
COMP 110

Prasun Dewan1

3. Functions

The (classes of the) objects we saw in the previous chapter are rather simple. Not because they are

small in size. In fact, in well-written, real-world code, objects tend to be fairly small. The main reason for

the simplicity is that each of these objects has a single, self-contained method that does not interact

with other methods. In this chapter we will see how methods can call each other, much like we humans

delegate work to others. Such collaborative methods do not increase the complexity of the kind of

applications we build. Instead they improve the style of the program, making it easier to understand,

change, debug, and get correct. We will see some additional elements of programming style such as

named constants and comments. Writing complex collaborative methods often requires to break the

application development process into phases in which we first develop the high-level steps that decide

what the computer should do and phases in which we translate these steps into code in some

programming language such as Java. We will look also at this stepwise refinement process.

A Personalized BMI Calculator
A BMI calculator lets us determine how much weight we should lose or gain to be in the range of

acceptable BMIs. However, the BMI calculator we coded in the last chapter is a general purpose one

that can be used by people of different heights. As a result, each time we want to try a new value of our

1
  Copyright Prasun Dewan, 2000.

Figure 1. Using AMyBMICalculator: (left) Method CalculateMyBMI of class AMyBMICalculator, (top-

right) the method only requires weight, and (top-left) the calculated BMI value

weight, we must also enter our height. The BMI calculator shown in Figure 1, called

AMyBMICalculator, is a custom one built for a particular individual. Thus, we can simply try different

values of weight, without entering our height each time.

Figure 2 shows the code for the new class. As expected, the method, calculateMyBMI of this class

takes a single parameter – the weight. The height, 1.94, is hardwired into the method. It uses the fixed

height to compute the BMI corresponding to the weight entered by its caller. Thus, there is very little

difference between this method and the calculateBMI method of the previous chapter except in

whether the height is hardwired or a parameter. In fact, we can simply copy the code of calculateBMI

from the previous class, paste it into this class, and make the minor edits of removing the height

parameter from the method header and replacing its occurrences in the method body with the known

value of height.

Copy-Paste-Edit vs. True Reuse
As we program, we are often tempted to “reuse” code by going through the copy-edit-paste process

used above. However, this process has the following problem. It duplicates code, which means we must

find and modify all copies of the code if we must change its behavior or fix errors. Suppose we had made

a mistake in coding calculateBMI by, for instance, using the + operator instead of the * operator:

public double calculateBMI (double weight, double height) {

return weight/ (height + height).

}

After the copy-paste-edit process, our calculateMyBMI method looks like:

public double calculateMyBMI (double weight) {

return weight/ (1.94 + 1.94).

}

We must now change both methods to correct the mistake. This mistake is fairly easy to identify and fix.

In general, as you know from using commercial applications, there are many mistakes that are hard to

find even by experienced programmers. The copy-paste-edit process compounds the problem of fixing

mistakes as the effort required to find the mistake in copied code might be duplicated if we do not keep

track of where the code has been copied. Fortunately, there are elegant ways to address this problem

that supports true reuse by keeping a single copy of code that must be executed in different parts of the

Figure 2. The class ASquareCalculator

application. We will study here the simplest of these techniques, which involves calling rather than

duplicating method code.

Calling Methods Programmatically
We can take the following steps in calculateMyBMI to truly reuse the code in calculateBMI:

1) Create an instance of ABMICalculator

2) Invoke the method calculateBMI on this instance passing it my weight and my height as

actual parameters

3) Return the value returned by calculateBMI

When we coded calculateBMI, we learnt how to return a value from a method. Thus, we know how

to perform the third step. Moreover, we have seen how to execute the first two steps interactively.

Figure 4 summarizes them. Java provides us with equivalent ways to perform these steps from the

program, which are shown in the modified calculateMyBMI method shown in Figure 3.

Figure 4. Calling calculateBMI interactively

Figure 3. The class AMyBMICalculator that reuses ABMICalculator

The following fragment illustrates how a class is instantiated:

new ABMICalculator()

Why the parentheses after the class name? The reason will be clear later when we study constructors.

The parentheses are for enclosing a list of actual parameters given when instantiating a class. This

implies that ABMICalculator above is not only the name of the class to be instantiated but also the

name of a method that processes the actual parameters.

In general, if C is a class, the expression:

new C(…)

returns a new instance of the class, where the … are actual parameters given when instantiating the

class.

Thus, programmatic and interactive instantiation of a class are very similar. This is also true for method

invocation. We invoke a method interactively by selecting the method name from a menu in the edit

window of the “target” object on which the method is to be called, and filling the values of the

parameters of the method. The labeled program fragment in Figure 5 how these steps are taken in a

program.

In general, the syntax for invoking method M on object O with parameters (p1, p2, …) is:

O.M(p1, p2, …);

Figure 5. Programmatically instantiating and using ABMICalculator

Thus, calculateMyBMI creates an instance of ABMICalculator, invokes the method calculateBMI

on this target object with the known value of height and the value stored in the formal parameter

weight, and returns the value returned by calculateBMI. Thus, calculateMyBMI does not do any

“real work” – it simply passes the buck to calculateBMI. This is good as we have true reuse. We have

not duplicated the formula for calculating the BMI value in different parts of the program. If we fix any

errors in it or change it, for instance to take height and weight in feet and inches, respectively, we have

to change only one piece of code. In general the calling and called methods (calculateMyBMI and

calculateBMI, in this example) are referred to as the caller and callee, respectively. Figure 6

graphically illustrates the notion of passing the buck by calling a method.

When the user enters 74.98 for the weight parameter and presses the button to invoke the method,

calculateMyBMI, ObjectEditor calls calculateMyBMI(74.98), which in turn calls,

calculateBMI(74.98, 1.94), using the known value of height. The later method returns 19.9 to

calculateMyBMI, which in turn, returns this value to ObjectEditor, then displays the value to the user.

Declaring Variables in a Method Body
Consider another variation of the personalized BMI calculator shown in Figure 7. It defines a method

that takes as parameters two weights, such as our current weight and the weight a year ago, and finds

the average of the BMIs corresponding to the two weights.

Figure 6. Passing the buck by calling a method

Figure 7. Interactively instantiating and using AMyAverageBMICalculator

Figure 8. Programmatically creating two instances of AMyAverageBMICalculator to calculate average

BMI

Figure 9. The interactive equivalent of programmatically creating two instances of

AMyAverageBMICalculator to calculate average BMI

Without knowing additional Java constructs, we would have to implement this class as shown in Figure

8. However, the method, calculateMyAverageBMI creates a new instance of ABMICalculator each

of the two times it wishes to invoke the method calculateBMI. This corresponds to the interactive

execution of the two methods as shown in Figure 9.

Here the labels, “Instance 1” and “Instance 2”, identify the windows ObjectEditor creates for the two

instances of AMyBMICalculator created by the user. Of course, we did not have to do so. Instead the

interaction shown in Figure 10 is much less tedious.

In fact, it is normal to invoke multiple methods on an object after it has been created. To do so, we need

to a way to identify the object on which we wish to invoke the method. In the interactive mode, the

window ObjectEditor creates for an instance identifies it. In a program, we can use variables to do so.

Each program value such as an object or a double is stored in some location in memory. We can use

variables to name some of these locations in a program. Before using a variable we must first declare its

name and the type of the object stored in the corresponding memory location.

In fact, we have already seen the concept of declaring and using a variable. Consider again the code

shown in Figure 11. The method header contains the following variable declaration:

double weight

The body of the method references the variable:

return weight/(1.94 * 1.94);

Figure 10. Interactively creating a single instance of AMyBMICalculator and using it twice

Each reference of the variable stands for the value stored in the corresponding memory location. Thus, if

the actual parameter, 74.5 is passed to calculateMyBMI, then the above code is equivalent to:

return 74.5/(1.94 * 1.94);

As we will see later, the initial value of a variable can be changed, hence the name variable.

Variables can be declared not only in the header of a method as formal parameters but also its body as

internal method variables. While a formal parameter has a well defined initial value, the actual

parameter, an internal method variable does not. Therefore, Java lets us explicitly define such a value

when we declare the variable. The alternative implementation of calculateMyBMI shown in Figure 12

illustrates this.

Here, we create the variable names, aBMICalculator, in the body of the method calculateMyBMI.

Figure 11. Original AMyBMICalculator code

Figure 12. AMyBMICalculator code with storing ABMICalculator as an internal method variable

Figure 13. AMyBMICalculator code with multiple internal method variables

Its type, ABMICalculator, indicates that its value is an instance of ABMICalculator .The variable is

initialized to a new instance of this class.

In general, the construct:

T V = E;

asks Java to declare a variable named V of type T and stores the value E in its memory location. The

variable, V, now stands for the value, E (until it is dynamically assigned a new value). Thus, the above

program calls the method calculateBMI on the instance stored in aBMICalculator twice, with

different values of the weight parameter. Compared to the previous implementation, this one is more

efficient as we created one rather than two objects for the two method invocations.

In fact, it is possible to use additional variables in the code as shown in Figure 13. In Figure 13, after each

invocation of the calculateBMI method on aBMICalculator, the return value is stored in a variable.

Doing so is not necessary and does not increase the efficiency of the code. However, it may make the

code clearer to some of you. More importantly, as we see later, it is easier to debug, as we can name all

the intermediate values computed by the program. On the other hand, it makes the code less concise.

Which implementation is used is, thus, a matter of taste.

Named Constants, Literals, Constants
Nevertheless, there are arguably good ways to improve programming style, just as there are arguably

good ways to improve writing style. Consider the implementation:

public double calculateMyBMI(double weight) {

return (new ABMICalculator).calculateBMI(weight, 1.77);

}

Here the value 1.77 may be a magic number to some readers of the code, that is, a mysterious number

whose role they do not understand. The implementation would make more sense if we rewrite our code

as:

public double calculateMyBMI(double weight) {

final double MY_HEIGHT = 1.77;

return (new ABMICalculator).calculateBMI(weight, MY_HEIGHT);

}

Here MY_HEIGHT is a named constant. A named constant is like a variable in that it has a name

(identifier) associated with a value. While the association between a variable and its value can change,

that is, a variable can be assigned different values, the association between a named constant and its

value does not change. This is the reason for putting the keyword final in the declaration of the variable.

The convention is to capitalize all letters of a named constant to distinguish it from a regular variable

and separate its various words with an “_” (e.g. MY_HEIGHT).

Both the number 1.77 and the named constant MY_HEIGHT are constants, that is, their values are fixed.

The former is called a literal to distinguish it from the latter. A literal is a constant that literally indicates

the value it represents. A named constant is not a literal because we must look up its declaration to

determine its value. Literals are not restricted to numbers such as 2.2. As we will see later, they may be

characters such as ‘h’, strings such as “hello,“ or boolean values such as true.

Figure 14 illustrates the difference between literals, named constants, constants, and variables.

You might think that by using literals you can make the program more space efficient, believing that

variables and named constants use slots in memory to store the values associated with them while

literals do not.

Actually this is not the case, for two reasons:

 The compiler essentially replaces all occurrences of a named constant with the literal it

represents. Thus, named constants are equivalent to literals when the program is running,

taking no more space than literals.

 Except for some special, commonly occurring literals such as 0, literals are also stored in

memory slots. This is because the machine language does not understand all possible literals.

The compiler replaces all occurrences of literals with the addresses of memory slots storing their

values. (In fact, some languages such as FORTRAN allowed the value stored in the memory slot

to be change by the program, which would, for instance, allow the literal 2.2 to actually mean

the value 3.3!)

In summary, if you are asked to make your code as space efficient as possible, you should not try to use

literals instead of named constants.

However, reducing typing is not the main reason for avoiding duplication of code. In fact, another way

to prevent retyping of code is to use an editor with copy and paste capabilities. There is another, more,

subtle reason for avoiding code repetition, which has to do with the fact that code keeps changing

(because of changes in the client’s needs and our understanding of the problem). If repeated code must

Figure 14. Literals, constants, named constants, and variables

be changed, then we have to locate all occurrences of the code. It is easy to miss a few occurrences,

leading to an erroneous program.

To illustrate, after using our example application, our clients may tell us that they would prefer to enter

the weight and height in pounds and inches rather than kilograms and meters. If we reused

BMICalculator in the writing of AMyBMICalculator, we have to change only the former. Otherwise,

have to change both BMICalculator and MyBMICalculator, as they both contain the BMI

calculation formula.

Multi-Level Algorithms and Stepwise Refinement
Let us consider in more depth the idea of a BMI calculator that works in pound and inches. Instead of

changing the existing class ABMICalculator, it is better to create a new one,

APoundInchBMICalculator, that supports these units, so that users have the option of using both

sets of units. Figure 15 illustrates the new calculator. Ideally, the calculateBMI of

APoundInchBMICalculator should reuse the code in calculateBMI of ABMICalculator. The

method can take the steps shown to do so:

1. Calculate weight in Kgs from weight in Pounds.
2. Calculate height in Metres from height in inches.
3. Call the method calculateBMI of ABMICalculator with these values.
4. Return the value returned by this method.

Figure 15. APoundInchBMICalculator

The following Java code implements these steps:

public class APoundInchMyBMICalculator (

double weightInLbs, double heightInInches) {

public double calculateBMI() {

return (new ABMICalculator()).calculateBMI(

weightInLbs/2.2, heightInInches*2.54/100);

}

}

The English description of the steps we need to take, shown in Figure 16 (top), like the Java code, shown

in Figure 16 (bottom), explains the essence of our solution. Such a description is called an algorithm. Like

Java code, an algorithm is description of the solution to a problem. The description can be encoded

using any communication mechanism, graphical or textual. The textual formalism may be a natural or

programming language. As we shall see later, often an algorithm is a cross between real code and

natural language phrases, and is called pseudo code.

An algorithm is a description of not just computer solutions to problems but any well-defined task. For

instance, the following is a description of the tasks a professor may perform in a lecture:

1. Enter Class

2. Set up laptop projection

Figure 16. Algorithmic solutions using a natural language (English) and a programming language (Java)

3. Revise topics learnt in the last class

4. Teach today’s topics

5. Leave Class

It is often useful to write an algorithm in a natural language or pseudo code before implementing the

actual code to be executed. A process such as this that breaks a complex task into multiple simpler steps

is called stepwise refinement, and is easier to follow and more likely to succeed than one that does not.

Writing an algorithm before actual code is one form of stepwise refinement (Figure 16). We will see

later other forms.

Algorithms can be described at various ``levels''. For instance, the description given in Figure 16 (top)

does not explain how to convert pound and inches to Kgs and metres. The following is a more detailed,

2-level algorithm that does so:

1. Calculate weight in Kgs from weight in Pounds

a. Divide weight in Pounds by 2.2

2. Calculate height in Metres from height in inches

a. Calculate height in centimetres from height in inches and divide it by 100 to get

height in metres

3. Call the method calculateBMI of ABMICalculator with these values

4. Return the value returned by this method

However, even this algorithm does not give us all the detail we need – it omits how to compute height in

centimeters from height in inches. The following 3-level algorithm does so:

1. Calculate weight in Kgs from weight in Pounds

a. Divide weight in Pounds by 2.2

2. Calculate height in Metres from height in inches

a. Calculate height in centimetres from height in inches and divide it by 100 to get

height in metres

i. Multiply height in Inches by 2.54 to get height in centimetres

3. Call the method calculateBMI of ABMICalculator with these values

4. Return the value returned by this method

Thus, an algorithm need not give all of the details required to implement a program. In fact, even our

real-world lecture algorithm leaves out certain important details such as how the topics should be

taught, how one distributes the handouts, or what color chalk should be used. Thus, in our stepwise

refinement of a solution, we may create multiple levels of algorithms before writing real code.

Multi-Level Code and Internal Calls
Our Java implementation, however, does not reflect multiple levels as it was created directly from the

single-level algorithm. In fact, it consists of a single line of Java code. The more units there are in a

program, the more (a) understandable it becomes, as people can understand the details added by each

level incrementally, and (b) reusable it becomes, as there are more parts that can be reused

independently. Figure 17 shows an implementation that has a separate method for each level of the 3-

level algorithm.

Here, the calculateBMI method does not directly convert its parameters to Kgs and metres -

instead, it asks the methods toKgs and toMetres to do so. The method toKgs directly converts

pounds to Kgs. The method toMetres, on the other hand, calls toCentiMetres, to convert inches

to centimeters, and then converts the centimeters to metres.

Figure 18 illustrates this call sequence when the user calls calculateBMI of

APoundInchBMICalculator with the arguments 165 (lbs) and 70(inches). The method calls toKgs to

convert 165 lbs to 75Kgs. It then calls toMetres to convert 70 inches to 1.778 metres. toMetres, in

turn, calls toCentimetres to convert 70 inches to 177.8 centimetres. Finally, calls calculateBMI of

APoundInchBMICalculator calls calculateBMI of ABMICalculator with the arguments 75 (Kgs)

and 1.77 (metres), and returns the value returned by the latter.

Thus, the process of calling method is very similar to what we saw in the previous examples. The main

difference is the complexity of the interaction. In the previous examples, a method called a single other

method. Here, three different methods are called by calculateBMI of APoundInchBMICalculator:

toKgs, toMetres, and calculateBMI of ABMICalculator. Moreover, previously, a called method

directly computed the result. Here, the called method, toMetres, calls another method,

toCentimetres, to compute the result requested by its caller, calculateBMI of

APoundInchBMICalculator.

Figure 17. Implementing each step of the 3rd-level algorithm in a separate method

Notice the difference in syntax between the calls to calculateBMI of ABMICalculator and toKgs,

made by the instance of APoundInchBMICalculator. The former is an external call, that is, a call

made by a method of an object to a method of another object. The latter, however, is an internal call,

that is, a call made by a method of an object to a method of the same object. In other words, in an

external call, the caller and callee methods belong to different objects while in an internal call, they

belong to the same object. An external call must always specify the target object. An internal call, on the

other hand, need not specify the target object. Figure 19 shows the similarity and difference between

internal and external calls.

This version of APoundInchBMICalculator is the first example to show that a class can have multiple

methods. As we will see later, this is typically the case with most classes. As the previous

Figure 18. Call graph of calculateBMI in APoundInchBMICalculator

Figure 19. Internal vs. External method call syntax

implementation of this class showed, it was not necessary to create multiple methods in the class. Even

though this version is longer, it is probably clearer as independent parts are in separate methods

appropriately named to convey their function. Moreover, it is more reusable as the methods to convert

pounds to Kgs and inches to metres and centimeters can be reused in other classes. For example,

another class can reuse the code to convert pounds to Kgs:

(new APoundInchBMICalculator()).toKgs(165);

(new APoundInchBMICalculator()).toMetres(70);

(new APoundInchBMICalculator()).toCentiMetres(70);

Such reuse was not possible in the first version as these three conversions are all implemented by a

single method. As a result, it is not possible to reuse them independent of BMI calculation.

Natural vs. Human-Created Constants
In both implementations, however, we directly used literals, 2.54, 2.2, in the conversions rather than

named constants. Are we guilty of using magic numbers? What is magic may depend on the audience.

To some readers of code, the numbers 2.2 and 2.54 may not have been magic. To others, who do not

know that 100 centimeters make a meter, the number 100 may be magic. The reason why there is

ambiguity here is that these are fundamental numbers defined by nature. When a number is human

invented, it is more likely to be a magic number. In the statement:

Figure 20. Removing all potentially magic numbers

return hoursWorked*hourlyWage + 50;

the number 50 is probably a magic number that should be replaced by a named constant:

return hoursWorked*hourlyWage + BONUS;

Even if it was clear to everyone, from this context, that the literal 50 represents the bonus, there is still

an important advantage in defining a named constant for it. The bonus might have been used in other

parts of the program. Like most human-created numbers, it may change. If we do not define a named

constant for the bonus, we must locate and change all occurrences that use it. If we defined a named

constant for it, all we have to do is change the place it is declared. As the values of fundamental

numbers do not change, there is less reason for defining named constants for such numbers. On the

other hand, doing can help people who do not remember the values of these numbers.

In summary, it is best to define named constants for human-invented numbers because they are likely to

change and be magic numbers to the readers of the program. Whether you do so for natural numbers

depends on the readers of your programs. In case of doubt, defined named constants for them, as

shown in Figure 20.

