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Inheritance and Variables 

In the previous chapter, we studied the basics of inheritance in the context of collections. Here, we will 

use a different example to present subtleties regarding the relationship between variables in subclasses 

and superclasses. We will see what it means to declare variables in subclasses, how these and inherited 

variables are initialized by subclass and superclass constructors, and how the variables are stored in 

memory.   

Mutable Point 
The examples we present here extend th involve the interface Point, we saw earlier. Recall that Point 

was immutable; it defined no setters: 

public interface Point { 

  public int getX();  

  public int getY();  

  public double getAngle();  

  public double getRadius();  

} 

We can extend this interface to define MutablePoint, which declares the missing setters; 

public interface MutablePoint extends Point { 

  void setX(int newVal); 

  void setY(int newVal); 

} 

As this interface declaration shows, the keyword public can be omitted in an interface as it is implied -

only public methods can be declared in an interface. 

To implement this interface, we should, of course, reuse an implementation of Point. Let us extend 

ACartesianPoint, reproduced below, to refresh out memory: 

public class ACartesianPoint implements Point { 

  int x, y; 

  public ACartesianPoint(int theX, int theY) { 

    x = theX; 
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    y = theY; 

  } 

  public ACartesianPoint(double theRadius, double theAngle) { 

     x =  (int) (theRadius*Math.cos(theAngle)); 

     y = (int) (theRadius*Math.sin(theAngle)); 

  } 

  public int getX() { return x; } 

  public int getY() { return y; }  

  public double getAngle() { return Math.atan2(y, x); } 

  public double getRadius() { return Math.sqrt(x*x + y*y); } 

} 

The extension is mostly straightforward: 

public class AMutablePoint extends ACartesianPoint  

                           implements MutablePoint { 

  public AMutablePoint(int theX, int theY) { 

    super(theX, theY); 

  } 

  public void setX(int newVal) { 

    x = newVal; 

  } 

  public void setY(int newVal) { 

    y = newVal; 

  } 

} 

The setters directly access the superclass variables, much as methods in AStringDatabase directly access 

variables of the superclass.  In this and all of the other examples, we will assume that subclasses are 

declared in the package of the superclass, and thus can see variables in the superclass that have default 

access. 

Calling Superclass Constructors 
One subtle issue has to do with the constructor: 

public AMutablePoint(int theX, int theY) { 

    super(theX, theY); 

  } 

It takes the same arguments as the constructor of the superclass. Like the addElement() method in 

AStringSet, it uses the super keyword to call a superclass method. Unlike addElement(), no method 

name followes the keyword. That is because we are calling a constructors, whose name is derived fro 

the name of its class. Thus, the constructor of AMutablePoint simply calls the constructor of 

ACartesianPoint, passing it the arguments it receives. 



 
  

If AMutablePoint() simply calls the superclass constructor, why did we have to define a constructor in 

AMutablePoint? Why could we have not simply omitted it, implying that the superclass constructor 

should be called? 

The reason is that when we instantiate a class, we always specify a constructor whose name is the same 

as the name of the class: 

new AMutablePoint (34, 22); 

The constructor in the superclass has a different name, and cannot be called implicitly. Hence the need 

for at least one explicit constructor in each class. It is possible to create a different design in which the 

instantiating code looks up the superclass chain to find a constructor that can take the supplied 

arguments. The designers of Java chose not to use this approach, considering a superclass constructor 

not inheritable but callable from the subclasses. 

Bounded Point 
To further understand the relationship between subclass and superclass constructors, let us consider an 

extension of AMutablePoint, ABoundedPoint, which confines the point to a rectangular area whose 

upper left and lower right corners are defined by two new properties, UpperLeftCorner and 

LowerRightCorner. 

public class ABoundedPoint extends AMutablePoint  

                                  implements MutablePoint { 

  MutablePoint upperLeftCorner, lowerRightCorner; 

  public ABoundedPoint(int initX, int initY, 

         MutablePoint anUpperLeftCorner,  

         MutablePoint aLowerRightCorner) { 

    super(initX, initY); 

    upperLeftCorner = anUpperLeftCorner; 

    lowerRightCorner = aLowerRightCorner; 

    fixX(); 

    fixY(); 

  } 

  void fixX() { 

    x = Math.max(x, upperLeftCorner.getX()); 

    x = Math.min(x, lowerRightCorner.getX()); 

  } 

  void fixY() { 

    y = Math.max(y, upperLeftCorner.getY()); 

    y = Math.min(y, lowerRightCorner.getY()); 

  } 

… 



 
  

} 

The exact code to implement the class is not important – this is the reason why its complete 

implementation is not given. What is relevant here is that this class has two extra instance variables, 

upperLeftCorner and lowerRightCorner. This is the first subclass that declares its own variables - the 

previous subclasses – AStringHistory, AStringSet and AMutablePoint - simply inherited variables from 

their superclasses. When a class both declares and inherits variables, both sets of variables may need to 

be initialized by its constructor. The example above shows how that is done. It first calls the superclass 

constructor to initialize the inherited variables. It then initializes its own variables. Finally, it calls the 

methods fixX() and fixY() to fix the position of the coordinates in case they are outside the allowed 

region. 

Order of Constructor Calls 
What if changed the order in which the subclass and superclass variables are initialized by making the 

call to super the last step of the constructor? 

public ABoundedPoint(int initX, int initY, 

         MutablePoint anUpperLeftCorner,  

         MutablePoint aLowerRightCorner) { 

        upperLeftCorner = anUpperLeftCorner; 

        lowerRightCorner = aLowerRightCorner; 

   fixX(); 

   fixY(); 

   super(initX, initY); 

} 

This is not correct, as the X and Y coordinates are not fixed.  

What is we call super in the middle of the constructor: 

public ABoundedPoint(int initX, int initY, 

         MutablePoint anUpperLeftCorner,  

         MutablePoint aLowerRightCorner) { 

        upperLeftCorner = anUpperLeftCorner; 

        lowerRightCorner = aLowerRightCorner; 

   super(initX, initY); 

   fixX(); 

   fixY(); 

} 

This would actually work. However, Java does not allow either of these alternatives. It requires the call 

to super be the first step in the constructor. The reason is that the values of subclass variables can 

depend on those of the superclass variables, which are visible in the subclass. However, the reverse is 

not true, as the subclass variables are not visible in the superclass. It is important to initialize the 

independent variables before the dependent variables. We do no harm by making the initialization of 



 
  

the superclass variables the very first step of a constructor. In many, but not all situations, we do harm 

by not making it the first step.  

Omitting Super Call 
What if we omit the call to super completely? 

public ABoundedPoint(int initX, int initY, 

         MutablePoint anUpperLeftCorner,  

         MutablePoint aLowerRightCorner) { 

        upperLeftCorner = anUpperLeftCorner; 

        lowerRightCorner = aLowerRightCorner; 

   fixX(); 

   fixY(); 

} 

This means that no constructor is being called to initialize superclass variables. In some situations, there 

may be no superclass variables to initialize. In this example, the x and y variables are not initialized. We 

could overcome this specific problem by initializing the superclass variables in the subclass constructor: 

public ABoundedPoint(int initX, int initY, 

         MutablePoint anUpperLeftCorner,  

         MutablePoint aLowerRightCorner) { 

        x = initX; 

        y = initY 

        upperLeftCorner = anUpperLeftCorner; 

        lowerRightCorner = aLowerRightCorner; 

   fixX(); 

   fixY(); 

} 

This solution repeats code in the superclass, requires the subclass designer to know initialization details 

of the superclass, and most important, does not work if the superclass variables are not visible in the 

subclass. The seriousness of the problem is highlighted by the fact that class Object, defined by Java, is 

the superclass of all classes. We nothing about the variables it defined and how they should be 

initialized.  Moreover, the implementation of Object may change with each new version.  

For this reason, Java insists that a call to super always occur in a constructor, and that it be the first call. 

This rule not only prevents mistakes in our code but also ensures that Java classes we extend are 

initialized correctly. 

This rule seems to be at odds with the constructor of ACartesianPoint, which has no super call: 

public ACartesianPoint(double theRadius, double theAngle) { 

     x =  (int) (theRadius*Math.cos(theAngle)); 

     y = (int) (theRadius*Math.sin(theAngle)); 



 
  

  } 

The reason this code compiles is that, if we omit a super class, the Java compiler inserts a call to the 

parameterless superclass constructor. Thus, the code above is equivalent to: 

public ACartesianPoint(double theRadius, double theAngle) { 

     super();    

     x =  (int) (theRadius*Math.cos(theAngle)); 

     y = (int) (theRadius*Math.sin(theAngle)); 

  } 

This superclass constructor is called in class Object, the superclass of ACartesianPoint. 

So why did this approach not work when we omitted the superclass constructor in BoundedPoint? 

public ABoundedPoint(int initX, int initY, 

         MutablePoint anUpperLeftCorner,  

         MutablePoint aLowerRightCorner) { 

        upperLeftCorner = anUpperLeftCorner; 

        lowerRightCorner = aLowerRightCorner; 

   fixX(); 

   fixY(); 

} 

The reason is that Java first inserts a call to a parameterless superclass constrictor: 

public ABoundedPoint(int initX, int initY, 

         MutablePoint anUpperLeftCorner,  

         MutablePoint aLowerRightCorner) { 

        super();      

        upperLeftCorner = anUpperLeftCorner; 

        lowerRightCorner = aLowerRightCorner; 

   fixX(); 

   fixY(); 

} 

It then complains that the superclass of ABoundedPoint, AMutablePoint, does not have a parameterless 

superclass constructor.   

Thus, Java insists that the first step in each constructor of a class be a call to some superclass 

constructor, and if such a call does not occur, it inserts one to the parameterless constructor, which 

works only if the immediate superclass of the class has such a constructor.  One of the reasons for these 

rules is that Java wants to ensure that the parameterless superclass constructor in Object is always 

called. 



 
  

Omitting Constructors 
This goal is apparently not met when we completely omit a constructor, as we did in many classes such 

as AStringSet: 

public class AStringSet extends AStringDatabase { 

   public void addElement(String element) { 

 if (member(element)) return; 

 super.addElement(element); 

  } 

} 

If we do not provide an explicit constructor, the Java compiler inserts a parameterless constructor  that 

calls super(): 

public class AStringSet extends AStringDatabase { 

   public AStringSet () { 

       super(); 

   } 

  public void addElement(String element) { 

 if (member(element)) return; 

 super.addElement(element); 

  } 

} 

The supeclasses of AStringSet, AStringDatabase and AStringHistory also do not have an explicit 

constructor. Thus, Java inserts a parameterless constructor in these classes. Thus, the super() call in 

AStringSet eventuall results in the parameterless constructor in Object being called, through the 

inserted constructors in AStringDatabase and AStringHistory. 

 

 

 

 

many of the classes we saw earlier, such as A which had no constructors,  

We do not harm by making the initializiation of the superclass 

 

 

This class creates an extension of ACartesianPoint that confines the point to a rectangular region whose 

upper and lower right corners are defined by two properties. The exact semantics of the class do not 

matter – this is the reason why the implementation of the methods of this class is not given. What is 



 
  

important is that this class inherits the instance variables of the super class and can override methods to 

ensure that the point cannot be moved outside the associated rectangle. Like AStringSet, it uses the 

super keyword to call a method in the superclass. 

           super.setX(newX);          

 In addition, it uses it to call the superclass constructor  

           super(initX, initY); 

We will use this class, together with AStringDatabase and AStringSet, to illustrate below some subtle 

issues with inheritance and the methods of class Object. 

Inheritance and Memory Representation 
One of these issues is the memory representation of instances of subclasses. Specifically, are the 

instance variables defined by the subclass and super classes stored in the same or different memory 

blocks?  The following figure provides the answer. It shows the memory representation of the following 

instance of ABoundedPoint(): 

new ABoundedPoint(75, 75, new AMutablePoint(50,50), new AMutablePoint(100,100) ) 

 

 

As it shows, when an instance of a class is crated, Java allocates a single memory block for the instance 

variables defined by the class and all classes in its superclass chain. In this example, the block consists of 

the two primitive variables, x and y, defined by the super class of the superclass of ABoundedPoint, and 

the two new Object variables, upperLeftCorner and lowerRightCorner, defined by the class.  Recall that 

each object instance variable takes exactly one word and that, as the figure shows, a primitive variable 

directly stores a value while an object variable stores a memory address or pointer. In this figure, 

pointers are underlined. As it shows, the upperLeftCorner contains the address 8, which points to an 

public class ACartesianPoint

implements Point {

int x, y; 

…

}
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public class ABoundedPoint

extends AMutablePoint

implements BoundedPoint {

MutablePoint upperLeftCorner ;

MutablePoint lowerRightCorner;

…
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instance of AMutablePoint, which in turn, is a memory block containing two int variables defining the x 

and y coordinates. 

By storing all variables of an object, Java makes it simpler to allocate, copy, access and free up the 

memory associated with these variables. 

Duplicate Variable Names in Subclasses 
What if we, accidentally or willfully, declare variables in a class with the same name as variables in a 

superclass? We know we can create methods with the same name and parameters in a class and its 

subclasses – that is how methods are overridden. Should we allow variables with the same name in a 

class and its subclasses? In Smalltalk, the language that popularized object-oriented language, the 

answer was no. In Java, on the other hand, the answer is yes. Thus, in Java, the following code is legal, 

even though x and y are declared in the superclass ACartesianPoint: 

public class ABoundedPoint extends AMutablePoint implements BoundedPoint { 

   int x, y; 

   MutablePoint  upperLeftCorner ; 

   MutablePoint  lowerRightCorner; 

       … 

} 

 Figure ??? shows the memory representation of an instance of an instance of the modified class: 

 

As we see above, the representation has two extra primitive variables – these are the ones declared in 

ABounedPoint. 

Allowing a variable with the same name V, in a class A and its subclass B, raises the following questions: 

1. To which V do methods in class A refer? 
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2. To which V do methods in class B refer? 

For efficiency reasons, these questions have to be resolved when the methods are compiled. The 

answer to the first question, then, is clear. A class can have multiple subclasses, and these are, in any 

case, not known in subclasses. Thus, the answer is that methods in A refer to the variable in the 

superclass, A. The answer to the second question is also clear. If methods in B referred to the variable in 

the superclass, what would be the point of declaring a duplicate version in the superclass. Thus, 

consistent with the principle that a more specific scope wins over a more general one, methods in class 

B refer to the V in class B. 

Let us understand these rules in the context of our example: 

1. To which x and y are the arguments of the constructor of ABoundedPoint assigned? The 

assignments occur in the superclass constructor, so the answer is the x and y in ACartesianPoint. 

2. To which x and y do the methods fixX() and fixY() refer? As these methods are declared in 

ABoundedPoint, they refer to the ones in ABoundedPoint. 

Thus, our class no longer works it does not fix the variables that are initialized, returned by getters and 

set by setters. 

It is not uncommon to create such duplicate variables in Java when we refactor a class by move some of 

its code to a superclass. In this process, we may paste some variables in the superclass and forget to 

delete it from the subclass. Debugging to find his mistake can be a nightmare. Therefore, you should be 

aware of the possibilities of making such a mistake and be on guard against it.  

Sometimes a subclass programmer does not know which variables have been declared in a superclass, 

especially if the superclass has been written by someone else and not given the subclass access to them.  

In this situation, the only way to determine the names of superclass variables is to use the debugger.  No 

harm can come out of duplicating the name of a variable that is not visible in the subclass. Even then, it 

can be confusing to do s. Therefore, we will require that: 

In a subclass B, do not duplicate the names of variables in B, if you know these names. 

If there are situations in which duplicate variable names is useful – I have not seem them. This example 

is evidence that Java is a complex language and it is difficult to get everything right about its design, 

especially when the designer, James Gosling, created the language for himself and his small group of 

friends.  

Why Inheritance? 
There are several reasons for extending interfaces and classes, as we have done above, rather than 

creating new ones from scratch, as we did before: 

 Reduced Programming/Storage Costs: The most obvious reason is that we do not have to write 

and store on the computer a copy of the code in the base type, thereby reducing programming 



 
  

and storage costs. The programming cost, of course, is minimal if we had a convenient facility to 

cut and paste. However, the source code of the base type may not always be available, which 

does not prevent it from being sub typed. 

 Easier Evolution: Code tends to change. We may decide to change the MAX_SIZE constant of 

AStringHistory, in which case, would have to find and change all other classes that are 

logical but not physical extensions. 

 Polymorphism: Inheritance allows us to support new kinds of polymorphism, as explained 

below. 

 Modularity: We assume above that the base class and interface already existed when we 

created subclasses of them. For instance, we assumed first that we needed string histories and 

created appropriate interfaces and classes to support them. Later, when we found the need for 

string databases, we simply extended existing software. What if we have not had the need for 

string histories, and were told to create string histories from scratch? Even in this case, we may 

want to first create string histories and then extend them rather than create unextended string 

databases, because the extension approach increases modularity, thereby giving the 

accompanying advantages. In this example, it makes us understand, code, and prove correct 

the two interfaces and classes separately. Moreover, if we later end up needing string histories, 

we have the interface and class for instantiating them. The approach requires us to design for 

reuse, something that is very difficult to do in practice. 

Inter-Type Reuse Rules 
In general, knowing when to use inheritance requires some experience. A simple rule of thumb is that if 

there is code duplication in different types (interfaces/classes), then you should think either of 

inheritance or delegation, which we will study later. (Intra-type code duplication involves two methods 

within the same class duplicating code, and is removed by putting the common code in a common 

method called by both methods.) 

Our previous version of StringDatabase duplicated all the method headers in StringHistory. By examining 

the two interfaces, it was pretty straightforward to reduce this code duplication by making 

StringDatabase a subtype of StringDatabase. In the previous versions of AStringHistory and 

AStringClasses had even more code duplication, as not only were public method headers duplicated in 

these classes, but also the bodies of these methods, and the variables and non public method accessed 

by these methods. Again, it was pretty straightforward to reduce the code duplication by making 

AStringDatabase a subtype of AStringHistory. 

This example leads us to our first re-use rule: Use inheritance (and/or delegation) to get rid of method 

header/body duplication in different types (interfaces/classes). 

This rule is not sufficient to eliminate duplication because the same abstract operation can be associated 

with different method headers. For instance, the addElement() method in  (a) StringHistory and 



 
  

AStringHistory could have been called addToHistory(), and (b) StringDatabase and AStringDatabase 

could have been called addToDatabase(). 

This leads us to the second code re-use rule: Ensure that conceptual operations with the “same” 

semantics (behavior) are associated with same method headers in different types (interfaces/classes). 

The term “same” is in quotes because it requires some subjective interpretation, especially in an 

interface. An interface only gives the method header of an operation – the body of the method is 

provided by a class that implements the header. It is possible, and in fact, often expected, for two 

different classes to provide different implementations of the header. Thus, “same” behavior does not 

mean “identical” behavior. Similarly, as we will see when we see the implementation of addElement() in 

AStringHistory, this method does an extra check that is not performed by the addElement() of 

AStringHistory() and AStringDatabase(). Yet this operation is the same in all three collections as at an 

abstract level, it adds an element to a collection. This is why the rule says that the “conceptual” 

operation rather that the exact operations should be the same. It is in the interpretation of this rule 

where experience really helps. 

 

toString()  
To better understand inheritance and Object, the last class in the superclass chain of all classes, let us try 

and understand in more depth and override the three methods of it identified above: toString(), 

equals(), and clone(). 

Let us begin by overriding in AStringSet the toString() method inherited from class Object: 

public String toString() { 

 String retVal = “”; 

 for (int i = 0; i < size; i++) 

  retVal += “:” + contents[i]; 

 return retVal; 

} 

The method returns a “:” separated list of the elements of the collection: 

 stringSet.toString()  “James Dean:John Smith” 

Recall that the implementation inherited from Object gives us the class name followed by the memory 

address: 

 stringSet.toString()  “AStringSet@1eed58” 

Many classes override the toString method, since the default implementation of it inherited from 

Object is not very informative, returning, as we saw before, the class name followed by the object 

address. Recall also that println calls this method on an object when displaying it. The reason why 



 
  

println tends to display a reasonable string for most of the existing Java classes is that these classes 

have overridden the default implementation inherited from Object. 

equals()  
 Java already provides an operator to check for equality, ==, so why do we need a method that, based on 

its name, seems to do the same thing? To illustrate the difference between == and equals(), consider the 

following statements: 

 Point p1 = new ACartesianPoint(200, 200); 
System.out.println(p1 == p2); 

 p1 = new  ACartesianPoint (200, 200); 
 System.out.println(p1 == p2); 
The == operator dereferences the two pointers, and compares the resulting objects. When the first 

statement is executed, both p1 and p2 refer to the same object. Therefore, we can expect the first print 

statement to print “true”. But what about the second print statement? Both variables refer to the same 

logical point in the coordinate space, the point with the coordinates (200,200). However, they refer to 

different physical objects, as shown below.  

 

 

The == operator, in fact, simply checks if its left and right hand side are the same physical object. If not, 

it returns the false value. It does not understand the concept of two physical objects being the same 

logical entity. It is the responsibility of each object to define a method that checks if two objects 

represent the same logical entity. The convention is to call this method, equals(). Several 

predefined classes such as String provide such a method.   



 
  

In String, this method does a character-by-character comparison of the strings that are compared, and 

returns true if the two strings have the same sequence of characters. The following interaction shows 

the difference between == and equals() for strings: 

 String s1 = “hello world”; 
 String s2 = “hello world”; 
 System.out.println(s1==s2); 
 System.out.println(s1.equals(s2)); 
 s1 = s2; 
 System.out.println(s1==s2); 
 System.out.println(s1.equals(s2)); 
All print statements except the first one will print “true”.  The reason why the first one returns false is 

that the two strings are stored in separate memory blocks, as shown in the figure below. 

 

Consider now the following code: 

Point p1 = new ACartesianPoint(200, 200); 
 p1 = new  ACartesianPoint (200, 200); 
 System.out.println(p1.equals( p2)); 
 

StringHistory stringHistory1 = new AStringHistory();  
StringHistory  stringHistory2  = new AStringHistory();  
stringHistory1.equals(stringHistory2); 

Both println() calls print false. In other words, the equals() method, in these two cases, has the same 

behavior as ==. The reason is that we have not redefined equals() for  instances of StringHistory and 

Point and the default behavior of equals() is the same as ==: 

//implementation in Object 
public boolean equals(Object otherObject) { 
 return this == otherObject; 
} 



 
  

Each class that declares instance variables whose values influence equality must redefine equals().  To 

illustrate, suppose users of AStringSet are not happy with the default behavior of equals(). We can add 

to the class the following to override the default implementation: 

public boolean equals(Object otherObject) {       
       if (otherObject == null || !(otherObject instanceof  AStringHistory))  
 return false; 
        AStringHistory  otherStringHistory = (AStringHistory) otherObject; 
        if (size != otherStringHistory.size)  
 return false;  
        for (int index  = 0; index < size; index++) 
 if (!contents[index].equals(otherStringHistory.contents[index]))  
  return false; 
        return true;  
} 
The  operation o instanceof T returns true if the class of o IS-A T. This operation is used to return false 

when the other object is not a string history. The value of null IS-A T, for all T. Since null IS-A 

StringHistory, an extra check is needed to determine if the otherObject is null. If the other object is a 

non null StringHistory, the method does an element-by-element comparison of the two collections to 

determine if they are equal. To do so, it accesses the contents and size variables of the two instances 

that are compared.  These variables are actually defined in the superclass AStringHistory. In fact, 

AStringDatabase and AStringSet do not define any instance variables. Thus, it is better to move the 

method to AStringHistory, thereby allowing all instances of AStringHistory and its subtypes to use it.  

Accessing arbitrary variables/methods of remote instances 
The implementation above illustrates a feature of Java we have not seen before. When a method is 

called on an instance I of class C, it is possible not only to access arbitrary variables and methods of I but 

also all other instances of class C.  As we saw earlier, to access instances of I, we either omit the target 

instance: 

 contents[index]; 

or use the keyword this to identify it: 

 this. contents[index]; 

To access the variables of some other instance of the class, which we will refer to as a remote instance, 

we replace this with some variable holding a pointer to the instance. In the example above, 

otherStringHistory holds a pointer to the remote instance. Hence we use this variable to indicate the 

target object: 

 otherStringHistory.contents[index]; 

We can use the same syntax to refer to arbitrary methods of the remote instance. In general, in a class 

definition, all methods and variables of all instances of the class are visible. 



 
  

Accessing public vs. arbitrary members of remote instances 
In the example above, we broke an important rule given before by using a class to type a variable: 

AStringHistory  otherStringHistory = (AStringHistory) otherObject; 
Had we used the interface of the class to type it 
 StringHistory otherStringHistory = (StringHistory) otherObject; 
we would not have been able to access non public members (methods/variables) of the remote instance 
as these are not defined by interface. Sometimes in a class, it is necessary to access internal members of 
remote instances. In that case, we are forced to use it for typing. However, in this example, the 
interfaces exposes the required information, as illustrated by the following rewrite of equals: 
 
 
public boolean equals(Object otherObject) { 
       if (otherObject == null ||!(otherObject instanceof  StringHistory))  
 return false; 
        StringHistory  otherStringHistory = (StringHistory) otherObject; 
        if (size != otherStringHistory.size())  
 return false;  
        for (int index  = 0; index < size; index++) 
 if (!contents[index].equals(otherStringHistory.elementAt(index)))  
  return false; 
        return true;  
} 
 
This implementation is more polymorphic in that it allows us to compare arbitrary implementations of 
StringHistory and not only those that are instances of AStringHistory. It is slightly less efficient because 
the variables of the remote instance are access indirectly, through public methods, rather than directly. 
In most applications, this inefficiency is not a problem.  

Overriding vs. Overloading 
An even more elegant implementation of equals() is given below: 

public boolean equals(StringHistory  otherStringHistory) { 
         if (otherStringHistory == null || size != otherStringHistory.size())  
 return false;  
        for (int index  = 0; index < size; index++) 
 if (!contents[index].equals(otherStringHistory.elementAt(index)))  
  return false; 
        return true;  
} 
This implementation does not have use the instanceof operation, which makes the code messy.  

However, this implementation does not really override the equals() method inherited from Object as its 

parameter type is different. Hence it overloads rather than overrides the inherited method. As a result, 

the method does not hide the inherited method; both methods are available for invocation. If we wish 

to invoke the overloaded method on instances of StringHistory, we must add the signature (header) of 



 
  

the method to the interface. Once we do that, the syntax for invoking it is exactly the same as the one 

for the inherited method: 

StringHistory stringHistory1 = new AStringHistory();  
StringHistory  stringHistory2  = new AStringHistory();  
stringHistory1.equals(stringHistory2); 

The equals that accepts the more specific argument type, StringHistory, is called, even though the 

equals() in objects would also be legal. 

On the other hand, the call: 

stringHistory1.equals(“Not an instance of StringHistory”); 

would call the equals() in Object.  

It seems that overloading and overriding in this example give the same results. If the argument is an 

instance of StringHistory, then it seems the more specialized equals() is called. Otherwise, in the 

overriding case, the specialized method is called, which returns false, and in the overloaded case, the 

more general method is called, which also return false. 

However, they can indeed give different results. The reason is that what matters, when overload 

resolution is done, is not the type of the actual object assigned to a variable but the type of the variable. 

The reason is that overload resolution is done at compile time, and at this time, it is not possible to 

determine the exact type of the objects that will be assigned to it. Thus if we type the second instance of 

StringHistory as Object: 

StringHistory stringHistory1 = new AStringHistory(); 
Object stringHistory2 = new AStringHistory(); 
stringHistory1.equals(stringHistory2); 
 
then the more general equals()will be called and the result will be false. Even if we use StringHistory to 

type both variables, we can use a cast to call the equals() defined in Object: 

StringHistory stringHistory1 = new AStringHistory(); 
StringHistory stringHistory2 = new AStringHistory(); 
stringHistory1.equals((Object)stringHistory2); 

Overloading and IS-A 
As we saw above, the is-a relation is used in overload resolution: if a call matches multiple overloaded 

methods, then the one that declared more specific formal arguments is used. In the example above, the 

formal argument of the equals() in AStringHistory is StringHistory, which is more specific than 

StringHistory. 

To better understand the relationship between overloading  and IS-A, let us consider some more 

examples. 



 
  

Suppose, we define in AStringSet an overriding equals method with the following signature: 

public boolean equals (Object otherObject); 

and defined in AStringHistory an overloaded equals method with the following signature: 

public boolean equals (StringHistory otherObject); 

and executed the following code: 

StringSet stringSet1 = new AStringSet(); 
StringSet stringSet2 = new AStringSet(); 
stringSet1.equals(stringSet); 
 
It may seem a bit ambiguous as to which equals() is called in the third statement. The overriding one in 
AStringSet is in the more specific class, while the overloaded one in AStringHistory has the more specific 
argument. The one is the more specific class, however, is a different method, even though it has the 
same name. Therefore, Java will choose the method with the more specific argument types, regardless 
of which class it is defined in. 
 

As another example, let us consider the following two variations of equals, which could be defined in 

arbitrary classes: 

public boolean equals (StringHistory stringHistory1,  
                       Object stringHistory2) { 
 …  
}  
public boolean equals (Object stringHistory1,  
                       StringHistory stringHistory2) { 
 …  
}  

 

In these implementations, the two instances that are to be compared are both passed as arguments. 

Hence it does not matter on what objects these methods are actually called (which means they should 

really be static methods). 

Now suppose we make the call: 

equals(new AStringSet(), new AStringSet());  

Both overloaded methods can accept the two arguments – which one should be called? Neither class 

has formal parameters that are of more specific types. Thus, the correct call is ambiguous, and Java will 

say so at compile time. We can, of course, use casts to disambiguate: 

equals(new AStringSet(),  (Object) new AStringSet());  



 
  

In this case the first equals() is called.  

If we add a third equals method: 

public boolean equals (StringHistory stringHistory1,  
                       StringHistory stringHistory2) { 
 …  
} 
 
Then the call: 
 

equals(new AStringSet(), new AStringSet());  

invokes this new overloaded method as each of its formal parameters is more specific than the 

corresponding formal parameter of the two other methods. Thus, interesting, adding an overloaded 

method reduces rather than increases the ambiguity of overload resolution! 

Given these three definitions of equals, which one is invoked by the following call? 

equals(null, null);  

null can be typed as any object type, so it may seems that the call is still ambiguous.  However, as the 

types of the formal parameters of the third equals () are most specific, there is really no ambiguity, and 

this method is called. 

Suppose we add a fourth equals(), one that takes Point arguments: 

public boolean equals (Point point1, Point point2) { 
 …  
}  
 

Now the call: 

equals(null, null);  

is indeed ambiguous as none of the matching equals() declared more specific types.  We can resolve the 

ambiguity by explicitly casting null: 

equals ((StringHistory)null, (StringHistory) null);  

 

Annotations and Making Override Explicit 
 



 
  

As overloaded and overriding can lead to different results, it is important to not accidentally overload 
when we intended to override, and vice versa. To prevent such mistakes, Java supports override 
annotations illustrated below: 
 
@Override 
public boolean equals(Object otherObject) { … } 
 
Annotation is a typed “comment” about a method, class, or package that can be processed by some tool 
such as compiler, Eclipse or ObjectEditor at compile/execution time. It starts with the character, @, as 
illustrated below. Java supports several types of annotations.  The override annotation type is associated 
with a method and tells Java that the method overrides an existing method. If the method does not in 
fact do so, the compiler will give an error. In the above example, since the method signature matches 
that of the equals() method of Object, no error will be given. Similarly, the following annotated method 
definition in AStringSet will give no error: 
 
@Override 
public void addElement(String element) { … } 
 
On the other hand, the following method declaration in AStringHistory will give an error as it overloads 
rather than overrides the Object equals() method: 
@Override 
public boolean equals(StringHistory otherStringHistory) { … } 
 
Interestingly, the following annotated method declaration in AStringHistory does not give an error: 
    @Override 
    public String elementAt (int index) {  return contents[index]; } 
 
Recall that AStringHistory is a direct subclass of Object, which does not define an elementAt() method. 
In the definition of the override annotation, Java does not distinguish between IS-A and inheritance. An 
override annotation for method M in class C indicates that  M is a(n) (re)implementation of some M 
declared in some type T, where C IS-A T. In other words, Java considers the implementation of an 
interface method also as overriding. This is inconsistent will all definitions of overriding in the literature. 
 
Java allows programmers to define their own annotation types to be processed by tools written by 
them. This extensibility is used in the design of ObjectEditor. For example, the following annotated 
interface declaration tells ObjectEditor to not consider the interface as an atomic shape type even 
though it follows all the rules of a point type by having int X and Y properties and including the substring 
Point in its name: 
public interface NotAPoint { 
 int getX(); 
 int getY(); 
               … 
} 
 
As the declaration shows, an annotation can take arguments. In Java, an annotation is actually 
represented by an interface or class. The arguments to the annotation are passed to a special method 
defined by the interface or class.  



 
  

Shallow Copy 
Let us finish our exploration of the class Object by looking finally at the method clone().  To motivate it, 

let us return to the Point example. 

p1 = new ACartesianPoint(200, 200); 

p2 = p1; 

p1.setX (100); 

System.out.println(p2.getX() == p1.getX()); 

As we saw before, the code above will print true. The reason is that assignment simply copies pointers. 

What if did not want p1 and p2 to share the same object?  Instead, we wanted the initial value of p2to 

be a copy of the object referenced by p1; and later wanted to change the copy without affecting the 

original object? We might want to do so because we want a backup of p1 to which we would like to 

revert later. 

Since assignment does not do the job for us, we can extract the information in ACartesianPoint and use 

this to create a new instance with the same state: 

p1 = new ACartesianPoint(200, 200); 

p2 = new ACartesianPoint (p1.getX(), p1.getY()); 

p1.setX (100); 

System.out.println(p2.getX() == p1.getX()); 

This time the output will be false. However, this approach requires the copier to do the copying, which 

may not seem much work in this case, but would be more if the object to be copied had several instance 

variables. Therefore, a better approach is to make the copied object do the work of copying. That is, the 

copier should simply invoke a method on the object to be copied that returns a copy.  The clone() 

method in Object is such a method. As its name indicates, it returns a copy of the object on which it is 

invoked. Since the method can be invoked on an object of any type, its return type is Object: 

// defined in Object 
public Object clone() { … }  

 

This return type can be cast to the actual type, as shown below: 

p1 = new ACartesianPoint(200, 200); 

p2 = (Point) p1.clone();  

p1.setX (100); 

System.out.println(p2.getX() == p1.getX()); 

Again, the output is false, as clone() creates a new copy with separate instance variables.  

To better understand the notion of copying, let us consider instances of a more complicated type. 

Consider the following code: 

 p1 = new ABoundedPoint(75, 75,  new ACartesianPoint(50,50), new ACartesianPoint(100,100) );  
p2 = (BoundedPoint) p1.clone(); 
p1.setX (100); 
p1.getUpperLeftCorner().setX(200); 
System.out.println(p2.getX() == p1.getX()); 



 
  

System.out.println (p1.getUpperLeftCorner().getX() == p2.getUpperLeftCorner().getX() ); 
 
The first output will print false but the second one will, in fact, print true.  The reason is that Object 

implements clone() by simply making a copy of the memory block of the copied object, as shown in the 

figure below: 

 

 

Here, the clone() method, when executed on the object, ABoundedPoint@48, creates a new object, 

ABoundedPoint@48, whose memory block is a copy of the memory block of the first object. The two 

primitive instance variables, x and y, of the new copy are assigned copies of the values of the x and y 

variables of the original object. The two pointer variables in the copy, however are the assigned copies 

of the pointers to the (Point) objects referenced by the upperLeftCorner and lowerRightCorner of the 

original object. These subobjects of the original object are not themselves copied. This means that 

object variables in the copy point to the same objects as the corresponding variables in the original 

object.  The second println() call returns true as p1.getUpperLeftCorner() and p2. getUpperLeftCorner() 

refer to the same object, ACartesianPoint@8. This is shown graphically in the figure below: 



 
  

 

Each line in the picture represents an instance variable of the object. A copy that simply duplicates the 

memory block of the copied object is called a shallow copy. The word shallow indicates that it copies 

only the top level of the physical structure of the object. 

Deep Copy 
A copy that also copies memory blocks of components of the copied object is called a deep copy.   The 

following figure illustrates deep copy of our example object: 

 

Such a copy is not provided by Java, so we must override the clone() method to implement it: 

public Object clone() {  
 return new ABoundedPoint (x, y, (Point) upperLeftCorner.clone(),  

  (Point) lowerRightCorner.clone());  



 
  

}; 

Here we construct a new instance of ABoundedPoint that has a copy of the objects to which the 

upperLeftCorner and lowerRightCorner instance variables point.  

This copy, however, does not always work. The problem is illustrated by the example below: 

p1 = new ABoundedPoint(75, 75,  new ACartesianPoint(50,50),  new ACartesianPoint(100,100) ); 
p1.setUpperLeftCorner(p1);  
p2 = (BoundedPoint) p1.clone(); 
 

Here, we have created a recursive structure, that is, a structure in which a child component points to its 

ancestor: 

 

As a result, when the clone method is invoked on this object, the following call leads to an infinite 

recursion: 

(Point) upperLeftCorner.clone() 

Each time the call is made, a new copy of ABoundedPoint@48 is made, and the call is made again, which 

makes another copy of the object, and so on, leading to the creation of an infinite number of copies of 

the object, some of which are shown below: 



 
  

 

Thus, we must be careful in either how we implement deep copy or the kind of objects on which we try 

to invoke this operation.  Recursive structures cannot be banned as they are very useful. A class of 

problems called graph problems require such structures. 

The Java Object class avoids this problem in its implementation of clone() by providing a shallow copy.    

Supporting Multiple Copy Operations 
One way to reduce the problem of copying recursive structures is to associate each object with both a 

shallow and deep copy, and allow the deep copy to determine if shallow or deep copies of components 

are made.  This solution is illustrated below for our example class, ABoundedPoint: 

public Object shallowCopy() {  
 return new ABoundedPoint (x, y, upperLeftCorner, lowerRightCorner);  
}; 

public Object deepCopy() {  
 return new ABoundedPoint (x, y, (Point) upperLeftCorner.shallowCopy(),  

  (Point) lowerRightCorner.shallowCopy());  
}; 



 
  

The “deep” copy in this solution is not a full deep copy as it does not copy all levels in the physical 

structure of the copied object – it is simply a deeper copy than a shallow copy. However, a call to it will 

never lead to infinite recursion. 

An extension of the approach of providing both a shallow and deep(er) copy is taken in Smalltalk. Each 

Smalltalk object provides three copy methods: shallow, deep, and regular copy. The shallow copy is like 

the Object clone() method: It  creates a new object and assigns instance variables of the copied object to 

corresponding instance variables of new object. The deep copy creates a new object and assigns a 

regular copy of each instance variable of the copied object to corresponding instance variable of new 

object. The semantics of the regular copy of an object of some class C is defined by that class.  It is 

expected to either be a shallow or deep copy – the programmer of each class defines which of these two 

choices is taken. By default, the regular copy is a shallow copy. In our cyclic example, if the regular copy 

is a shallow copy, then a deep copy of the cyclic structure on the left would result in the structure on the 

right: 

 

 

Here the deep copy creates a new instance of ABoundedPoint (ABoundedPoint@196), and then does a 

copy of the two object pointers in it. As this copy is a shallow copy, we get new instance of 

ABoundedPoint (ABoundedPoint@296) and a new instance of ACartesianPoint (ACartesianPOint@224) 

whose memory content are copies of the objects representing the upper left corner and lower right 

corner of the original object. This results in the two object pointers in ABoundedPoint@296 pointing 

back to the original object. 

Detecting Recursion 
The multiple copy solution does not, of course, work when a full deep copy is needed. In this situation, 

recursive structures can be handled by detecting recursion while performing the copy operation, that is, 

before copying a component, detecting if the component has already been copied in the operation.  

When recursion is detected, we can either not copy the component, or give an error, or create an 

identical or isomorphic structure. In the example above, we could create an isomorphic structure y 

creating another instance of a BoundedPoint whose upper left corner points to it, as shown below.  



 
  

 

While the Java clone method supports shallow copy, called serialization, which makes object copies that 

are written to files or sent across the network, supports such isomorphic copies.   

Why no Recursive Print? 
The fact that recursive structures can be created is probably the reason that Java println() does not print 

the elements of arrays, instead simply displaying the id of the array and the type of the elements of the 

array: 

[Ljava.lang.Object;@27391d 

 It is possible to use an array to create a recursive structure: 

Object[] recursive = new Object[1]; 

recursive[0] = recursive; 

 

A println() that recursively printed each element of a recursive array  such as the one above would 

recurse forever. 

ObjectEditor faces a similar problem when creating a widget structure for the logical structure of an 

object. The current version detects recursion and does not create a widget for a component for which it 

has already created a widget earlier. 

Other Object Methods 
The discussion above helps us better understand three operations provided by class Object: toString(), 

equals(), and clone(). This class provides several other methods: 

 hashCode():This is relevant to hashtables, which you will learn in depth in data structures. Think of a 

hashCode as the internal address of object. 

 Various versions of wait() and notify():These are relevant to threads – you will study them in depth 

in an operating systems course. 



 
  

 getClass(): This method returns the class of an object, on which one can invoke “reflection” 

methods, which are beyond the scope of most undergrad courses. These methods allow one to 

determine and invoke the methods of a class. ObjectEditor uses these methods. 

 Finalize(): This method is called when the object is garbage collected, discussed below.  

Objects and Interfaces 
As we have seen above, it is possible to invoke an Object method on any object variable. If the variable 

is typed by a class, this makes sense, as it is possible to invoke any method declared in the class or its 

super class chain; and Object is the last type in any superclass chain. However, if the variable is typed by 

an interface, this rule does not make sense, as Object is a class and not an interface, and thus cannot be 

on the supertype chain of any interface. Yet, if we type a variable by an interface: 

StringHistory stringHistory1, stringHistory2; 

we can indeed call Object methods on that variable: 

 stringHistory1.equals(stringHistory2); 

The reason this is legal is that Java uses a special rule to allow all interfaces to “inherit” Object methods. 

The cleaner solution would have been to associate Object with an interface, and make this interface the 

last interface in the super type chain of all interfaces. Unfortunately, the designers of the language and 

libraries have had a schizophrenic attitude towards interfaces, using them in some situation and not in 

others. Had they followed our rule of making every class implement one or more interfaces, we would 

not have this fundamental problem with Object methods. 

Garbage Collection 
Suppose we execute the following code: 

Point p1   = new  ACartesianPoint(100,100);   

Point p2   = new  ACartesianPoint(150,75);    

Two new variables are created, which point to different objects, as shown in the figures below: 

 

 



 
  

 

 

What if we now execute the following code: 

p2 = p1; 

Now both variables point to the same object, and the object to which p2 pointed cannot ever be 

accessed. This is shown below: 



 
  

 

As no variable refers to the object,  it is garbage collected. With each object, Java keeps a count, called a reference 

count, that tracks how many object variables store pointers to it. When this count goes to zero, it collects the object 

as garbage, since no other variable will ever be able to point to it again. 

 

Automatic garbage collection is a really nice feature of Java since in most traditional languages such as C, the 

programmer is responsible for deleting objects. In such languages, the danger is that we may accidentally delete 

something that is being used, thereby creating dangling pointers to it, or forget to delete something that is not being 

used, thereby creating a memory leak that keeps wasting memory. On the other hand, garbage collection makes Java 

slower, since Java must interrupt our program execution to do garbage collection. 

Collection Inheritance in Java 
In this chapter, we have seen how inheritance can be used while defining collection classes. The Java API 

also addresses this issue. The hierarchy it creates has some similarity with the one we created. Part of 

the hierarchy is given below: 



 
  

 

It defines two interfaces, Set and List, which are both subtypes of Collection. This is analogous to StringDatabase 

and StringSet  being subtypes of StringHistory. Vector, ArrayList, and LinkedList  provide three different 

implements of the List interface. In earlier versions, Vector did not implement any interface. When Java 

programmers felt the need for additional implementations with the same functionality, they created the List 

interface. Both Vector and ArrayList use arrays to create a variable-sized collection – the main difference is in how 

they grow when new elements are added. LinkedList uses a different data structure, called a linked list, which you 

will study later. Similarly, there are a variety of classes that implement the Set interface, we see only HashSet in this 

figure. 

Summary 
 Java allows classes and interfaces to inherit declarations in existing classes and methods, adding 

only the definitions needed to extend the latter. 

 An inherited method can be overridden by a new method. 

 Inheritance and implementation are examples of IS-A relationships. 

 If T2 IS-A T1, then a value of type T2 can be assigned to a variable of type T1. 

 All variables of an object, including its inherited variables, are stored in a single memory block. 

 Overriding != overloading 

 If two overloaded method match a call, the one with more specific parameter types is chosen. 

 Casts may be needed to disambiguate between overloaded methods. 

 equals() != == 

 Copies can be shallow or deep depending on whether components of the copied object are 
themselves copied or not. 

 Recursive structures interfere with deep copy. 

 Unreferenced objects are garbage collected. 

  



 
  

Exercises 

 


