

object takes no parameters. It simply invokes the embedded operation with the encapsulated 

arguments on the embedded target object. The following figures show the difference between the two 

kinds of objects. 

  

In other words, an action object represents an operation, while a command object represents an 

operation invocation. A command object has the same relationship to an action object that an 

imperative sentence such as “Do your home work.” has to the verb “Do” in the sentence.   

Let us see how we can use the concept of a command object to construct a Thread instance. Java 

provides a command object type called java.lang.Runnable, whose execute method is called run(). 

 

If we wish to execute a method call in a separate thread, we should encapsulate the call in an instance 

of Runnable and pass this object to the constructor of Thread. In response, Java creates a new thread to 

execute the encapsulated call and associates it with the Thread instance. The start() operation can next 

be invoked on the Thread instance to start the method call encapsulated by the command object. This is 

illustrated below for our example. 

 

Action Object =Embedded 
Operation

Provides an execute 
operation to  perform 

some action.

The execute operation takes the  
object on which the target 

operation is to invoked and an 

array  of parameters of the 

target  method.

execute (targetObject, params)

Command Object = 
Embedded Operation+ 

Actual Parameters

Provides a execute 
operation to  perform 

some action.

The execute operation takes no 
arguments.

execute ()

Constructor takes  target 
object and parameters of 

operation as arguments.

Constructor (targetObject, params)

Action is an operation that 
can be invoked on many 

different arguments

A command is a specific 
action invocation.

package java.lang;
public interface Runnable {

public void run();

}



Here, AShuttleAnimationCommand is a class implementing the Runnable interface that encapsulates the 

parameterized animateFromOrigin() method. Its constructor takes as argument the object on which the 

embedded operation is to be executed and the actual arguments of the call. The Thread instantiation is 

passed an instance of this class as an argument.  A thread does not start when we create it. After 

instantiating it, we can perform several operations such as setting its priority and name. When we 

invoke the start() operation on the Thread insance, Java starts asks the associated thread to execute the 

run() method of the command object.   

This method, in turn, calls animateFromOrigin(this, animationStep, animationPauseTime), as shown 

below. 

 

Thus, we have managed to execute this call in a separate thread. 

The following figure shows the difference between executing this call in the user-interface thread and in 

a separate thread. 

 

In the first case, the parameterless animateFromOrigin() waits for the method call to terminate. Thus 

what it prints is correct. In the separate thread case, it creates a separate thread to make the method 

public class AShuttleAnimationCommand implements Runnable{

AnimatingShuttleLocation shuttleLocation;

int animationStep, animationPauseTime;

public AShuttleAnimationCommand

(AnimatingShuttleLocation theAnimatingShutleLocation, int

theAnimationStep, int theAnimationPauseTime) {

shuttleLocation = theAnimatingShutleLocation;

animationStep = theAnimationStep;

animationPauseTime = theAnimationPauseTime;

}

public void run() {

shuttleLocation.animateFromOrigin(animationStep, 

animationPauseTime);

}

}

Parameters Target Object



call. It does not wait for the call to complete. Thus, what it prints is not correct! Thus, the first method 

call blocks the caller while he second one does not. A blocking call corresponds to waiting at the counter 

of a fast food restaurant for the food to be delivered to you, while a non blocking call correspond to 

giving the order in a fancier restaurant and returning to your seat without collecting the food, which will 

later be delivered by a waiter when it is done.  Similarly, a blocking call corresponds to a professor 

waiting for a student to answer a question, while a non blocking call corresponds to asking the student 

to answer the question as a home work exercise. As these analogies show, if the caller needs to know 

the progress of a non blocking call, it somehow needs to be explicitly notified about the progress. Let us 

continue with the animation example to illustrate the need for this notification. 

Incremental Display Update 
If we execute the new, thread-creating, version of the parameterless animateFromOrigin(), the user-

interface will not freeze while the loops execute. However, as before, we will not see intermediate 

positions of the shuttle. In other words, the shuttle will appear not to move. 

As mentioned before, normally ObjectEditor updates the display at the end of the execution of each 

method it calls. In the case of an animating method, ObjectEditor should update the display after each 

animation step. However, it does not know when an animation step has completed. Therefore, after 

each animation step, the animation method should explicitly tell ObjectEditor that the state displayed 

has changed. In other words, the object containing the animation method should behave as an 

observable that allows ObjectEditor and other observers to be registered and informs them whenever 

the animated state changes.  Thus, the methods that change the shuttle location should notify all of the 

stored observers about the changed property. Consider how we can animate the X location – animation 

of the Y location is similar. 

The X location is changed by the statement: 

setLabelX(windowX(curX)); // need to update display 

in the first loop. As the statement does not directly change the shuttle location, we need to look at the 

implementation of setLabelX: 

void setLabelX(int x) { 

  Point oldLocation = shuttleLabel.getLocation(); 

  Point newLocation = new ACartesianPoint(x, oldLocation.getY()); 

  shuttleLabel.setLocation(newLocation); 

 } 

Again, the method does not directly change the shuttle location. Therefore, we need to look at the 

implementation of setLocation in class ALabel: 

public void setLocation(Point newVal) {   



  location = newVal; 

 } 

This is the method in which the shuttle location changes. Therefore, we need to make its class, ALabel, 

an observable in the fashion described above. We can add the addPropertyChangeListener and 

notifyAllListeners implementations given above without any changes to the class, as these are 

standard and do not depend on the property being changed. Now we can call notifyAllListeners 

from setLocation: 

public void setLocation(Point newVal) { 

  Point oldVal = location; 

  location = newVal; 

  notifyAllListeners(new PropertyChangeEvent( 

this, “Location”, oldVal, newVal)); 

 } 

Here, setLocation assigns the instance variable, location, a new instance of ACartesianPoint. 

Suppose that Point was not immutable, that is, it provided setter methods for the X and Y properties. 

In this case, if setLocation simply changed the X and Y coordinate of the existing location, we would 

need to change the setX and setY methods of ACartesianPoint class in the manner described 

above. 

With these changes, our animation finally works. If we invoke the new animateFromOrigin(), the shuttle 

starts animating from the origin towards its current position. Let us trace this call to understand what 

happens. 

When we execute the parameterless animateFromOrigin(), it creates a new thread, which starts 

executing the parameterless animateFromOrigin(), as shown below. 

 

The method resets the label position, and notifies ObjectEditor, which moves the label to it the origin. 

public synchronized void animateFromOrigin(int animationStep, int

animationPauseTime) {

int curX = 0;

int curY = 0;

setLabelX(windowX(curX));

setLabelY(windowY(curY));

while (curY < getShuttleY()) {

// loop make sure we don’t go past final Y position

sleep(animationPauseTime);

curY += animationStep;

setLabelY(windowY(curY));

}

// move to destination Y position

setLabelY(windowY(getShuttleY()));

while (curX < getShuttleX()) {

sleep(animationPauseTime);

curX += animationStep;

setLabelX(windowX(curX));

}

setLabelX(windowX(getShuttleX()));

}



  

It then executes the first loop, which repeatedly executes the steps of incrementing the Y position, 

notifying ObjectEditor, and sleeping, thereby gradually moving the shuttle along the Y axis. 

 

Synchronization of Concurrent Threads 
Let us get more adventurous and see what would happen if, while the animating method is sleeping, we 

execute the parametless animateFromOrigin() again from the ObjectEditor menu. This method will 

create another thread, which  will execute the same code as the previous thread. Thus, the 

parameterized animateFromOrigin() will be executed by two interleaving/concurrent threads, as shown 

below. 

public synchronized void animateFromOrigin(int animationStep, int

animationPauseTime) {

int curX = 0;

int curY = 0;

setLabelX(windowX(curX));

setLabelY(windowY(curY));

while (curY < getShuttleY()) {

// loop make sure we don’t go past final Y position

sleep(animationPauseTime);

curY += animationStep;

setLabelY(windowY(curY));

}

// move to destination Y position

setLabelY(windowY(getShuttleY()));

while (curX < getShuttleX()) {

sleep(animationPauseTime);

curX += animationStep;

setLabelX(windowX(curX));

}

setLabelX(windowX(getShuttleX()));

}

public synchronized void animateFromOrigin(int animationStep, int

animationPauseTime) {

int curX = 0;

int curY = 0;

setLabelX(windowX(curX));

setLabelY(windowY(curY));

while (curY < getShuttleY()) {

// loop make sure we don’t go past final Y position

sleep(animationPauseTime);

curY += animationStep;

setLabelY(windowY(curY));

}

// move to destination Y position

setLabelY(windowY(getShuttleY()));

while (curX < getShuttleX()) {

sleep(animationPauseTime);

curX += animationStep;

setLabelX(windowX(curX));

}

setLabelX(windowX(getShuttleX()));

}



 

 

Let us assume that the execution of these threads is interleaved on a single CPU. As the first thread is 

currently sleeping, the CPU will execute the first thread. As this thread has made a different call to the 

parameterized animateFromOrigin(), it gets its own copy of the local variables, curX and curY, in this 

method.  It sets these variables to zero and then copies their values to the X and Y coordinates of the 

global shuttle label. As a result, the shuttle will move back to the origin. 

 

Next it will sleep. Thus, at this point, both threads are sleeping. The first thread will wake up first, and 

resume from where it left out. It will set the Y coordinate of the shuttle to its copy of the curY variable, 

thus causing the shuttle to jump to this location. 

public synchronized void animateFromOrigin(int animationStep, int

animationPauseTime) {

int curX = 0;

int curY = 0;

setLabelX(windowX(curX));

setLabelY(windowY(curY));

while (curY < getShuttleY()) {

// loop make sure we don’t go past final Y position

sleep(animationPauseTime);

curY += animationStep;

setLabelY(windowY(curY));

}

// move to destination Y position

setLabelY(windowY(getShuttleY()));

while (curX < getShuttleX()) {

sleep(animationPauseTime);

curX += animationStep;

setLabelX(windowX(curX));

}

setLabelX(windowX(getShuttleX()));

}

public synchronized void animateFromOrigin(int animationStep, int

animationPauseTime) {

int curX = 0;

int curY = 0;

setLabelX(windowX(curX));

setLabelY(windowY(curY));

while (curY < getShuttleY()) {

// loop make sure we don’t go past final Y position

sleep(animationPauseTime);

curY += animationStep;

setLabelY(windowY(curY));

}

// move to destination Y position

setLabelY(windowY(getShuttleY()));

while (curX < getShuttleX()) {

sleep(animationPauseTime);

curX += animationStep;

setLabelX(windowX(curX));

}

setLabelX(windowX(getShuttleX()));

}

public synchronized void animateFromOrigin(int animationStep, int

animationPauseTime) {

int curX = 0;

int curY = 0;

setLabelX(windowX(curX));

setLabelY(windowY(curY));

while (curY < getShuttleY()) {

// loop make sure we don’t go past final Y position

sleep(animationPauseTime);

curY += animationStep;

setLabelY(windowY(curY));

}

// move to destination Y position

setLabelY(windowY(getShuttleY()));

while (curX < getShuttleX()) {

sleep(animationPauseTime);

curX += animationStep;

setLabelX(windowX(curX));

}

setLabelX(windowX(getShuttleX()));

}

public synchronized void animateFromOrigin(int animationStep, int

animationPauseTime) {

int curX = 0;

int curY = 0;

setLabelX(windowX(curX));

setLabelY(windowY(curY));

while (curY < getShuttleY()) {

// loop make sure we don’t go past final Y position

sleep(animationPauseTime);

curY += animationStep;

setLabelY(windowY(curY));

}

// move to destination Y position

setLabelY(windowY(getShuttleY()));

while (curX < getShuttleX()) {

sleep(animationPauseTime);

curX += animationStep;

setLabelX(windowX(curX));

}

setLabelX(windowX(getShuttleX()));

}



 

Thus, a single shuttle will switch between the two animations – not something we desire. The reason is 

that the two interleaving animation threads access the same global variable – in this case the shuttle 

label, thereby interfering with each other. 

The problem  is shown in the figure below), which shows two threads named “Shuttle Animation” 
executing the two calls to animateFromOrigin.  As we see, each thread is associated with its own 
stack of calls. The call at the top of both stacks is animateFromOrigin. The figure shows that the two 
calls are executing at different locations of animateFromOrigin. The next statement to be executed 
by the top thread is the sleep call in the first loop, while the next statement to be executed by bottom 
thread is the second statement of the method. 
 
As the display shows, these are not the only threads in the system. One of the other two threads is the 
ObjectEditor thread that processes user commands and updates the display. The others thread(s) are 
system threads that do “garbage collection,” that is, gets rid of object we no longer need and other 
book-keeping/clean-up activities. 
 

public synchronized void animateFromOrigin(int animationStep, int

animationPauseTime) {

int curX = 0;

int curY = 0;

setLabelX(windowX(curX));

setLabelY(windowY(curY));

while (curY < getShuttleY()) {

// loop make sure we don’t go past final Y position

sleep(animationPauseTime);

curY += animationStep;

setLabelY(windowY(curY));

}

// move to destination Y position

setLabelY(windowY(getShuttleY()));

while (curX < getShuttleX()) {

sleep(animationPauseTime);

curX += animationStep;

setLabelX(windowX(curX));

}

setLabelX(windowX(getShuttleX()));

}

public synchronized void animateFromOrigin(int animationStep, int

animationPauseTime) {

int curX = 0;

int curY = 0;

setLabelX(windowX(curX));

setLabelY(windowY(curY));

while (curY < getShuttleY()) {

// loop make sure we don’t go past final Y position

sleep(animationPauseTime);

curY += animationStep;

setLabelY(windowY(curY));

}

// move to destination Y position

setLabelY(windowY(getShuttleY()));

while (curX < getShuttleX()) {

sleep(animationPauseTime);

curX += animationStep;

setLabelX(windowX(curX));

}

setLabelX(windowX(getShuttleX()));

}



 
 

It seems we can easily avoid the problem of concurrent access to a method by using a global boolean 

variable that is set to true at the start of the animation and to false at the end of the animation. If a 

thread finds the variable to be true, it repeatedly executes the steps of sleeping and checking the 

variable until it finds the variable false, as shown below. 

 boolean animationInProgress = false; 

public void animateFromOrigin(int animationStep, int animationPauseTime) { 

 while (animationInProgress) 

  sleep(POLLING_TIME); 

 animationInProgress = true; 

 //animation code 

 … 

 animationInProgress = false; 

} 

 As it turns out, this solution does not work, because both threads might try to simultaneously set the 

variable. In fact, it is not possible for us to write library code to prevent this problem. Therefore, Java 

 

 

Figure 5. Making an  synchronized call to animateFromOrigin before the previous one has finished 



provides language support for preventing this problem. If we want a method to be executed by at most 

one thread at one time, we should declare it as synchronized, as shown below. 

public synchronized void animateFromOrigin(int animationStep, int animationPauseTime) 

{ 

 int curX = 0; 

 … 

} 

 

If a thread tries to execute the method while some other thread is executing it, Java makes the second 
thread wait until the first thread finishes executing the thread.  This is shown in the Figure 13. The 
second “Shuttle Animation” thread cannot enter the method until the first one leaves the synchronized 
method.  
 



 
After leaving the method, the first thread terminates. At this point, the second thread enters the 
methods and stops at the first break point, as shown below. 

 

 

Figure 13. Making a synchronized  call to animateFromOrigin before the previous one has finished 



 
 
As it turns out, the synchyronized keyword cannot be used in a method declared in an interface. Thus, in 

the interface of the class, we must declare the header of animateFromOrigin as: 

public void animateFromOrigin() 

even though, in the implementation of the interface, we declare it as: 

public synchronized void animateFromOrigin() 

Normally, Java requires matching of all components of corresponding method headers in interfaces and 

the classes implementing it, but not in this case, probably to give the implementers of an interface the 

flexibility of deciding if they want to allow for concurrency and pay the cost of synchronization. 

When a class declares several synchronized methods, only one of them can execute at any time. Thus, if 

we make setShuttleX() also synchronized,  and a thread is executing the synchronized 

animateFromOrigin(), the a thread that executes setShuttleX() waits until the first thread finishes 



executing animateFromOrigin(). This is exactly what we want, as both methods manipulate a global 

label, and would interfere with each other if executed by two interleaving or concurrent threads. 

What if, instead of making the parameterized animateFromOrigin() synchronized, we made the 

parameterless animateFromOriging synchronized? 

 

This method simply creates threads. Serializing access to this method does not achieve our goal, as the 

threads created by this method are then free to execute the parameterized animateFromOrigin() 

simultaneously. Put in another way, we make a method synchronized if it accesses some global variable. 

However, this method does not access any global variable. More intuitively, the goal of synchronized is 

to make the caller wait. As this method creates threads to do its work, it does not block. 

Thus, the synchronized keyword above serves no purpose. We should, as before, make the 

parameterized animateFromOrigin() synchronized. 

This example shows it is useful to allow only a subset of the methods of a class to be synchronized. 

Summarizing Animation 
In general, an animating method performs one or more animation steps, where an animation step 

changes one or more animating (graphical) properties such as size, location, icon of one or more 

graphical objects and then pauses execution for some time. Execution can be paused using busy waiting 

or a sleep call provided by Java/operating system. Busy waiting has the problem that it is platform-

specific and does not allow other activity to proceed while the animation is paused. Therefore using the 

sleep call is preferable. 

After each animation step, all displays of the animation must be updated. The observable-observer 

concept can be used to ensure these updates are made. This means that we must ensure that for each 

graphical property changed by the animation, the class of the property allows observers to be registered 

and the setter of the property informs the observers about the update. ObjectEditor requires the 

JaveBeans observer-observer approach based around the PropertyChangeListener interface. 

An animating method should be executed in a separate thread as otherwise the user-interface thread 

will wait for it to finish execution before performing any screen update. This means that it is possible to 

start multiple executions of the method concurrently. We should use the keyword synchronized in 

the declaration of the method to ensure that it is executed serially by the thread, that is, to ensure that 

if a thread is in the middle of executing the method, other threads wait for it to finish. We should use 

the synchronized keyword also in all other methods that access the global variables accessed by the 

animation method. 

public synchronized void animateFromOrigin() {

Thread thread = new Thread(new

AShuttleAnimationCommand(this, animationStep, 

animationPauseTime));

thread.start();

}



In general, a method that performs the animation steps and a method that changes the value of some 

animating property may be in different classes such as AnAnimatingShuttleLocation and ALabel. 

A thread is created by passing to the constructor of the Thread class a command object that 

encapsulates the method call to be executed by the thread. 

Undoable/Re-doable Command Objects 
Command objects have applications not only in the creation of threads but also in the implementation 

of undo and redo. In fact, they were first discovered in the context of undo/redo. To illustrate, let us add 

the undo/redo support to ABMISpreadesheet. Let us say we first change the height property, then the 

weight property, and execute undo. The undo command will undo the change weight command. A redo 

will we re-execute the set weight command. If the next command is another redo, it has no effect. 

 

  

  

  

Notice that in the description of the undo/redo semantics, we talked about (re)executing and undoing 

the set weight command. This usage of ordinary English illustrates the role command objects have in 

undo and redo. The command objects we see here will be extensions of the one we saw in the context 

of threads. They will not only support an execute() operation but also an undo() operation. Moreover, 

the execute() operation will be used to both execute for the first time and re-execute the operation call 

encapsulated by the command object. As Java does not define such a command, let us create our own 

interface to do so. 

 

public interface Command {

public void execute();

public void undo();

}



The undo/redo commands execute by the user will not themselves be associated with command objects 

as they will be processed by calling the undo()/redo() operations on regular command objects. 

Notice also that the description of the undo/redo mechanism was independent of the specific 

command, as long as the command provided an execute() and undo() operation. The fact that the 

history was a single command and that user’s invocation of undo/redo causes the execution of the 

undo()/redo() operation on the undoable command was independent of the implementation of these 

two operations. It is common to say that Word and PowerPoint provide the same undo/redo 

mechanism. This does not mean that the commands undone/redone by them are the same. It means 

they add and remove commands from their history in the same way and invoke the execute() and 

undo() operations on these commands in the same way.  Put another way, the only difference between 

the two implementations is in the commands processed by them. 

This means it should be possible to create an undo/redo implementation that is independent of the 

exact commands, and depends only on the Command interface described above. This is analogous to 

creating a Thread implementation that is independent of the command object passed to its constructor, 

and depends only on the Runnable interface. 

The following interface describes the methods of such an undoer/redoer, to which we will refer to 

simply as an undoer. 

 

The execute() method is invoked in the undoer to submit an unexecuted command to it. The undoer 

responds to it by storing it and executing it for the first time. The undo()  and redo() methods are 

invoked in it to undo/redo the last executed/undone command.  Different implementations of this 

interface will differ in the size of the command history they create and when they clear the history (for 

example on file save or never). Our simple undoer keeps a single history of a single command, as shown 

below.  

 

public interface Undoer {   

public void undo();

public void execute(Command command);

public void redo();

}



 

The class keeps a history, which consists of a sequence of successively executed commands followed by 

a sequence of undone commands.  When a command is submitted to for execution it is executed and 

added to the sequence of executed commands. If the history contains any undone commands, the 

history is reset before adding the command to the history. The undo command moves the latest 

executed command (if such a command exists) from the executed sequence and moves it to the undo 

sequence. The redo command does the reverse – it moves the latest undone command (if such a 

command exists) from the undo sequence to the executed command sequence. 

Let us see how we can use this class to support undo in ABMISpreadsheet. Rather than changing this 

class, let us add undo awareness to a new class that delegates to an implementation of BMISpreadhseet 

such as ABMISpreadhset, and an instance of Undoer such as LastCommandUndoer. These two instances 

are passed to class through a constructor, and stored in bmiSpreadsheet and undoer, respectively.  The 

read methods of this class are not undoable, so they are delegated to bmiSpreadsheet without 

additional processing. The write methods, on the other hand, are undoable. Therefore, instead of 

directly delegating to bmiSpreadsheet, these methods create appropriate command objects, which are 

then sent to undoer for execution.  The target object passed to the constructor of each command object 

is bmiSpreadsheet, not this, the delegator, as passing this would result in an infinite recursion: To 

execute the command, the undoer would execute a write method in the delegator, which would send 

another command to the undoer, which would execute it again by calling the same write method, and 

so on. 



 

 

This class also provides undo() and redo() methods, invoked in the figures above from the menu, which 

simply call the corresponding methods in the undoer.   

The command objects created by the two write methods are instances of two different classes.  

 

public class AnUndoableBMISpreadsheet implements

UndoableBMISpreadsheet {

BMISpreadsheet bmiSpreadsheet;

Undoer undoer;

public AnUndoableBMISpreadsheet (BMISpreadsheet

theBMISpreadsheet, Undoer theUndoer) {

bmiSpreadsheet = theBMISpreadhseet;

undoer = theUndoer;

}

public double getBMI() {

return bmiSpreadsheet.getBMI();

}

public double getHeight() {

return bmiSpreadsheet.getHeight();

}

public double getWeight() {

return bmiSpreadsheet.getWeight();

}

public void setHeight(double theHeight) {

undoer.execute(new

ASetHeightCommand(bmiSpreadsheet, theHeight));

}

public void setWeight(double theWeight) {

undoer.execute(new

ASetWeightCommand(bmiSpreadsheet, theWeight));

}

public void undo() {undoer.undo();}

public void redo() {undoer.redo();}

}

public class ASetWeightCommand implements Command {

BMISpreadsheet bmiSpreadsheet;

double oldWeight;

double weight;

public ASetWeightCommand (BMISpreadsheet

theBMISpreadsheet, double theWeight) {

bmiSpreadsheet = theBMISpreadsheet;

weight = theWeight;

oldWeight = bmiSpreadsheet.getWeight();

}

public void execute() {bmiSpreadsheet.setWeight(weight);}

public void undo() {bmiSpreadsheet.setWeight(oldWeight);}

}



 

Like all command classes, such as AShuttleAnimationCommand we saw earlier, each of these classes 

encapsulates an embedded operation, and provides a constructor that takes the target object on which 

the operation is to be invoked and the actual arguments of the operation. The embedded operation in 

ASetHeightCommand (ASetWeightCommand) is setHeight()(setWeight()). The target object in both cases 

is an instance of BMISpreadsheet, which defines the embedded operation, and the actual argument is a 

double representing the new height/weight. As expected, the execute operation simply calls the 

embedded operation on the target object with the actual argument. The undo operation is more 

interesting. It must execute the inverse of the embedded operation invocation. When the embedded 

operation is a setter, the inverse of its invocation is another invocation of it with the value of the 

associated property before the first invocation was made. Therefore, the constructor of each command 

class invokes the corresponding getter in the target object to record the value of the property before it 

is changed by execute(). The undo() method simply calls the embedded operation with this value.  

As we see above, the only difference between the two command classes is the setter and getters they 

invoke. It is possible to use reflection to combine their implementations. In fact, this is exactly what 

ObjectEditor does, providing a single command class to undo all setters. 

Finally, we can write the following main method to create the user interface shown earlier. 

public static void main (String[] args) { 
 ObjectEditor.edit (new AnUndoableBMISpreadsheet(new ABMISpreadsheet(1.77, 75),  new 
HistoryUndoer()); 
} 

Proxy and Undo Pattern 
Our undo implementation involves several classes: the original class ABMISpreadsheet, the undo-aware 

class, AnUndoableBMISpreadsheet, the undoer, Undoer, the two command classes, 

ASetWeightCommand and ASetHeightCommand. Together, they follow a general undo pattern, shown 

below. 

public class ASetHeightCommand implements Command {

BMISpreadsheet bmiSpreadsheet;

double oldHeight;

double height;

public ASetHeightCommand (BMISpreadsheet

theBMISpreadsheet, double theHeight) {

bmiSpreadsheet = theBMISpreadsheet;

height = theHeight;

oldHeight = bmiSpreadsheet.getHeight();

}

public void execute() {bmiSpreadsheet.setHeight(height);}

public void undo() {bmiSpreadsheet.setHeight(oldHeight);}

}



 

 

 

Here, we refer to the class whose methods are to be undone as an undoable. In our example, the classs 

ABMISpreadsheet is an undoable. We do not add any undo awareness directly to the undoable. Instead, 

we add this awareness to a proxy class we create for it. A proxy class, like an adapter class, is a class that 

sits between some subject class and its clients.  

 

 

While an adapter class filters out or transforms the methods of the subject class, thereby providing a 

different interface than the subject class, a proxy implements an extension of the subject interface. As a 

result, a client may not even be aware that it is interacting through the proxy. In our example, 

AnUndoableBMISpreadsheet extends the interface of BMISpreadsheet with the undo() and redo() 

methods. Like an adapter, a proxy may be delegate to or inherit from the subject class, with delegation 

providing more flexibility. AnUndoableBMISpreadsheet is a delegating proxy, which allows it to provide 

undo/redo support for any implementation of BMISpreasheet such as AnotherBMISpreadsheet. This 

would not have been possible had it been a subclass of ABMISpreadsheet. 

We did not implement the entire undo/redo functionality in the proxy. Instead, we implemented most 

of it in the undoer and command objects.  This approach allows us to change the undoer without 

changing the proxy object or the command object. For instance, we can replace the our history undoer 

with a simpler undoer than only allows the last command to be undone.  

 

Undoable

Undo Proxy Undoer

Undoable Command(s)

Provides proxy, undo and 
redo methods, instantiate 
undo commands, interacts 
with undoer

Undo and execute 
undoable method(s) 

Chooses undo/redo 
command and invokes 
undo/execute on it

Defines undoable 
methods

ABMISpreadsheet

AnUndoableBMISpreadsheet ALastCommandUndoer

ASetWeight(Height)Command

client subjectproxy

client ABMISpreadsheetAnUndoableBMISpreadheet

AnotherBMISpreadsheet

AnUndoableBMISpreadsheet AHistoryUndoer

ASetWeight(Height)Command



At one time, there was significant debate regarding the undo/redo semantics. Thus, it made sense to 

experiment with different undoers. Today, the common applications such as word processors, 

programming environments, and graphics applications all provide the same undo/redo semantics. Thus, 

it does not make much practical sense to change the undoer of an application.  However, by keeping the 

undoer independent of the application object, we can use the same undoer for different kinds of 

undoable objects and their undo proxies. For example, our LastCommandUndoer can be used to undo 

methods of ACartesianPoint. 

 

As  long as we define an appropriate proxy for and command objects for it, we can use exactly the same 

undoer class. 

Even more interesting, the same undoer instance can be used simultaneously to undo and redo 

methods of objects of different classes such as ABMISpreadsheet and ACartesianPoint. The operations 

invoked on all of these objects would be maintained by this single undoer. 

 

This is the biggest reason for having a separate undoer. Most applications allow users to manipulate a 

variety of objects. For example, a Word processor allows users to manipulate text, graphics, and various 

kinds of preferences. A single undo history is maintained for operations invoked on all of these objects.   

To better understand how the various components of the undo pattern work, let us return to the BMI 

spreadsheet example. Consider what happens when the user changes the weight field to 66.0. 

  

(1)      (2) 

ACartesianPoint

AnUndoablePoint AHistoryUndoer

ASetX(Y)Command

ACartesianPoint

AnUndoablePoint AHistoryUndoer

ASetX(Y)Command

AnotherBMISpreadsheet

AnUndoableBMISpreadsheet

ASetWeight(Height)Command

public void setWeight(double theWeight) {

undoer.execute(new

ASetWeightCommand(bmiSpreadsheet, theWeight));

}



 

  (3) 

 

    (4) 

1. ObjectEditor calls setWeight() in AnUndoableBMISpreadsheet. 

2. setWeight(), in turn, creates an instance of ASetWeightCommand and asks the undoer to 

execute it. 

3. The undoer invokes the execute() method on the command. 

4. The command invokes the setWeight() method with the value 66.0 on the undoable 

BMISpreadsheet. 

Let us now consider what happens when the user executes the undo command. 

  

  (1) 

 

    (2) 

public class ASetWeightCommand implements Command {

BMISpreadsheet bmiSpreadsheet;

double oldWeight;

double weight;

public ASetWeightCommand (BMISpreadsheet

theBMISpreadsheet, double theWeight) {

bmiSpreadsheet = theBMISpreadsheet;

weight = theWeight;

oldWeight = bmiSpreadsheet.getWeight();

}

public void execute() {bmiSpreadsheet.setWeight(weight);}

public void undo() {bmiSpreadsheet.setWeight(oldWeight);}

}



 

    (3) 

 

   (4) 

(1) ObjectEditor calls the undo method in AnUndoableBMISpreadsheet. 

(2) This method calls the undo method in the undoer. 

(3) The undoer undo method calls the undo method in the command object. 

(4) The command object calls the setWeight() method in the undoable BMISpreasheet with the value of 

weight before the command was executed: 75.0. 

Finally, consider what happens when the user now calls redo. 

(1) ObjectEditor calls the redo() method in AnUndoableBMISpreadsheet. 

(2) This method calls the redo() method in the undoer. 

(3) The undoer redo method calls the execute() method in the command object. 

(4) The command object calls the setWeight() method in the undoable BMISpreasheet with the value of  

the argument passed to its constructor: 66.0. 

Thus, we see an important difference between the command object passed to an Undoer and the one 

passed to a Thread instance. The latter calls the execute() method of the command a single time. The 

former calls it once when the command is created and then each time the command is undone. 

Inheritance vs. Delegation in Proxies and Command Objects 
Our undo pattern includes the proxy pattern, which is a very common pattern. Proxies are provided for 

adding logging, collaboration, caching, web server redirection, access control, and several functions to 

some existing subject such as a web server. 

It is possible to create a proxy by inheriting from or delegating to the subject class. 

public class ASetWeightCommand implements Command {

BMISpreadsheet bmiSpreadsheet;

double oldWeight;

double weight;

public ASetWeightCommand (BMISpreadsheet

theBMISpreadsheet, double theWeight) {

bmiSpreadsheet = theBMISpreadsheet;

weight = theWeight;

oldWeight = bmiSpreadsheet.getWeight();

}

public void execute() {bmiSpreadsheet.setWeight(weight);}

public void undo() {bmiSpreadsheet.setWeight(oldWeight);}

}



 

 

 Inheritance-based Proxy 

 

 

  Delegating Proxy 

Delegation has the advantage that it allows the proxy to work for all implementations of the subject 

interface. For example, we can create one caching proxy for all web server implementations. On the 

other hand it requires more work. 

The choice between delegation and inheritance must also be made for command objects. In the 

examples shown above, a command invoker HAS-A reference to the command objects. 

 

For example, AHistoryUndoer has a reference to a ASetWieght command instance. 

ABMISpreadsheet BMISpreadsheet

AnUndoableBMISpreadsheet

IS-A
implements

Subject Class Subject Interface

Proxy Class

IS-A
implements

ABMISpreadsheet BMISpreadsheet

AnUndoableBMISpreadsheet

HAS-A
implements

Subject Class Subject Interface

Proxy Class

HAS-A
implements

Works for all 
implementations of 

Subject Interface 

(e.g. Web Server)

Command Invoker

Command Class

HAS-A

Command 
Invoker Interface

Command Interface
implements



 

Similarly, a Thred has a reference to AShuutleAnimationCommand. 

 

The designers, initially, used an inheritance based approach in which a command object was a subclass 

of the class that invoked it. 

 

This approach is still provides by Thread. We can make AShuttleAnimationCommand a subclass of 

Thread. Thread implements the Runnable interface by providing a null implementation of run(). If it is 

not passed a command object in its constructor, its start() method invokes run() on itself (this). If a 

command class extends it, then it is the run() method in this class that is executed. This approach makes 

no logical sense as an IS-A relationship does not exist between a command and a command invoker. 

However, it is still used by many programmers because of the convenience of inheritance. 
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The undo/redo semantics acceptable to users are fairly standard – the popular applications we use study 

such as the Microsoft Office applications an 
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