

COMP 401

Prasun Dewan1

Collections and Inheritance

In the previous chapter, we defined logical structures with fixed number of nodes. In this chapter, we

will see how we can use arrays to define types with a dynamic number of components. The collectiom

examples will motivate the main topic of this chapter – inheritance. Inheritance in an object-oriented

language is not much different than inheritance in the real world. Just it is possible to automatically

inherit money from a benefactor or genes from ancestors, it is possible to inherit code from an object

type – specifically the methods and variables defined by that type. The idea of inheritance is related to

the IS-A relation. Again, this relation is used in the non-computer world. A human is a mammal; a

salmon is a fish; and each of you is a student. Similarly, we say that ACartesianPointy is a Point because

it implements Point. We will see that inheritance, like interface implementation, is also an is-a relation.

We will show how type checking of object variables is based on this relation.

Example Problem
To motivate collections, let us consider the problem of implementing the console-based application

shown in Figure ???. (replace the figures with actual text for mobile reading)

1  Copyright Prasun Dewan, 2015.

Users of this application can enter names, print the set of entered names, and quit the application. A

line beginning with q or P is considered a command to quit the application or print the names,

respectively. Any other line is considered the entry of a new name.

Linked Lists vs. Arrays
The application above must collect the elements in memory in order to later print them. There is no

limit on the number of elements a user can enter. Thus, we need to create a data-structure in memory

that can grow dynamically. Later, we will see predefined Java collections such as Vector, ArrayList and

LinkedList that provide dynamic growth. Let us try to see if we can implement such collections using the

tools about which we already know.

There are two main ways in in which we can implement such collections. One is to create a “linear”

logical structure in which each node refers to the next element in that collection. The structure is linear

because a parent has exactly one child – there is no branching. Such a structure links all of the collection

nodes, and thus is called a linked-list. In your data structure course, you will explore this technique in

great depth; and we will not further discuss it.

The other technique is to use arrays, which is the one on which we will focus here. Arrays, by

themselves, are not sufficient as they hold a fixed number of elements. However, it is possible to use a

fixed-size array to store a variable-size collection, much as we write variable-sized lists in fixed-size

pages. Such a collection can be simulated using an array and two int variables. The size of the array is

the maximum size of the collection, given by one of the int variables. The filled part consists of

elements of the variable-sized collection and the unfilled part consists of the unused elements of the

array. The size of the filled part, thus, ranges from 0 to the array length. We store this value in the

second int variable, and update it whenever we add or delete a collection element. Thus, changing the

size of the collection involves changing the boundary between the filled and unfilled parts of the array.

Since the length of an array cannot change once it has been instantiated, the “variable” storing the value

of the maximum size of the collection is usually declared as final to make it readonly.

Encapsulating Related Variables

It is considered good programming practice to relate the names of the three variables defining the

variable-sized collection. A popular approach is to declare these variables in the class that needs the

collection, and name the current and maximum size variables aSize, and A_MAX_SIZE, respectively, if

the array is named a.

final int A_MAX_SIZE = 50;

String[] a = new String[A_MAX_SIZE];

int aSize = 0;

//process collection a

…

If the class needs another collection of this kind, it similarly creates another three variables:

final int B_MAX_SIZE = 50;

String[] b = new String[B_MAX_SIZE];

int bSize = 0;

//process collection b

…

We can, in fact, do better than this, since each time we need a group of related variables, we should

declare them as instance variables of a new class. Here is one way of doing so:

public class AVariableSizedStringCollection {

public final int MAX_SIZE = 50;

 public String[] contents = new String [MAX_SIZE];

 public int size = 0;

}

In this declaration, the three variables are declared as public instance variables of the class. Each time

we need a new dynamic collection of strings, we can create a new instance of this class and store it in

some variable:

AVariableSizedStringCollection a = new AVariableSizedStringCollection();

AVariableSizedStringCollection b = new AVariableSizedStringCollection();

We can then refer to the array and size components of it, as shown below:

a.MAX_SIZE

a.contents

a.size

b.MAX_SIZE

 ….

This approach is superior to creating separate variables, such as aSize and a, because it creates a new

type that better matches the problem than the separate array and int types do individually. As a result,

it gives us the advantages of defining high-level types such as reuse of the declarations defining the

variable size collection and allowing a dynamic collection to be returned by a function. However, it does

not meet the principle of encapsulation or least privelege. Because both the non-final instance variables

have been declared public, users of this class can manipulate them in arbitrary ways. For instance, they

can add a new element to the array without incrementing the size field; or make the size field become

larger than MAX_SIZE.

History
Therefore, we should encapsulate the variables, that is, make them non-public and provide access to

them through public methods. These methods depend on the nature of the collection we want. In the

problem of Figure ???, we need operations to:

 add an element to the collection,

 examine each element of the collection so that we can print it.

We do not need operations to modify or delete elements. Thus, the collection we need is really a history

of strings – as in the case of a history of past events, its filled portion cannot be overwritten.

The following interface defines these operations:

public interface StringHistory {

public void addElement(String element);

public String elementAt (int index);

public int size();

}

Like String, the interface provides a method to access an element at a particular index. It is, of course,

more convenient to index a collection like an array using the square brackets, [and]. Unfortunately, in

Java, such indexing cannot be used for programmer-defined types, requiring special support from the

programming language.

Like String, this interface also provides a method to find the size of the collection. Finally, unlike the

immutable String, it provides a method to add an element to the collection.

The three variables creating a variable-size storage for the history elements are defined, not in the

interface, but in its implementation, AStringHistory:

public class AStringHistory implements StringHistory {

public final int MAX_SIZE = 50;

String[] contents = new String[MAX_SIZE];

int size = 0;

public int size() {

return size;

}

public String elementAt (int index) {

return contents[index];

}

boolean isFull() {

return size == MAX_SIZE;

}

public void addElement(String element) {

if (isFull())

System.out.println("Adding item to a full history");

else {

contents[size] = element;

size++;

}

}

}

Unlike AVariableStringCollection, AStringHistory does not make these instance variables

public. As a result, it supports encapsulation – all access to these variables is through the public methods

of the class. There is no danger these variables will be manipulated in an inconsistent manner from

outside the class. Moreover, if we were to change the variables by, for instance, renaming them,

increasing the maximum size, or replacing an array with another data structure (such as Vector,

discussed later), the users of the class would not know the difference and thus could be reused with the

new implementation.

Most of the methods of this class are trivial. The method size returns the current size, elementAt

indexes the array to return its result, and isFull returns true if the current size has reached its

maximum value.

The method addElement requires some thought. If the collection is not full, the value of size is the

index of the first element of the unfilled part of the array. In this case, it simply assigns to this element

the new value, and increments size. The tricky issue here is what should happen when the collection is

full? If we have guessed the maximum size right, this condition should not arise. Nonetheless, we must

decide how to handle this situation. Some choices are:

 Subscript Exception: We could ignore this situation, and let Java give an

ArrayIndexOutOfBoundsException error when the method accesses the array beyond the

last element. However, this may not be very illuminating to the user, who may not know that

the implementation uses an array (rather than, say, a vector, discussed later).

 Specialized Exception: We could define a special “exception” for this situation,

CollectionIsFullException, and “throw” it. We will see later how this is done.

 Print Message: We would print a message for the user. Unfortunately, the caller of addElement

gets no feedback with this message.

 Increase Size: If it is not an error to add more elements than the original array can

accommodate, we could increase the size of the collection by creating a larger array, add all the

elements of the previous array to it, and assign the new array to the contents field.

Our program assumes it is an error to add to a full collection and simply prints a message. As the

discussion above points out, had we known how to define one at this point, a specialized exception

would have been a better alternative under this assumption.

The following main method illustrates how StringHistory and its implementation AStringHistory,

are used to solve our problem:

public static void main(String[] args) {

StringHistory names = new AStringHistory(); // create an empty history

while (true) {

 String input = Console.readString();

 if (input.length > 0)

if (input.charAt(0) == 'q')

// exit loop if user enters ‘q’

break;

 else if (input.charAt(0) == 'p')

// print database if user enters ‘p’

print(names);

else // add input to history

names.addElement(input);

}

}

It gathers history entries incrementally in the loop. If a non-null input line does not begin with any of the

recognized commands, the loop assumes it is a new entry, and calls the addElement method to add it

to the StringHistory instance. The print method calls the size() and elementAt() methods of the

history to access all elements of the history.

static void print(StringHistory strings) {

System.out.println("******************");

for (int elementNum = 0; elementNum < strings.size(); elementNum++)

System.out.println(strings.elementAt(elementNum));

}

Database
A history is perhaps the simplest example of a variable-sized collection. Let us motivate the need for a

more sophisticated collection using an extension of our example application in Figure ???:

In addition to the commands to add to and print the collection, this application provides commands to

delete an entry (d), check if an entry is a member of the collection (m), and clear the whole collection

(c). Thus, the collection forms a simple string database, providing commands for searching, adding, and

deleting entries. The following interface describes the new type:

public interface StringDatabase {

 // methods of StringHistory

 public String elementAt(int index);

 public void addElement(String element);

 public int size();

 // additional methods

 public void deleteElement(String element);

 public void clear();

 public boolean member(String element);

}

It retains all the methods of the StringHistory, including additional methods to delete an element,

clear the collection, and check if an item is present in the collection.

We will not cover the details of implementing the new methods as these are more relevant for a CS-1

course. The complete code of AStringHistory is given in the companion source code.

Inheritance
We have seen two kinds of collections created using arrays, a history and a database. A history is

defined by the interface, StringHistory and implemented by the class, AStringHistory; while a

database is defined by the interface, StringDatabase, and implemented by the class

AStringDatabase.

Let us compare the database class and interfaces with the history class and interface. The database

interface defines all the methods of the history interface, plus some more. In other words, logically, it is

an “extension’’ of the history interface, containing copies of the methods elementAt, addElement,

and size, and adding the methods, deleteElement, and clear. Similarly, logically, the database

class is an extension of the history class, in that it contains a copy of all of the members defined in the

latter – the size and contents instance variables, and the addElement, size, and elementAt

instance methods. As a result, AStringDatabase implements a superset of the functionality of

AStringHistory. However, physically, the database interface and class are not extensions of the

history interface and class, because they duplicate code in the latter – each member of the history

interface/class is re-declared in the database interface/class.

In fact, Java allows us to create logical interface and class extensions as also physical extensions. The

database interface can share the declarations of the history interface as shown here:

public interface StringDatabase extends StringHistory {

public void deleteElement(String element);

public void clear();

public boolean member(String element);

}

The keyword extends tells Java that the interface StringDatabase is a physical extension of

StringHistory, which implies that it implicitly includes or inherits the constants and methods

declared in the latter. As a result, only the additional declarations must be explicitly included in the

definition of this interface.

Below, we see how the database class can share the code of the history class:

public class AStringDatabase

extends AStringHistory implements StringDatabase {

public void deleteElement(String element) { … }

int indexOf(String element) { … }

void shiftUp(int startIndex) { … }

public boolean member(String element) { … }

public void clear() { … }

}

The method bodies are not given here since they are the same as we saw earlier. The important thing to

note here is that the class does not contain copies of the methods and instance variables declared in

AStringHistory because it now (physically) extends it.

Given an interface or class, A, and an extension, B, of it, we will refer to A as a base or supertype of B;

and to B as a derivation, subtype, or simply extension of A

Any class that implements an extension of an interface must implement all the methods declared in

both the extended interface and the extension. Thus, in our example, AStringDatabase must

implement not only the methods declared in StringDatabase, the interface it implements, but also

the ones declared in the interface, StringHistory, the interface extended by StringDatabase.

Thus, the new definition of StringDatabase and AStringDatabase are equivalent to the ones

given before.

Here we were good about following the rule of putting all public methods of the extending and

extended class in interfaces. To better understand the Java semantics, let us consider a version of

AStringDatabse in which we remove the implements clause without making any other change:

public class AStringDatabase

extends AStringHistory {

…

}

Even though this class has no explicit implements clause, as it is an extension of AStringHistory, it

implicitly implements StringHistory. In general, a class implicitly implements the interfaces of its (direct

and indirect) superclasses.

Real-World Inheritance
Programming using objects, classes, and inheritance is called an object-oriented programming. In

contrast, a programming using only objects and classes is called object-based programming. Thus, with

the use of inheritance, we are making a transition from object-based programming to object-oriented

programming.

Let us go back to the real-world analogy to better understand inheritance and why it is important. Often

physical products are extensions of other physical products. For instance, a deluxe model of an Accord

has all the features of a regular model, and several more such as cruise control. When specifying the

deluxe model, it is better to create an addendum to the existing specification of a regular model, rather

than create a fresh specification. As a result, if we later decide to update the specification of a regular

model, we do not have to go back and update the specification of the deluxe model, which is always

constrained to be an extension of a regular model.

Similarly, we may want to implement an extended interface by extending a factory, rather than creating

a new factory. For instance, when we need to create a deluxe model, we may first send it to a factory

that creates a regular model, and then add new features to this model.

We do not have to look at the man-made world for examples of these relationships. For instance, a

human is a (inherits traits of a) primate, which is a mammal, which is an animal, which is a living

organism, which is a physical object; and, a rock can be directly classified as a physical object. Thus,

both a human and a rock inherit properties of physical objects – for instance, we can see, touch, and

feel them.

Thus, like objects and classes, inheritance feels “natural” and allows us to directly model the

inheritance relationships among physical objects simulated by the computer. For example, we could

model a human being as an instance of a Human Java type, which would be a subtype of Primate, and

so on. Without inheritance, we would have to manually create these relationships.

The Class Object
Just as, in the real world, we defined the group, PhysicalObject, to group all physical objects in the

universe and define their common properties, Java provides a class, Object, to group all Java objects

and define their common methods. It is the top-level class in the inheritance hierarchy Java creates for

classes (Error! Reference source not found.). If we do not explicitly list the superclass of a new class,

Java automatically makes Object its superclass. Thus, the following declarations are equivalent:

public class AStringHistory implements StringHistory

and

public class AStringHistory extends Object implements StringHistory

The methods defined by Object, thus, are inherited by all classes in the system. An example of such a

method is toString, which returns a string representation of the object on which it is invoked. The

implementation of this method in class Object simply returns the name of its class followed by an

internal address (in hexadecimal form) of the object. Thus, an execution of:

System.out.println((new AStringHistory()).toString())

might print:

AStringHistory@1eed58

while an execution of:

System.out.println((new AStringDatabase()).toString())

might print:

AStringDatabase@1eed58

where “leed58” is assumed to be the internal address of the object in both cases. In fact, we did not

need to explicitly call toString in the examples above. println automatically calls it when deciding

how to display an object. Thus:

System.out.println(new AStringDatabase))

is, in fact, equivalent to:

System.out.println((new AStringDatabase()).toString())

Object defines other methods, we will study later, which can also be invoked on all Java objects.

Despite its name, Object is a class, and not an instance. It defines the behavior of a generic Java

object, hence the name.

It defines a variety of methods, three of which, shown in the figure below, we will look in some depth

later. The class Object does not implement any interface. Not only is this bad design, according to our

rule that every class must implement one (or more) interfaces, but it raises some conceptual problems

in variable assignment, as we will see later.

Overriding Inherited Methods and super Calls
Returning to our example application, suppose we did not want to print or store duplicates in the

database, and instead wanted the interaction shown in Figure ???.

To support this application, we need the collection to behave like a mathematical (ordered) set, which

allows no duplicates. We do not need to completely model a Mathematical set, which would require set

operations such as union, intersection, and difference, which we did not need in this problem. Question

6 motivates the use of a more complete implementation of a set. In fact, we do not need to add any

operations we defined for a database. Instead we can simply re-implement the addElement operation

inherited from AStringHistory so that it does not add duplicates to the collection:

public class AStringSet extends AStringDatabase implements

StringDatabase {

public void addElement(String element) {

if (member(element)) // check for duplicates

 return;

 // code from AStringHistory

if (isFull())

System.out.println("Adding item to a full history");

else {

contents[size] = element;

size++;

}

}

}

What we have done here is to replace or override an inherited method implementation.

In the above implementation, we duplicated the code in AStringHistory for adding an element to the

collection. We would like to somehow refer in the addElement() of a AStringSet to the addElement() of

AStringHistory. If we refer to it addElement():

public void addElement(String element) {
 if (member(element)) return;
 addElement(element);
 }
we would make a non-terminating recursive call, as the addElement() call refers to addElement() of

AStringSet rather AStringHistory.

One solution to this problem is to define another method, addElementHistory(), that is not overridden

by AStringSet() and have both the overridden and overriding addElement() in the two classes call this

method. Thus, the addElement() in AStringHistory is now replaced by the following two methods:

public void addElementHistory(String element) {
 if (isFull())
 System.out.println("Adding item to a full history");
 else {
 contents[size] = element;
 size++;
}
 }
public void addElement (String element) {
 addElementHistory(element);}
 }

The overridding addElement() can now refer to addElementHistory:

public void addElement(String element) {
 if (member(element)) return;
 addElementHistory(element:;
 }

There are times we have to resort to such a solution when we override methods. However, for this

case, Java provides a more direct solution, shown below:

public class AStringSet extends AStringDatabase implements

StringDatabase {

public void addElement(String element) {

if (member(element)) // check for duplicates

 return;

 // code from AStringHistory

super.addElement(element);

}

}

Here, we directly invoke the addElement() method in the superclass AStringHistory rather than execute

a copy of its code or refer to an auxiliary method that is not overdden. In general, when we use the

keyword super in a class C as a prefix to a method call, we ask Java to follow the super class chain of C

to find the first class with a definition that matches the method call, and invoke that method. The super

class chain of C1, C2, .. Object, where Ci+1 is the super class of Ci and C1 is the super class of C. Thus, the

super class chain of AStringSet is AStringDatabase, AStringHistory, Object. When

super.addElement(element) method invoked by AStringSet, Java first checks if a matching definition is

provided by AStringDatabase. As it is not, it then goes to the next super class in the chain,

AStringHistory, and performs the same check. As it does find a definition this time, it uses it and does

not look further up the chain. The matching method definition can be found at compile time – there is

no need to wait until execution time to resolve the call. We could not have used this solution if

AStringDatabase had also overridden addElement() and in AStringSet, we wanted to call the

addElelement() in AStringHistory rather than AStringDatabase. We would have add to use the solution

of creating an auxiliary method in AStringHistory that is not overridden.

In the implementation of AStringSet, we have not implemented a new interface, only provided a new

implementation of an existing interface, StringDatabase by overriding one of the inherited methods.

To implement the above application, the main method remains the same as the one we used for the

database application, except that we replace the line:

StringDatabase names = new AStringDatabase();

with:

StringDatabase names = new AStringSet();

When the addElement method is invoked on name:

names.addElement(input);

the implementation defined by the class of the assigned value (AStringSet) is used since it overrides

the inherited implementation of the operation from AStringDatabase.

Overridding toString()
To better understand inheritance and Object, the last class in the superclass chain of all classes, let us try

and understand in more depth and override its toString() method in AStringSet:

public String toString() {

 String retVal = “”;

 for (int i = 0; i < size; i++)

 retVal += “:” + contents[i];

 return retVal;

}

The method returns a “:” separated list of the elements of the collection:

 stringSet.toString()  “James Dean:John Smith”

Recall that the implementation inherited from Object gives us the class name followed by the memory

address:

 stringSet.toString()  “AStringSet@1eed58”

Many classes override the toString method, since the default implementation of it inherited from

Object is not very informative, returning, as we saw before, the class name followed by the object

address. Recall also that println calls this method on an object when displaying it. The reason why

println tends to display a reasonable string for most of the existing Java classes is that these classes

have overridden the default implementation inherited from Object.

Protected, Private and Default Visibility of Variables and Methods
Our final implementation of AStringSet consists of a single overridden method, which does access any

non-public variables or methods of its superclasses. This leads to the question: should non-public

members - variables and methods - declared in a class even be visible in suberclasses? The answer, it

turns out, is depends. While AStringSet does not need to access its superclass members,

AStringDatabase does. For example, to delete an element or clear the collection, the class must change

the size variable.

To support examples such as AStringDatabase, Java could allow a subclass to access all variables and

methods of a super class, but that breaks the principle of least privilege, which says that a class should

be given access to only those variables and methods to which it needs access. Therefore, Java allows

programmers to choose which non-public members are visible in subclasses. For similar reasons, it

allows them to choose which non-public members are visible in other classes in the same package.

In other words, when it comes to sharing, some classes are more equal than others. The subclasses of a

class and classes in the same package may be tied to its implementation, and thus, deserve more access

than those that simply use its interface. To make a real world analogy, consider the implementation of a

car. Given a regular engine, we may want to extend it to deluxe higher-rev engine by allowing the latter

to access the implementation details of the former that are not visible, for instance to other

components of the car such as the tires. This is analogous to giving subclasses special access. Similarly,

we may want the distributor and other parts that interact with the engine to make it work to have

special access to the engine that other parts such as tires do not have. This is like giving co-packaged

classes special access, as the classes in the same package, together, implement some logical unit of the

entire program.

Java defines a hierarchical scheme of access which associates each member with one four access levels:

 public: It is accessible in all classes.

 protected: It is visible in all subclasses of its class and all classes in its package.

 default: It is accessible in all classes in its package.

 private: It is accessible only in its class.

We saw earlier that to make a variable or method public, we simply use the keyword public. Similarly,

we can use the keywords protected and private to give these two reduced levels of access. We give

default access by using none of these three keywords – hence the name, default. Thus, the opposite of

public access is not private access as Java defined four access levels. So far, we have given only public

and default access. We now know how to give two additional levels of access.

Let us look at some examples to illustrate these access levels. Suppose we put AStringHistory and

AStringDatabase in the same package:

package lectures.collections;

 public class AStringHistory implements StringHistory {

 int size = 0;

 …

package lectures.collections;

 public class AStringDatabase extends AStringHistory

 implements StringDatabase {

 public void clear() {

 size = 0;

 }

 …

Does AStringDatabase have access to the size variable declared in AStringHistory? As size variable has

been given default access, and both classes are in the same package, the answer is yes.

If we were to move AStringDatabase to another package:

package lectures.inheritance;

 public class AStringDatabase extends AStringHistory

 implements StringDatabase {

 public void clear() {

 size = 0;

 }

It would not longer have access to the variable, and the code above would not compile. If we do want

the two classes to be in different packages, then to make this code compile, we must change the access

of the variable to protected:

package lectures.collections;

 public class AStringHistory implements StringHistory {

 protected int size = 0;

 …

While variables and implementation-specific methods should not be made public, there is no general

rule for deciding which of the three access levels should be given to such members. As mentioned

above, the exact level depends on the specific class being implemented and how we think it may be

extended.

What should we do when we cannot anticipate how a class may be extended? To maximize flexibility

and reusability, we may make all variables and implementation-specific methods protected so that

subclasses in other packages can also use these members without duplicating their function. Java’s

designers apparently believed that by default, only classes within the same package should access them.

When we do not have enough information, we could simply use this principle, as it saves typing an extra

keyword. Many software engineers take a far more conservative stand and require all variables to be

private and access be given to other classes using getters and setters with the appropriate access level.

This approach minimizes the chances that other classes will make the values of these variables

inconsistent. While this approach is wonderful in theory, my own experience, based on examining

popular open-source software systems, is that programmers are quick to make variables private but lazy

about providing non-public getters and setters to access them, thereby limiting flexibility and reusability.

Thus, choosing the appropriate access level involves making several tradeoffs involving programming

effort, consistency, extensibility, and reusability. You are free to choose how you want to make these

tradeoffs. The recommendation is to make all variables private as long as you are not lazy about

providing the getter and setters. This recommendation is violated in all code presented in this course,

mainly because it bloats the size of the examples presented.

Java Collection Inheritance
We have defined here three different collections types, with the following inheritance relationships

among the involved interfaces and classes:

Interfaces: StringSet  StringDatabase  StringHistory

Classes: AStringSet  AStringDatabase  AStringHistory

Collections are so important that, as some of you already know, far more sophisticated versions of them

are provided by Java. Here are some example names and inheritance relatonships:

Interfaces: Set, List  Collection

Classes: Vector, ArrayList  AbstractList  AbstractCollection

It defines two interfaces, Set and List, which are both subtypes of Collection. This is analogous to

StringDatabase being subtypes of StringDatabase and StringDatabase being a subtype of StringHistory .

As we saw before, Vector and ArrayList are two implementations of List. They extend Abstract List,

which in turn, extends AbstractCollection. This is analogous to AStringSet extending AStringDatabase ,

and AStringDatabase extending AStringHistory.

By outlining the design and implementation of our example classes, we are able to gain some

understanding of the insides of the predefined collection classes, and more important, from the point of

view of this chapter the inheritance relationships among them. We will study the API provided by them

later.

More on Inheritance
There is far more to inheritance than what we have seen here. We will unravel additional aspects of it in

later chapters.

Summary
 Java allows classes and interfaces to inherit declarations in existing classes and methods, adding

only the definitions needed to extend the latter.

 An inherited method can be overridden by a new method.

Exercises

