
Chapter 2 Basics of Scanning and Conventional Programming in Java
In this chapter, we will introduce you to an initial set of Java features, the equivalent of which you
should have seen in your CS-1 class; the separation of problem, representation, algorithm and program
– four concepts you have probably seen in your CS-1 class; style rules with which you are probably
familiar, and scanning - a general class of problems we see in both computer science and other fields.

Each chapter is associated with an animating recorded PowerPoint presentation and a YouTube video
created from the presentation. It is meant to be a transcript of the associated presentation that contains
little graphics and thus can be read even on a small device. You should refer to the associated material if
you feel the need for a different instruction medium. Also associated with each chapter is hyperlinked
code examples presented here. References to previously presented code modules are links that can be
traversed to remind you of the details.

The resources for this chapter are:

PowerPoint Presentation

YouTube Video

Code Examples

Algorithms and Representation
Four concepts we explicitly or implicitly encounter while programming are problems, representations,
algorithms and programs. Programs, of course, are instructions executed by the computer. Problems are
what we try to solve when we write programs. Usually we do not go directly from problems to
programs. Two intermediate steps are creating algorithms and identifying representations. Algorithms
are sequences of steps to solve problems. So are programs. Thus, all programs are algorithms but the
reverse is not true. Algorithms, unlike programs, do not have to give all details of the solutions. Usually a
program is a very uninteresting algorithm much as a shaggy dog story is a boring story. Like a gripping
story, an algorithm is expected to skip details that are not relevant. What is relevant, of course, is very
much in the eye of the beholder.

Even if we find a program an interesting algorithm, it is good practice to not jump to it immediately. It is
better to write a series of algorithms with each successive algorithm adding more details to its
predecessor - the program is the final element in this sequence in which all details are filled. This
process is called step-wise-refinement, as we fill in details incrementally. It helps us systematically
approach the solution, and lets others interested in our solution choose the algorithm with the details
relevant to them. Algorithms are not always written explicitly – sometimes they stay in our head. For
this reason, we will see algorithms for only a subset of the programs given here. It is not unusual for an
implicit algorithm to be written down explicitly after the program has been coded as documentation for
others.

As algorithms are not required to fill in all details, they also do not have to be executable or written in
programming languages. We will use a variety of languages to write algorithms. If the problem involves
computing some value, then equations might be used in the algorithm descriptions. Some problems,
such as making a telephone call, are not mathematical. Therefore, more general than an equation is
pseudo code – a cross between natural language and real code. Both equations and pseudo code are

textual. Animating graphics is another effective way of describing algorithms, which we will use in this
chapter.

Most algorithms/programs operate on data stored in memory. For this reason, a famous book in
computer science defines programs as algorithms + data structures. Usually there are alternative ways
to store represent the same information in computer memory. The exact choice is called data
representation or simply representation. It is a mapping of some abstract, often real-world information,
to a computer-defined format called a data structure. For example, as we shall see later, a geometric
point may be represented using Cartesian or Polar coordinates. Algorithms and programs are often
dependent on the data representation choice, though in many cases, it is possible to isolate them from
such details. As algorithms get more detailed, so do, often, the associated data structures, as we see in
the scanning algorithm below.

Scanning and Scanners
We often talk of scanning physical objects, looking for interesting parts in it. For instance, we might scan
the horizon to find hills, radio-wave frequencies looking for NPR stations, images to find the text in
them, and faces to see if they are paying attention. Similarly, a computer program often scans computer
data structures, looking for parts of it that have properties of interest. For instance, the program may
scan a computer simulation of the horizon looking for hills, a computer representation of an image to
find text in it, and a computer program looking for variable names and operators. An algorithm that
scans data structures is called a scanner.

The example we see here is a very simple scanning problem. Given an ordered sequence or stream of
characters, our task is to find and print the upper case letters in it. For instance, if the input is “John F.
Kennedy” our task is to find an print the uppercase characters, ‘J’, ‘F’, and ‘K’. In general, a scanner
looks at an input stream, from one end to the other, to find subsequences, called tokens, that have
properties of interest. In this problem, the tokens are character subsequences of length 1. Not each

scanned element of the input stream is
part of a token, just as not every
scanned physical object in the hill-
finding problem is a hill. Elements of
the input stream that are not part of a

token are called whitespace. In this example, all non upper case letters are whitespace. The order in
which
tokens
are
found
defines

another stream called the output stream. In this example, the output stream consists of the token
sequence ‘J’, ‘F’, ‘K’. Thus, a scanner converts an input stream to an output token stream. Scanners
differ in the nature of the input data structures and the properties tokens must satisfy. For example,
another scanner could find and print all lowercase letters. The output stream of one scanner can form
the input stream to build powerful scanner combinations. For example, the output of the example
scanner could be fed to a scanner that looks for vowels.

String Algorithm and Data Structures
In our example, the input stream is a string – a sequence of characters. The input stream, of course, is a
data structure given to us. Once we output a token, we do not need to refer to the previous tokens.
Thus, we do not need to store the entire stream of tokens; we can use the same data structure to store

multiple tokens. As our output tokens are subsequences of length 1, we do not need to create even a
data structure to even store a token as we can directly print each upper case letter in the input. So do
we need any additional data structure?

Once we have scanned a character, and found it is a token or whitespace, we do not need to scan it
again. Thus, we can simply scan the input string from left to right, storing the last position we scanned in
a marker variable, and after examining the character at that position, incrementing the marker after
each examination. If the examination shows that the character is an upper case letter, we output the
character; otherwise we do nothing. This marker variable is then a data structure we need in addition to
the input string. It is initialized to 0.

This algorithm can then be described using a series of textual animations of the marker along with the
associated output produced. In these animations, the vertical bar, ‘|’, will be used to denote the
position of the marker.

The marker is initially at 0. The character at that position is indeed an upper case letter, so we output it:

|John F. Kennedy, marker = 0, output = J

Next, we increment the marker, making it 1. As the character is now not an uppercase character, there
is no output.

J|ohn F. Kennedy, marker = 1, output = none

We continue incrementing, without output, until the marker is 5, when we output J.

John |F. Kennedy, marker = 5, output = F

Again the marker is incremented without output, until it reaches 8, at which point we output K.

John F. |Kennedy, marker = 8, output = K

Again we increment the marker.

John F. K|ennedy, marker = 9, output =

A visual scan of the string shows that there are no more upper case characters. The computer must
similarly scan the string to make this determination. Thus, it keeps incrementing the marker, finding no
upper case letters, until it reaches the end, at which point the process stops.

John F. Kenned|y, marker = 14, output = none

Scanning Java Program
Below, we see the data structures and algorithm converted to a Java program.

package lectures.scanning;
public class AnUpperCasePrinter {
 public static void main(String[] args) {
 if (args.length != 1) {
 System.out.println("Illegal number of arguments:" + args.length
+ ". Terminating program.");
 System.exit(-1);

 }
 String scannedString = args[0];
 System.out.println("Upper Case Letters:");
 int index = 0;
 while (index < scannedString.length()) {
 char nextLetter = scannedString.charAt(index);
 if (Character.isUpperCase(nextLetter))
 System.out.print(nextLetter);
 index++;
 }
 System.out.println();
 }
}

Figure 2-1 Java Program

As this is our first Java program and we have already seen the scanning algorithm, this code serves more
as an introduction to Java – as a second language - than scanning.

Conventional vs. Object-Oriented Programming
As you probably know, Java is called an object-oriented programming language to distinguish it from a
conventional programming language. These two types of languages support very different styles of
programming. It is not possible to do object-oriented programming using a conventional programming
language but it is possible to do conventional programming using an object-oriented language. The
most simple-minded explanation of the difference between the two styles is that conventional
programming creates the entire program as one class, while object-oriented programming looks for
ways to decompose the program into multiple classes. The major goal of this course is to teach you
object-oriented programming. However, to get you going quickly with a Java programming, in this
chapter we will do conventional programming. What we see in Figure ??? is a Java class that defines the
complete program.

Developing and Executing the Program Using a Bare-bone Environment
Before we understand the logic inside the single-class program above, let us see the external process of
creating it and running it. Today, development and running of a program will be done through a
sophisticated visual programming environment. There are a variety of such programming environments,
each with a different user-interface. All of them provide a Java compiler and a Java interpreter, called,
javac and java, respectively. Moreover, the operating system provides a text editor and a command
interpreter. The combination of these three tools constitutes a bare-bone programming environment,
which is sufficient, but not always suitable, to develop Java programs. Here we will illustrate how the
program above can be developed using such an environment. It will show some of the steps all
programming environments take.

The process of developing a Java program is more complicated than the process you might have seen for
programs in other languages. This is because of Java’s heavy emphasis on object-oriented programming
which makes conventional programming more complicated than necessary. We must first choose a
project folder. You have complete freedom in choosing its name. In this example, let us assume that the
project folder is “course” The items in this folder and its subfolders are constrained by the text of the
program above.

Consider the package header:
 package lectures.scanning
and the class header:
 public class AnUpperCasePrinter
Together, these declarations define a class called AnUpperCasePrinter, in package lectures.scanning. The
class as two names, a short name, AnUpperCasePrinter, which can be used to refer to the class in its
package and a full name, lectures.scanning.AnUpperCasePrinter, which is essentially the name of the
package followed by the sort name.

The package declaration requires that we create a folder called lectures in the project folder (course);
and in this folder we create a subfolder called scanning. In other words, we must create a package
subfolder called lectures/scanning or lectures\scanning in the package folder, depending on the file
name separator in the operating system we use. In the rest of the course, we will assume that ‘/’ is the
file name separator.

In general, if a class contains the package header:
package a1.a2.a3..an

we must create a package subfolder a1/a2/a3../an.

The class declaration requires us to create a file named AnUpperCasePrinter.java in the package folder.
In general, each program class should be saved in a separate file (in the package folder) whose name is
the short name of the class followed by the suffix, .java.

This is a text file - the suffix .java indicates it is a special kind of text file that contains Java code. As it is a
text file we can use a text editor (such as Notepad or Notepad++) to enter the text in Figure 1.

This text represents the source code of the program. As you probably know from CS-1, source code is
not directly executable and must be translated into object code, and the program that does the
conversion is called a compiler. To compile our example file, we must ask the command interpreter to
change its directory to the package folder of the class. Thus we are in the project folder, we must
execute the command

cd lectures/scanning
and execute the command:

javac AnUpperCasePrinter.java
to compile it. The compiler creates a file called AHelloWorldGreeter.class in the same folder in which the
source code exists, which contains the object code for this program.

Our next steps are to execute or interpret the program. To do so, we must cange the directory to the
project directory, course by executing, for instance, the command:

cd ../..

We can now ask the Java interpreter to execute our compiled class, giving it as an argument or
paramater the string to be scanned:

java lectures.scanning.AnUpperCasePrinter "John F. Kennedy"

The program creates the following output:

Upper Case Letters:
JFK

In general, to execute a program, we must type:

java <Full Name of Main Class> <A list of arguments>

in the directory containing the top-level package, that is, in the project folder.

Case matters in the names used in Java. In some operating systems/programming environments, it also
matters in the names supplied to the tools. So if we typed:

java lectures.scanning.anuppercaseprinter "John F. Kennedy"

we may get an error message saying that the class ahelloworldAHelloWorldGreeter was not found.

The following transcript of our commands, executed by the Bash command interpreter, illustrates a
successful compilation and execution of the program. Here the lines starting with $ are the commands
we entered, the italicized ones staring with Dewan@DEWAN-T431S are prompts from the command
interpreter telling us the current directory or folder, and the remaining lines are program input and
output. In this example, there is no program input – the scanned string is supplied as an argument. Later
we will see how to get this string as an input.

Dewan@DEWAN-T431S /d/dewan_backup/java/course
$ cd lectures/scanning
Dewan@DEWAN-T431S /d/dewan_backup/java/course/lectures/scanning
$ ls
AnUpperCasePrinter.java
Dewan@DEWAN-T431S /d/dewan_backup/java/course/lectures/scanning
$ javac AnUpperCasePrinter.java
Dewan@DEWAN-T431S /d/dewan_backup/java/course/lectures/scanning
$ ls
AnUpperCasePrinter.class AnUpperCasePrinter.java
Dewan@DEWAN-T431S /d/dewan_backup/java/course/lectures/scanning
$ cd ../..
Dewan@DEWAN-T431S /d/dewan_backup/java/course
$ java lectures.scanning.AnUpperCasePrinter "John F. Kennedy"
Upper Case Letters:
JFK
Dewan@DEWAN-T431S /d/dewan_backup/java/course

An equivalent set of commands can be executed in the Windows command interpreter, with the main
difference being that the “/” file name separator is replaced by “\” and the “ls” command is replaced
by “dir”. For more on the nature of command interpreters, see: ????

A window that shows the Input and Output (I/O) of a program is called the console or transcript window.
Here the command interpreter window serves as the console window. An interactive programming
environment provides a special console window for program I/O, as program compilation and execution
occurs trough a GUI rather than a command window that could double as a console window

Program from the inside
We saw above our example program from the outside – as a person compiling and executing the
program. Let us now look at it from the inside by studying its contents. As mentioned before, the code in
Figure 1 defines a single class, in a single package, and the package header:
 package lectures.scanning
names the package of the class and the class header:
 public class AnUpperCasePrinter
defines the short name of the class. The rest of the code defines the code body. The class and package
header contains information about the class that is of interest to the users of the class. It consists of two
keywords or reserved words. The first is the keyword, class, which is defined by Java, while the second is
the class name, which is defined by the programmer. As you probably know from your CS-1 course, a
keyword is reserved by the language in that it cannot be overridden by the programmer. We will use
boldface to identify keywords. Not all predefined Java words are keywords. For instance, String and
println are not keywords, and thus can be overridden by a program. Though, in this course, we will not
be overriding predefined Java words, it is important to distinguish keywords from overriddable
(predefined and programmer-defined) words.

Method Declaration
The class body contains the implementation of the class, which consists of the definition of the methods
–procedures and functions - of the class. These are named parameterized sequences of instructions,
sometimes also called subroutines. This material assumes you are familiar with defining and calling or
invoking methods. Here we focus mainly on giving the Java syntax for representing them.

In our example, the class body consists of the definition or declaration of a single method, main,
enclosed within the outermost curly braces:

public static void main (String args[]) {

 ….

}

Though this program contains a single method declaration, in general, a Java program can contain many
method declarations.

Like a class declaration, a method declaration has two parts: a header and a body. The method header is
the first line of the declaration before the first curly brace:

public static void main (String args[])

The method body is the rest of the declaration:

{

 if (args.length != 1) {
 ….

}

Method Header
The method header contains information that is of interest to its users. The user of a method needs to
know how to invoke the method. Therefore, the header includes the name of the method and the
nature of the arguments or parameters accepted by it. In this example, it consists of three Java
keywords, public, static, and void, followed by the method name, main, followed by an arguments
specification.

The arguments specification tells us that the method takes a single argument, which an array of strings
named, args. This material assumes you are familiar with the concept of an array - is a list of elements of
a certain type whose size is fixed. A string is a special kind of array whose elements are characters –
letters, numbers and other symbols we can enter on a keyboard.

The three keywords indicate various properties of the method. The keyword public says that the
method is visible outside the class to other software modules –in particular the Java interpreter. The
keyword static says that it is a “class method” – a method that does not require the dynamic
“instantiation” of a class - rather than an “instance method,” which does require dynamic instantiation.
For now, since we are not doing object-based programming, all methods will be class methods. When
we instantiate classes dynamically, we will omit this keyword to define instance methods. The keyword
void says that it is a procedure rather than a function, that is, it does not return a value.

This method header indicates this is the main method of the class. A main method is a special method of
a class in that it is automatically called by the Java interpreter when we ask the interpreter to execute
the class. You should type the header of a main method exactly as shown above to indicate that it is the
main method. Check that you have done so in case you get an error when you execute the class saying
that the main method was not found.

Variables and Expressions
The integer variable index is the marker in our algorithm. It is declared to be of type int (for integer) and
initialized to 0. In general, a variable named, <Variable>, of type <Type >, initialized to expression,
<Expression> is declared as follows:

<Type> <Variable> = <Expression>;

An expression is any program fragment that yields a value. The program elements within angle brackets
are place holders, which are replaced with matching values in program code:

int index = 0;

Here the variable is initialized to the integer literal 0, so called because we specify its value literally. In
general a variable can be assigned or initialized an arbitrary expression.

A declared variable can be reassigned a new value:

Index = index + 1;

We do not have to initialize a variable when it is declared:

int index;

A code fragment that (re) assigns a variable is a called an assignment statement. A statement is a code
unit that takes some action. Later we will see other kinds of statements such as if statements and while
statements.

Final, Named Constants, Literals, Magic Numbers
If we do not want a variable to be reassigned, we can use the prefix final in its declaration. If such a
variable is assigned a literal, it becomes a named constant – a name associated with a constant or
unchanging value:

final int MAX_UPPER_CASE_LETTERS = 3;

As it has probably drilled into you in CS-1:

Number in expressions can be unintelligible to readers trying to understand their meaning. Use
named constants instead.

Thus:

int upperCaseCharacters[MAX_UPPER_CASE_LETTERS];

Is preferable to:

int upperCaseCharacters[3];

as 3 can be a magic number for the reader. In general, any literal, including a String or character, can be
magic unless it is assigned to a named constant– therefore people do not talk of magic characters or
strings, though some of them could indeed use a description through a named constant.

Perhaps an even more compelling reason for a named constant, seen in the example above, is that if we
decide to increase the maximum number of upper case letters, we need to only change the definition
of the named constant rather than all the places where the upper limit is used. This motivation applies
to all values, not just numbers. This leads to the following related rule:

 Replace multiple instances of the same (possibly not magic) literal with a named constant.

It is possible for a final variable to not be a named constant as it can be being assigned the value of a
variable at declaration time or later:

final int savedIndex;

savedIndex = index;

=, ==, !=
As we see above, Java uses = as the assignment operator. Thus, the above code says that the integer
variable index is assigned the value 0. = is not to be confused with the relational == operator which
returns true if its left operand has the same value as its right operand. Thus:

index == 0 true

index == 1 false

!= is the inverse of ==, returning the opposite of ==:

Index != 0 false

Index != 1 true

++ and --
Often an assignment statement increments or decrements the value of a variable. Java provides the
following shorthand:

<Variable> ++;

which is the same as:

<variable> = <variable > + 1;

Similarly, the shorthand:

<Variable> --;

Is the same as:

<Variable > = <variable > - 1;

Thus, in our example program:

index--;

is te same as:

index = index – 1;

char

While you should all be familiar with integer values, it is possible many of you have not seen characters.
The computer must often process characters. Most programs accept character input and produce
character output. In fact, some programs, such as a spelling checker, perform most of their
computations in terms of characters. Characters are the building blocks for the strings used in our
example program.

This type defines a variety of characters including the English letters (both lowercase, a..z, and
uppercase, A..Z), the decimal digits 0..9; “whitespace” characters such as blank and tab; separators such
as comma, semicolon, and newline; and other characters on our keyboard. A character can be
represented in a program by enclosing its print representation in single quotes:

‘A’ ‘Z’ ‘1’ ‘0’ ‘ ‘

Two consecutive single-quotes denote a special character called the null character:

‘’

The null character is used to mark the end of a string. It is not useful to print it since Java prints nothing
for it.

How do we represent the single-quote character itself? We could enclose it in single-quotes:

‘’’

However, Java would match the first two single-quotes as the null character, and think you have an
extra single-quote character. So, instead, it defines the following representation for a single-quote:

‘\’’

Here, instead of enclosing one character within quotes, we have enclosed a two-character escape
sequence. The first of these characters, \, or backslash, is an escape character here, telling Java to
escape from its normal rules and process the next character in a special way.

Java defines escape sequences to represent either those characters that cannot use the normal
representation or those for which the normal representation may not be readable. A character value or
literal cannot have a new line character in it, so \n denotes the new line character. A backslash after the
first quote denotes special processing, not the backlash character itself, so \\ denotes the backlash
character. Typing a backspace after a single-quote would erase the single-quote, so \b denotes the
backspace character. We can represent the tab character by entering a tab between quotes:

 ‘ ‘

but this representation can be mistaken as the space character. So \t denotes a tab character. Similarly,
we can represent the double quote character as:

‘”’

but it may be mistaken for two null characters. So \” denotes the double quote character. The following
table summarizes our discussion:

Escape
Sequence

Character
Denoted

\’ ‘

\n new line

\b back space

\\ \

\t tab

\” “

Table 1 Some Useful Java Escape Sequences

As programmers, we do not have to concern ourselves with the exact integer assigned to each
character. However, we sometimes need to know something about the relative order in certain subsets
of the character set such as the set of lower case letters and the set of digits.

The following code uses the order among uppercase letters to determine if a character is upper case:

 if (nextLetter >= 'A' && nextLetter <= 'Z')

 System.out.print(nextLetter);

This check is automatically done by the predefined Boolean Character.isUpperCase() function. We see
here that letter ordering allows this function to be implemented efficiently- otherwise the test character
would have to be compared against each upper case letter.

&& and ||
In the Boolean expression above, && is the short-circuit and operator – it evaluates its second argument
only if the first argument is true. Similarly, || is the short circuit or operator – it evaluates its second
argument only if the first argument is false.

String Literals, Indexing, Length
A string can be considered essentially an array of characters. A sequence of characters within double
quotes denotes a Java String literal, which can be assigned to a variable declared to be of type String.

String s = “hello world”

This problem requires a way to decompose a string into its constituent characters. We identify string
components through their positions or indices in the string. For Strings, the charAt() method is provided,
which takes the component index as an argument and returns a character. In Java, String (and array)

indices start from 0 rather than 1

Thus, given string s above:

s.charAt(0) == ‘h’;

s.charAt(1) == ‘e’

In general, we access the ith character of string, s, as:

s.charAt(i-1);

Not all string indices are legal. An index that is smaller (greater) than the index of its first (last) character
is illegal. Thus, both of the following accesses will result in a StringIndexBounds error or exception :

s.charAt(11)

s.charAt(-1)

Given a String, s, s. length(), returns the number of characters in a string. Thus:

"helloworld".length() 11

"".length() 0

We can use this function to define the range of legal indices of an arbitrary string s:

0 .. (s.length() - 1)

Sub-Strings
Besides individual characters, we may also wish to retrieve sub-strings of a string, that is, sequences of
consecutive characters that appear in the string. Given a string, s, we can invoke:

s .substring(beginIndex, endIndex)

to return a new string that consists of the character sequence starting at beginIndex and ending at
endIndex – 1, that is:

s.charAt(beginIndex) .. s.charAt(endIndex - 1)

Invoking this operation results in the StringIndexOutOfBounds error or exception if beginIndex is greater
than endIndex. If they are both equal, it returns the empty string. Thus:

"hello world".substring(4, 7) "o w"

"hello world".substring(4, 4) ""

"hello world".substring(7, 4) throws StringIndexOutOfBounds

Java strings are readonly or immutable, that is, they cannot change. A separate type, StringBuffer, which
we will not study in this course, defines mutable strings. Java does provide the + operation on strings to
create new strings from existing strings. Thus:

“hello” + “world” == “hello world”

Here, we do not change either string, but instead, create a new string that stores the result of appending
the second string to the first one.

If we add to a string a non String value such as an integer, the value is converted to its String
representation. Thus,

"null string length is " + “”.length == null string length is 0

println and print
We can not only create new strings but also, of course, print them using the methods
System.out.println() or System.out.print(). Both the String representation of an arbitrary value on the
console window. The difference between them is that the former prints a new line character after
printing the String, thereby ensuring that the next output appears on the next line. Thus, the statement:

System.out.println(nextLetter)

prints each letter on the same line and

System.out.println()

Prints the null string (nothing) on the current line and then output a new line character. The two
methods can

Overloading
Consider the following two uses of the operator, +, in Java:

5 + 3

“hello” + “world”

The operation has different meanings in the two examples above. In the first example, it means integer
addition, while the second case it means string concatenation. An operation such as + that has more
than one meaning is called an overloaded operation. It is analogous to an English word such as “fly” that
has more than one meaning. Just as we use context to determine the meaning of an overloaded English
word, Java also uses context to determine the actual action performed when we use an overloaded
symbol.

Like symbols, method names can also be overloaded in Java. Consider the following two uses of the
method println:

System.out.println("Hello World");

System.out.println(8);

The second println is different from the one we used to print strings, since in the first case, it simply
prints its string argument while in the second case it converts its double argument to a string before
printing it. As in the case of +, Java uses the context of the actual parameter to determine which version
of println to call.

Array Indexing, Length, System.exit()
The arguments specified by a user can be accessed by the body of the main method as args[0], args[1],
args[2] and so on, where args is the name given to the argument array in the header of the main
method. In general, the Nth argument is accessed in the main method as args[N-1].

It is an error to access an argument that has not been entered by the user. To prevent such an error,
our program has the following code fragment:

 if (args.length != 1) {
 System.out.println("Illegal number of arguments:" + args.length + ". Terminating program.");
 System.exit(-1);
 }
This program fragment illustrates several concepts in Java. It is possible to determine the length or size
of some array, a, using the syntax, a.length. Here we are essentially accessing the value of a final
variable variable a.length. In the case of a String s, we find the size by calling the method s.length(),
hence the need for parentheses.

Usually a program terminates when it finishes execution of the main method. However, we can
terminate it at any point, by executing the predefined method, System.exit(). The argument to this
method is an error code. By convention the code 0 indicates no error and a negative value indicates
some kind of error associated with the value.

Entering and Parsing Main Arguments
The programming environment parses or processes the arguments we supply to determine the actual
parameters passed to the main method of the class we execute. For example, when we execute the
command:

java lectures.scanning.AnUpperCasePrinter "John F. Kennedy"

the programming environment converts characters between the quotes to an argument array consisting
of a single String, John F. Kennedy”. It is not necessary to enclose each element of the argument array
within quotes. Thus the following is legal:

$ java lectures.scanning.AnUpperCasePrinter John F. Kennedy

However, in this case, the output is:

Illegal number of arguments:3. Terminating program.

By default the programming environment uses whitespace (space and tab characters) to delineate the
elements of the argument array. Thus, in the example above, it assumes that the argument array
consists of three elements:
John
F.
Kennedy

As we saw above, our main method gives the error message when the actual number of arguments is
not the same as the expected number, and terminates. By putting quotes around the scanned string,
we ask the programming environment to ignore the whitespace in it and consider it a single argument
element.

If-Else and If Statement
It is possible to execute one statement, <Then Statement>, if a Boolean condition, <Boolean
Expression>, is true, and another statement, <Else Statement>, if it is false, using the if-else statement:

If (<Boolean Expression>)

 <Then Statement>

else

 <Else Statement>

Note that parentheses are required around the Boolean expression. <Then Statement > is called the
then-part or then-branch of the if statement and <Else Statement> the else-part or else-branch.

Sometimes we wish to take no action in an else branch. In this case, the if statement can be used instead
of the if-else statement. It has the syntax:

if (<Boolean Expression>)

<Then Statement>;

This is the form of the if statement we see in the code below.

 if (Character.isUpperCase(nextLetter))
 System.out.print(nextLetter);

Compound Statement
A series of statements, <S1>, <S2> , …., <SN> can be converted into a single compound statement by
enclosing them in curly braces and separating them with semicolons:

{
 <S1>;
 <S2>;
 …
 <SN>
}
Thus
{
 char nextLetter = scannedString.charAt(index);
 if (Character.isUpperCase(nextLetter))
 System.out.print(nextLetter);
 index++;
 }
Is a compound statement consisting of three statements.

Boolean Constants and Simplifying Boolean and Other Expressions

If statements, of course, require a good understanding and use of Boolean expressions, which in Java
compute to the predefined values, true and false, rather than 1 and 0, as in some other languages such
as C. True and false are also words in the English language. Sometimes there is a tendency to
overcomplicate Boolean expressions because by translating them to English, as in the following
example:

 if (Character.isUpperCase(nextLetter) == true) {
 System.out.print(nextLetter);
 }

Character.isUppercase() is already a Boolean expression and comparing it with true does not change the
result just as adding 0 to an integer values does not change the result. This brings us to the following
rule:
 Simplify expressions, especially Boolean expressions, by removing redundant clauses in them.

For the same reason:
 In a function, we should simply return a Boolean value rather write an if statement that returns
the value.

Thus, the following if statement :
 If (Character.isUpperCase()) {
 return true;
 } else {
 return false;

 }
should be replaced by:
 return Character.isUpperCase();

While Statement
 It is possible to repeatedly execute a statement, <While Body>, until some Boolean condition, <Boolean
Expression> is met by executing the while statement with the syntax:

while (<Boolean Expression>)

 <while Body>

The repeated statement is called the while body and the Boolean expression is called the whole
condition

Console Input
Instead of scanning a string provided as a program argument, a scanner could also process a string input
while a program is executing. The following class is like the one we saw above, except that it processes a
String input by the user:

package lectures.scanning;
import java.util.Scanner;
public class AConsoleReadingUpperCasePrinter {
 public static void main(String[] args) {
 Scanner scanner = new Scanner(System.in);
 String scannedString = scanner.nextLine();
 System.out.println("Upper Case Letters:");
 int index = 0;
 while (index < scannedString.length()) {
 char nextLetter = scannedString.charAt(index);
 if (nextLetter >= 'A' && nextLetter <= 'Z')
 System.out.print(nextLetter);
 index++;
 }
 System.out.println();
 }

}

The following command-window transcript shows how a user interacts with this program:

$ java lectures.scanning.AConsoleReadingUpperCasePrinter
John F. Kennedy
Upper Case Letters:
JFK

Dewan@DEWAN-T431S /d/dewan_backup/java/course

Now the scanned string is entered in the console window after the program is run rather than supplied
as an argument before the program is run. It does not have to be enclosed in quotes as our program is
the only code involved in processing this input – the programming environment does not intercept it.

There are many ways to read input in a Java program, all of which are more complicated than writing
output. Perhaps the simplest of them involves creating and initializing a variable of type Scanner:

Scanner scanner = new Scanner(System.in);

For now, we do not quite understand the expression assigned to the variable but we can see that it
involves System.in, which denotes the stream from which we read values, just as System.out denotes
the stream to which we write values.

Now we can use the variable as follows to repeatedly read input lines:

String scannedString = scanner.nextLine();

Thus, we first use the predefined Scanner type to convert the input entered by the user into a line of
characters and then we use our own scanner to convert it into a series of upper case characters.

Manual and Automatic Imports
The Scanner type is in fact a class, whose full name is java.util.Scanner, which means it is created in the
package java.util. We were able to use its short name because of the import declaration:

import java.util.Scanner;

An import declaration must be placed between the package and class headers of a class and tells Java
that the class will use the short name of the imported class rather than the full or long name. If we did
not have this import declaration, we could have initialized our scanner variable using the full name:

java.util.Scanner scanner = new java.util.Scanner(System.in);

It is illegal to refer to a class by its short name if we have not imported its full name. It is not legal to
import two classes with the same short name as otherwise Java does not know to which class that name
refers.

Often there is only one class with a given short name. Some programming environments such as Eclipse
provide commands that automatically import such classes if we have used their short names but not
imported them. For example, if we use the short name, Scanner, in our code, and type CTRL-SHIFT_O in
Eclipse, the import statement will be automatically generated. We will often omit the full names of
classes with unique short names, as your programming environment can find their full names.

Import All and Why to Not Use It
Another way to reduce import overhead applies to situations in which we want to import multiple
classes from the same package. We can use “*” instead of a class name in an import declarations:

import java.util.*;

Those who have seen regular expressions would know that ‘*” (invented by Kleene of UW-Madison)
matches arbitrary character sequences. In the import declaration context, it matches all classes in the
specified package. Thus, the above import declaration matches all classes in the package java.util, and
thus would import all of them.

The import all or star import feature has been presented here only to forbid it, for two reasons. First,
persons using star import all import all declaration may accidentally import and a use a class whose
short name is the same as the name of the class they want to use. Second, readers of the code cannot
use the import declarations in a class to understand which classes from other packages are being used.
Given that programming environments today provide features to automatically import classes, such an
import makes even less sense. Therefore:

Do not use import all (star import).

Unique Short Names and No Long Names
Even with the import of a single package it is possible to use a class whose name conflicts with that of a
class in the package of the importing class. Moreover, we may repackage classes just as we move files
into different folders. This problem gives rise to the following rule:

Give a class a short name that is different from the short names of other classes in your project
and the packages your project uses or is later likely to use.

In Eclipse, it is easy to “refactor” code by renaming classes, variables and other identifiers (names), and
repackaging classes – so it is easy to correct violations of this rule.

In the class material, this rule is constantly violated to show incremental development of a class. The
various increments are given the same short name but put in different packages. You will face a similar
problem as you incrementally develop your project. However, you do not have to show all increments at
the same time and should be creating a new project for each assignment. Thus, you should not face this
problem..

As mentioned before, we can use the long name of a class instead of its short
name:java.util.Scanner scanner = new java.util.Scanner(System.in);

This is useful when we have two classes with the same name – the long name disambiguates. When this
is not the case, using a long name is simply verbose. Moreover, it does not require an import at the start
of the class declaration, which, as mentioned above, is useful documentation for someone trying to get
an overview of a class declaration without looking at the details of the class body. As we are disallowing
classes with the same short name, we will also require:

Do not use the full name of a class except in an import declaration,

Multi-Method Classes and Calling a Method in a Different Class
The only difference between the two classes we have defined above, AnUpperCasePrinter and
AConsoleReadingUpperCasePrinte is in the code that initializes the variable scannedString, that is, the
code between the main method header and the first println(). In fact, the second class was created by
copying and editing the code in the first class – always a bad sign, as it means that we are duplicating
code. Duplicated code has the disadvantage that keeping its copies consistent is tedious and error
prone. For instance, if we decide that we want to print each upper case letter on a different line, we
must change both of the classes above.

Much of this material addresses techniques for reducing code duplication. The simplest of these, which
you should have seen in your CS-1 class, is to divide code into multiple methods. This technique serves
us well in our examples, as the code to initialize and process the scanned string can be put in different

methods. Java allows methods of a class to be called from other classes. Our second class can call the
scanning code without executing the initializing code.

We can use this technique to rewrite the class AConsoleReadingUpperCasePrinter:.

package lectures.scanning;
import java.util.Scanner;
public class AModularConsoleReadingUpperCasePrinter {
 public static void main(String[] args) {
 Scanner scanner = new Scanner(System.in);
 String scannedString = scanner.nextLine();
 scanAndPrint(scannedString);
 }
 public static void scanAndPrint(String scannedString) {
 System.out.println("Upper Case Letters:");
 int index = 0;
 while (index < scannedString.length()) {
 char nextLetter = scannedString.charAt(index);
 if (nextLetter >= 'A' && nextLetter <= 'Z')
 System.out.print(nextLetter);
 index++;
 }
 System.out.println();
 }
}
The code to process the scanned string is now in a separate method, scanAndPrint(), which takes this
String as an argument. The main method sets this String to be the next input line and calls
scanAndPrint().

We can now rewrite the class, AnUppercCasePrinter, to use rather than duplicate the scanAndPrint in
our new input-reading class, AModularConsoleReadingUpperCasePrinter.

package lectures.scanning;
public class AModularUpperCasePrinter {
 public static void main(String[] args) {
 if (args.length != 1) {
 System.out.println("Illegal number of arguments:" + args.length
 + ". Terminating program.");
 System.exit(-1);
 }
 AModularConsoleReadingUpperCasePrinter.scanAndPrint(args[0]);
 }
}

We see here that the general syntax for calling a static or class method is:

<Class>.<Method> (<Arguments>)

When the method is defined in the calling class, the class name can be omitted from the call. This is the
reason that the call to scanAndPrint() in AModularConsoleReadingUpperCasePrinter did not need the
class prefix.

package lectures.scanning;
import java.util.Scanner;
public class Console {
 static Scanner scanner = new Scanner(System.in);
 public static int readInt() {
 return Integer.parseInt(scanner.nextLine());
 }
 public static String readString() {
 return scanner.nextLine();
 }
}

Console Library Class, Global Variables, Boolean and double
The ability to call methods in a different class allows us to create our own libraries – classes without
main methods whose only function is to provide methods for other classes. To illustrate, let us create a
library class that provides a slightly more convenient way to read input:

package lectures.scanning;
import java.util.Scanner;
public class Console {
 static Scanner scanner = new Scanner(System.in);
 public static int readInt() {
 return scanner.nextInt();
 }
 public static boolean readBoolean() {
 return scanner.nextBoolean();
 }
 public static double readDouble() {
 return scanner.nextDouble();
 }
 public static String readString() {
 return scanner.nextLine();
 }
}

This class creates the scanner variable as a global variable of the class – that is a variable declared
outside all methods in the class that does not belong to a specific method. A global variable declared as
static, it is accessible to all methods in the class. This variable is initialized to a value of type Scanner as
before. In contrast, a variable declared inside a method is a local variable and accessible only within
that method. Thus, AModularConsoleReadingUpperCasePrinter , the variable index is accessible only in
scanAndPrint() and not main(). Local variables can also be declared inside compound and for statements
are only accessible within these statements.

The user of Console now simply calls the methods in this class, and is oblivious to the fact that a value of
type Scanner, involving System.in, has to be created. Thus, to read an input line from some other class,
all we have to do is import Console, and execute:

 Console.readString();

The types boolean and double refer to Boolean and decimal values respectively.

Java Program Structure
The examples presented so far, illustrate the general structure of a Java program. In general, a program
consists of a main class and can have several other classes. The main class must have the main method
and can have several other methods

For Loops and Array Declarations,
The following method introduces the Java syntax for two additional concepts with which you are
probably familiar:

public static void readAndPrintStrings() {
 // read the number of strings to be input
 System.out.println("Number of Strings:");
 int numElements = Console.readInt();
 // fill array with num elements numbers input by the user
 System.out.println("Please enter " + numElements + " strings");
 String[] strings = new String[numElements]; // dynamic array
 for (int elementNum = 0; elementNum < numElements; elementNum++)
 strings[elementNum] = Console.readString();
 /*
 * Print the array input* in the previous loop
 */
 for (int elementNum = 0; elementNum < strings.length; elementNum++)
 System.out.println(strings[elementNum]);
 // print 0th array element
 String s = strings[0]; // unsafe
 for (int i = 0; i < s.length(); i++)
 System.out.println(s.charAt(i));
 }

A for loop has the syntax:

for (<Initializing Statement>;<Boolean Expression>;<Updating Statement>)

 <Body Statement>

It is equivalent to:

<Initializing Statement>;

while (<Boolean Expression>) {

 <Body Statement>;

 <Updating Statement>;

}

The <Body Statement> is called the for body.

As we saw before in the main header, an array variable whose elements are of type <Element Type> is
declared as:

<Element Type> <Array Variable>

We see here that it can be initialized to an actual arrauy using by assigning it the expression:

new <Element Type> [<Array Size>]

The array size can be an arbitrary expression in Java, which, as we see above, can involve variables. An
array whose size can involve variables is called a dynamic array.

Single line comments begin with “//” and extend to the end of the line. Mult-line comments begin and
end with /* and */ respectively and there is a standard way to format them, shown above. There are
also standard ways to format comments that describe methods, into which we will not delve in this
course.

Comments, Comments vs. Modularity
Comments, of course, document code so others, and even you, can understand it later. However, more
comments is not always better, and the fact that some of your code requires comments can be bad sign.

Here is a rewrite of the code above that requires fewer comments:

public static void modularReadAndPrintStrings() () {
 String[] strings = readStrings(readNumStrings());
 printStrings(strings);
 printString(strings[0]);// unsafe
}
public static int readNumStrings() {
 System.out.println("Number of Strings:");
 return Console.readInt();
}
public static String[] readStrings(int numElements) {
 System.out.println("Please enter " + numElements + " strings");
 String[] strings = new String[numElements]; // dynamic array
 for (int elementNum = 0; elementNum < numElements; elementNum++)
 strings[elementNum] = Console.readString();
 return strings;
}
public static void printStrings(String[] strings) {
 for (int elementNum = 0; elementNum < strings.length;
 elementNum++)
 System.out.println(strings[elementNum]);
}
public static void printString(String s) {
 for (int i = 0; i < s.length(); i++)
 System.out.println(s.charAt(i));
}
Many of the comments have been replaced with reusable methods with descriptive names. Some of
these names are long. Many programming environments provide commands to automatically complete
long names. In Eclipse, CTRL-SPACE completes a prefix for some name you have entered.

As this example shows, we should not comment for the sake of commenting. Be clear who your
audience is (yourself and the instructors of this course) and write comments that you think would be
useful to at least one of these parties. When you cannot estimate what the instructors would need, just
comment for yourself.

Comments vs. Mnemonic Role Names
Comments describing the role of a variable as in the following:

double w; // weight

can be replaced by mnemonic names that describe the role:

double weight;

Again, do not be resistant to using long names, given name completion techniques in programming
environments.

Two corollaries of this discussion are that:

An identifier (name) such as a variable or method should have a single logically defined role.

 An identifier should be a mnemonic name describing its name.

When memory was expensive, programmers used to use the same memory location for multiple
purposes, overlaying multiple logical entities on top of a single physical memory location. Today,
programming style trumps over efficiency.

Case Conventions
Comments and modularity are two techniques for making code understandable to others, ourselves,
and even tools, as we will see later. Case conventions are another, much simpler technique. Three
important conventions that have been established for Java programs:

 Start the name of a variable, method and package with a lower case letter.

 Start the name of a class with an upper case letter.

 To increase readability, we often need to create multi word identifiers. Since spaces cannot be

part of an identifier, separate these words by starting each new word (that is, second and

subsequent words) with an upper case letter. We followed this rule in the identifiers

AModularConsoleReadingUpperCasePrinter, Console, and readString. The

second rule above, of course, determines the case of the first letter of the first word. This is

called the camel case convention.

 Name constants such as MAX_UPPER_CASE_LETTERS should consist of upper case letters and

underscores.

As we study other kinds of namable entities such as interfaces we will extend these conventions
suitably.

Formatting
The readability of programs can be greatly reduced by using formatting that shows the structure of the
program. There are standard rules for formatting code, including comments. If comments are formatted

using standard rules (called JavaDoc in Java), they can be used to create automatic documentation.
Standard rules can be and are supported directly by interactive programming environments. Therefore,
we will not delve into them, and expect you to use your own or standard rules for showing the structure
of the program. If the structure is good enough for you to understand your code, it is good enough for
us.

Annotations and Array Constants
Comments are detected and then ignored by the compiler. This means there is no trace of them at in
the executable code produced by the compiler. Sometimes we do want the programmer to associate
parts of the program with descriptions that are not ignored by the compiler and even used by it. Such
associations are called annotations. Like comments, you can put them before the code unit you want to
tag. They have the syntax:

@<Annotation Type> (<Annotation Parameters>)

< Annotatable Code Unit>

Annotatable code units include variable, class, package and method definitions. The following is an
example of an annotation:

@Deprecated

public static void bubbleSort (String[] aList) {

…

}

It tells the reader and, since it is available at runtime, even a potential caller of this method, that
method bubbleSort() is available for those who still rely on it but it is no longer recommended that it be
called (as it might have, for instance, replaced with a better alternative). This annotation takes no
parameters, so nothing goes in between the parentheses. An annotation does not end with a semicolon
and multiple annotations can be associated with the same code unit. An annotations are typed and
available a runtime, they are a better alternative than comments when applicable.

Deprecated is an example of a predefined Java annotation. It is also possible for programmers to defined
their own annotations. One such annotation, provided by the ObjectEditor library, is the Tag annotation,
which takes an array of tag names as an argument.

@Tags({“Modularity”, “Scanning”, “ConsoleInput”})

public class AModularConsoleReadingUpperCasePrinter {
 …

}

This annotation allows a Facebook-like tag to be associated with an annotatable item such as a method
or a class. It takes as an argument an array of Strings constants to be used as tags. Here we have tagged
our example class with Strings describing the concepts illustrated by the class
AModularConsoleReadingUpperCasePrinter. The example shows that we can create an array constant
by enclosing a list of comma separated element values within curly braces.

As you will see later, the Tag annotation will be a crucial mechanism for communicating to us the
functionality implemented by your classes and methods.

Formal vs. Actual Parameters
We have used the word “parameter” or “argument” above for two distinct but related concepts. We
have used it both for the identifiers such as numElements, declared in the header of methods such as
readStrings() , and also expressions such as readNumStrings(), supplied before executing the method.
The former, are in fact, called the formal parameters of the method definition, while the later are called
the actual parameters of the method execution.

Empty and Compound If and Loop Bodies
Consider the following code:
 if (Character.isUpperCase(nextLetter)) ;
 System.out.print(nextLetter);
Some but not all of you have probably noticed the semicolon after the Boolean condition of the if. It is
an indication to Java that the then-part of theif is empty. As a result, the print statement is considered
the statement following the if rather than the then-part of the if. An empty then part make sense only if
the else part is not empty – in which case we can invert the Boolean condition and make the original
else part the then part. A similar problem can occur with while and for statements as empty while and
for bodies are allowed in Java.

To increase readability and reduce errors, we can derive the following rule:
A statement nested in another should never be empty.

When we detect an upper case letter, we might want to, in addition to printing it, also record the fact
that we found an uppercase. We may add an extra assignment statement, as shown below:

 if (Character.isUpperCase(nextLetter))
 System.out.print(nextLetter);
 foundUpperCase = true;

The code, however, does not, however, achieve its purpose, as regardless of its indentation, the
assignment is considered the statement after the if rather than a part of then statement. This problem is
less likely if we had made the original then statement a compound statement containing exactly one
statement:
if (Character.isUpperCase(nextLetter)) {
 System.out.print(nextLetter);
}
Which would have been transformed to
if (Character.isUpperCase(nextLetter)) {
 System.out.print(nextLetter);
 foundUpperCase = true;
}
It is for this reason that Python uses indentation rather than curly braces to group statements.

 In Java, we can avoid such errors by always insisting that:
The then and else parts of an if and the body of a loop statement should always be a compound
statement unless the if or loop statement is a single line.

Thus, according to this rule, the following is acceptable, as it does not cause indentation-based
confusion:

if (Character.isUpperCase(nextLetter)) foundUpperCase = true;

To save space, in the class material, this rule will be broken frequently.

Summary
Java objects, methods, and classes correspond to real-world objects, the operations that can be
performed on them, and the factories that manufacture the objects, respectively.
A class definition consists of a class header identifying its name and accessibility; and a class
body declaring a list of methods.
A method definition consists of a method header identifying its name, accessibility, formal
parameters, and return type; and a method body specifying the statements to be executed
when the method is called.
Formal parameters of a method are variables to which actual parameters are assigned when the
method is called.
The set of values that can be assigned to a formal parameter/returned by a method is
determined by the type of the parameter/method.
The process of writing and executing code we have seen so far consists of declaring one or more
methods in a class, compiling the class, asking the interpreter to start ObjectEditor, asking
ObjectEditor to instantiate the class, and finally, invoking methods on the new instance.
By following style principles in writing code, we make the code more understandable to us,
others, and tools such as ObjectEditor.

Other Resources
Code package: lectures.objects

Slides: PowerPoint PDF

Exercises
Define class, method, object, variable, formal parameter, actual parameter, type, statement,
return statement, and expression.
What are the case conventions for naming classes, methods, and variables?
Define syntax error, semantics error, logic error, accessibility error, and user error.
Why is it useful to follow style principles?
Suppose we need a function that converts an amount of money in dollars to the equivalent
amount in cents and can be invoked by ObjectEditor. The following class attempts to provide
this function Identify all errors and violation of case conventions in the class.

class aMoneyconverter {

 int Cents (dollars) {

return dollars*100;

}

}

http://www.cs.unc.edu/~dewan/j2h/JavaTeaching/lectures.objects.index.html
http://www.cs.unc.edu/~dewan/comp401/current/Lectures/Objects.pptx
http://www.cs.unc.edu/~dewan/comp401/current/Lectures/Objects.pdf

Write and test a function, fahrenheit(), that takes a parameter an integer centigrade
temperature and converts it into the equivalent integer Fahrenheit temperature, as shown in
the figures below. Assuming F and C are equivalent Fahrenheit and centigrade temperatures,
respectively, the conversion formula is:

F = C * 9/5 + 32

Implement the function in the class ATemperatureConverter. Use a bare-bones
programming environment to develop and execute the class.

