CoMP 401
ANIMATION, THREADS,
COMMAND OBJECTS

‘ Instructor: Prasun Dewan

PREREQUISITE

o Animation MVC

TOPICS

o Animation

o Command Object

» Object representing an action invocation such as “Do
your homework”.

o Threads

e Support non blocking action invocation.

ANIMATION AND MVC

ANIMATEFROMORIGIN

public void animateFromOrigin (PlottedShuttle shuttle,

int animationStep, int animationPauseTime) ({

int originalX = shuttle.getShuttleX() ;

int originalY = shuttle.getShuttleY () ;

int curX = 0;

int curY = 0;

shuttle.setShuttleX (curX) ;

shuttle.setShuttleY (curY);

animateYFromOrigin (shuttle, animationStep,
animationPauseTime, curY, originaly);

animateXFromOrigin (shuttle, animationStep,

animationPauseTime, curX, originalX);

ANIMATION IN Y DIRECTION

protected void animateYFromOrigin (PlottedShuttle shuttle,
int animationStep, int animationPauseTime,
int startY, int endY) {
// make sure we don’t go past final Y position
while (startY < endY) {
ThreadSupport.sleep (animationPauseTime) ;
startY += animationStep;
shuttle.setShuttleY (startY);
}
// move to destination Y position
shuttle.setShuttleY (endY) ;

OBSERVABLE ARCHITECTURE

PlottedShuttle

AnObservable foqtehuttiex(y)() Y repaint() fl component

AShuttleAnimator animateFromOrigin

ANIMATION AND MVC

TwO INDEPENDENT ANIMATIONS

INDEPENDENT ANIMATIONS?

public static void main(String[] args) {

PlottedShuttle shuttlel = new AnObservablePlottedShuttle(560, 100);

OEFrame oeFramel = ObjectEditor.edit(shuttlel);
oeFramel.hideMainPanel();
oeFramel.setlLocation(@, 0);
oeFramel.setSize (400, 400);

PlottedShuttle shuttle2 = new AnObservablePlottedShuttle(100, 50);

OEFrame oeFrame2 = ObjectEditor.edit(shuttle2);
oeFrame2.hideMainPanel();
oeFrame2.setlLocation (400, 0);
oeFrame2.setSize (400, 400);
ShuttleAnimator shuttleAnimatorl = new AShuttleAnimator();
i i = i r();
shuttleAnimatorl.animateFromOrigin(shuttlel, 5, 100);
shuttleAnimatorZ.anim?SFEngmgrigin(shuttlez, 5, 100);

Need multitasking

WHAT WE NEED

public static void main(String[] args) {

PlottedShuttle shuttlel = new AnObservablePlot?
OEFrame oeFramel = ObjectEditor.edit(shuttlel
oeFramel.hideMainPanel();
oeFramel.setlLocation(@, 0);
oeFramel.setSize (400, 400); &
PlottedShuttle shuttle2 = new AnObservab .5? e(100, 50);
OEFrame oeFrame2 = ObjectEditor.edit(s’ 4
oeFrame2.hideMainPanel();
oeFrame2.setlLocation (400, 0);
oeFrame2.setSize (400, 400);
ShuttleAnimator shuttleAnimatorl = ne Animator();
ShuttleAnimator shuttleAnimator2 eAnimator();
concurrentDemoShuttleAnimation(shuttleAnimatorl, shuttlel);
concurrentDemoShuttleAnimation(shuttleAnimator2, shuttle2);

INTERLEAVING EXAMPLE

while (curY < originalY) {
ThreadSupport.sleep(animationPauseTime);
curY += animationStep;
shuttle.setShuttleY(curY);

}

while (curY < originalY) {
ThreadSupport.sleep(animationPauseTime);
curY += animationStep;
shuttle.setShuttleY(curY);

}

INTERLEAVING EXAMPLE

while (curY < originalY) {
ThreadSupport.sleep(animationPauseTime);
curY += animationStep;
shuttle.setShuttleY(curY);

}

while (curY < originalY) {
ThreadSupport.sleep(animationPauseTime);
curY += animationStep;
shuttle.setShuttleY(curY);

}

INTERLEAVING EXAMPLE

while (curY < originalY) {
ThreadSupport.sleep(animationPauseTime);
curY += animationStep;
shuttle.setShuttleY(curY);

}

while (curY < originalY) {
ThreadSupport.sleep(animationPauseTime);
curY += animationStep;
shuttle.setShuttleY(curY);

}

INTERLEAVING EXAMPLE

while (curY < originalY) {
ThreadSupport.sleep(animationPauseTime);
curY += animationStep;
shuttle.setShuttleY(curY);

}

while (curY < originalY) {
ThreadSupport.sleep(animationPauseTime);
curY += animationStep;
shuttle.setShuttleY(curY);

}

INTERLEAVING EXAMPLE

while (curY < originalY) {
ThreadSupport.sleep(animationPauseTime);
curY += animationStep;
shuttle.setShuttleY(curY);

}

while (curY < originalY) {
ThreadSupport.sleep(animationPauseTime);
curY += animationStep;
shuttle.setShuttleY(curY);

}

INTERLEAVING EXAMPLE

while (curY < originalY) {
ThreadSupport.sleep(animationPauseTime);
curY += animationStep;
shuttle.setShuttleY(curY);

}

while (curY < originalY) {
ThreadSupport.sleep(animationPauseTime);
curY += animationStep;
shuttle.setShuttleY(curY);

}

INTERLEAVING EXAMPLE

while (curY < originalY) {
ThreadSupport.sleep(animationPauseTime);
curY += animationStep;
shuttle.setShuttleY(curY);

}

while (curY < originalY) {
ThreadSupport.sleep(animationPauseTime);
curY += animationStep;
shuttle.setShuttleY(curY);

}

INTERLEAVING EXAMPLE

while (curY < originalY) {
ThreadSupport.sleep(animationPauseTime);
curY += animationStep;
shuttle.setShuttleY(curY);

}

while (curY < originalY) {
ThreadSupport.sleep(animationPauseTime);
curY += animationStep;
shuttle.setShuttleY(curY);

}

INTERLEAVING EXAMPLE

while (curY < originalY) {
ThreadSupport.sleep(animationPauseTime);
curY += animationStep;
shuttle.setShuttleY(curY);

}

while (curY < originalY) {
ThreadSupport.sleep(animationPauseTime);
curY += animationStep;
shuttle.setShuttleY(curY);

}

INTERLEAVING EXAMPLE

while (curY < originalY) {
ThreadSupport.sleep(animationPauseTime);
curY += animationStep;
shuttle.setShuttleY(curY);

}

while (curY < originalY) {
ThreadSupport.sleep(animationPauseTime);
curY += animationStep;
shuttle.setShuttleY(curY);

}

INTERLEAVING ACTIVITIES

o Each interleaved activity 1s associated with
1ts own program counter, which marks the
next statement to be executed for that
activity.

oAt any one time, a single CPU executes the
statement of only one activity called the
current activity.

o The CPU does not wait for the current
activity to complete before switching to
another activity.

INTERLEAVING ACTIVITIES IN REAL LIFE
Smile at
baby
Read
email
Feed dog
Feed baby
Reply to
email
Threads can
have different]I;h]log
priorities apby

INTERLEAVED PROCESSES

F

'8 Windows Task Manager l':" -IEI-‘H
e
File Options Miew Help
Applications | Processes | Services | Performance | Metworking | Users
Image Name User Mame CPU Memory (... Description E|
Ftvscan.exe SYSTEM 16 92,232K Symantec...
gvchost.exe aYSTEM 01 82,136 K HostProc...
gvchost.exe aYSTEM a0 09,196 K HostProc...
explorer.exe dewan 00 35,024K Windows ...
javaw,.exe dewan a0 30,228K Javal(TM) ...
dwm, exe dewan 00 27, 104K Desktop ...
sidebar.exe dewan 00 26,052 K Windows ...
Javaw.exe . dewan . .. 0o.... 25,976 K Java(TM) ...
SynclToy.exe dewan an 14,096 K SyncToy
savlI.exe dewan Qo0 13,012K Symantec...
sidebar.exe dewan 00 8,932 K Windows ...

Process 1s an interleaved activity created by the

Operating System each time a main method 1s run

INTERLEAVED THREADS

Daemon Thread [M'ﬁ-Windnws] {ﬁunning]

Thread [AWT-EventQueue-0] (Running)

Thread [Toel Tip Thread] (Running]

Thread [Toel Tip Thread] (Running]

Thread [DestroylavaVM] (Running)

7B _Thread [Shuttle Animation 2] (Suspended (breakpoint at line 11 in AShuttlefAnima
= AShuttlefAnimator.animateFromOrigin(PlottedShuttle, int, int) line: 11

= AshuftlfefnimationCommand.run() ine: 22

= Thread.run() line: not available
7 Thread [Shuttle &nimation 1] (Suspended (breakpoint at line 11 in AShuttleAnima
= AShuttleAnimator.animateFromOrigin(PlottedShuttle, int, int) line: 11
AShuttlefnimationCommand.run() line: 22
Thread.run() line: not available

gram Files'\Java'jref\bin\javaw.exe (Apr14, 2012 8:47:13 PM) [
1 3

4] ObservableShuttleAni 4] AShuttleAnimatorjav 52 L

int % HnalX = shuttle.getShuttleX();) '
int original¥ = shuttle.getShuttleY();

Thread is an interleaved activity within a process.

Threads in a process work cooperatively to do the job of the process.

Java creates several threads when running our program for Ul
processing, garbage collection, main method,

THE PROGRAM COUNTER OF OTHER THREAD

Daemon Thread [AWT-Windows] (Running)

Thread [AWT-EventQueue-0] (Running)

Thread [Toel Tip Thread] (Running)

Thread [Toel Tip Thread] (Running)

roylaualihA] (Bunning)

4 f#® Thread [Shuttle Animation 2] (Suspended (breakpoint at line 11 in AShuttlefAnima
= AShuttleAnimator.animateFromOrigin{PlottedShuttle, int, int) line: 11
AShuttlefnimationCommand.run() line; 22

Thread.run(} line: not available

4 o2 Thread [Shuttle Animation 1] (Suspended (breakpoint at line 11 in AShuttlefnima
| = AShuttleAnimator.animateFromOrigin{PlottedShuttle, int, int) line: 11

= AShuttleAnimationCommand.run() line: 22

= Thread.run(} line: not available

ram Files\Java'jred'bin'javaw.exe (Apr14, 2012 8:47:13 PM)
4 | @C? \ 1] | F

D Shl..ltHEAﬂlm\{ \1 [D ObservableShuttleAni [D AShuttIeAmr‘natn:urJav P &

shuttle.getShuttleX();
shuttle.getShuttleY();

int Hl nalX
int originalY

CONCURRENT ACTIVITIES

while (curY < originalY) {
ThreadSupport.sleep(animationPauseTime);

-> curY += animationStep;

shuttle.setShuttleY(curY);

}

while (curY < originalY) {
ThreadSupport.sleep(animationPauseTime);

> curY += animationStep;

shuttle.setShuttleY(curY);

}

CONCURRENT ACTIVITIES

while (curY < originalY) {
ThreadSupport.sleep(animationPauseTime);
curY += animationStep;

> shuttle.setShuttleY(curY);
}

while (curY < originalY) {
ThreadSupport.sleep(animationPauseTime);
curY += animationStep;

> shuttle.setShuttleY(curY);
}

On single-core, single-
Processes/threads can processor, a single

execute concurrently in processor/core

multi-processor, multi- interleaves their
core computers. execution.

CONCURRENCY IN “REAL” LIFE

CONCURRENCY AND INTERLEAVING

while (curY < originalY) {
ThreadSupport.sleep(animationPauseTime);
> curY += animationStep;

shuttle.setShuttleY(curY);
}

while (curY < originalY) {
ThreadSupport.sleep(animationPauseTime);

> curY += animationStep;
shuttle.setShuttleY(curY);

}

while (curY < originalyY) {

> ThreadSupport.sleep(animationPauseTime);
curY += animationStep;
shuttle.setShuttleY(curY);

}

CONCURRENCY AND INTERLEAVING

while (curY < originalY) {
ThreadSupport.sleep(animationPauseTime);
curY += animationStep;

> shuttle.setShuttleY(curY);

}

while (curY < originalY) {
ThreadSupport.sleep(animationPauseTime);
curY += animationStep;

> shuttle.setShuttleY(curY);

}

while (curY < originalyY) {

> ThreadSupport.sleep(animationPauseTime);
curY += animationStep;
shuttle.setShuttleY(curY);

}

CONCURRENCY AND INTERLEAVING

while (curY < originalyY) {
ThreadSupport.sleep(animationPauseTime);
curY += animationStep;

> shuttle.setShuttleY(curY);

}

> | while (curY < originalY) {
ThreadSupport.sleep(animationPauseTime);
curY += animationStep;
shuttle.setShuttleY(curY);

}

while (curY < originalyY) {
ThreadSupport.sleep(animationPauseTime);

> curY += animationStep;
shuttle.setShuttleY(curY);

}

CONCURRENCY AND INTERLEAVING

Two hands serving
three balls ~ two cores
serving three threads.

@

@

While a ball 1s the air the other balls
can be served ~ while a thread i1s
wailting for user input or sleeping,
others can be served.

INTERLEAVING ACTIVITIES

o Each interleaved activity 1s associated with
1ts own program counter, which marks the
next statement to be executed for that
activity.

oAt any one time, a single CPU executes the
statement of only one activity called the
current activity.

o The CPU does not Wa1t for the current

act:
ang

How should we create a Separate thread to execute
animateFromOrigin?

L =4

Java creates the threads.

Requires us to tell it what method to execute.

,0

INDEPENDENT ANIMATIONS?

public static void main(String[] args) {

PlottedShuttle shuttlel = new AnObservablePlottedShuttle(560, 100);

OEFrame oeFramel = ObjectEditor.edit(shuttlel);

oeFramel.hideMainPanel();
oeFramel.setlLocation(@, 0);
oeFramel.setSize (400, 400);

PlottedShuttle shuttle2 = new AnObservablePlottedShuttle(100, 50);

OEFrame oeFrame2 = ObjectEditor.edit(shuttle2);

oeFrame2.hideMainPanel();
oeFrame2.setlLocation (400, 0);
oeFrame2.setSize (400, 400);

ShuttleAnimator shuttleAnimatorl = new AShuttleAnimator();

shuttleAnimatorl.animateFromOrigin(shuttlel, 5, 100);
shuttleAnimatorZ.anim?SFEngmgrigin(shuttlez, 5, 100);

r();

How to get two
threads

THREAD OBJECT

T
—_—
Thread

read is an object
r . n
be sta'ted , suspend w to create a starta
umed, interrupted w
- . - thread?
ping, given lower/hi
priority ...

THREAD OBJECT (REVIEW)

T
-

changePriority()
read is an object
e started., suspend
umed, interrupted wh
ping, given lower/hig
priority ...

oW to create a startab
thread?

INDEPENDENT ANIMATIONS?

public static void main(String[] args) {

PlottedShuttle shuttlel = new AnObservablePlottedShuttle(560, 100);

OEFrame oeFramel = ObjectEditor.edit(shuttlel);
oeFramel.hideMainPanel();
oeFramel.setlLocation(@, 0);
oeFramel.setSize (400, 400);

PlottedShuttle shuttle2 = new AnObservablePlottedShuttle(100, 50);

OEFrame oeFrame2 = ObjectEditor.edit(shuttle2);
oeFrame2.hideMainPanel();
oeFrame2.setlLocation (400, 0);
oeFrame2.setSize (400, 400);
ShuttleAnimator shuttleAnimatorl = new AShuttleAnimator();
i i = i r();
shuttleAnimatorl.animateFromOrigin(shuttlel, 5, 100);
shuttleAnimatorZ.anim?SFEngmgrigin(shuttlez, 5, 100);

Need multitasking

PREDEFINED MAIN THREAD

APlotted APlotted

setShuttleX(Y)()

AShuttleAnimator
Shuttle

setShuttleX(Y)()

AShuttleAnimator
Shuttle
/

to specify a method as a paramet

Main \EIR
] start
Class .\ Thread
reating a new thread means asking
lch thread has a stack of method cal

ead object to create a new stack so
all to a method M? by M1 gets push
n top of the call to M! which block

bIocking occurs
call to M?is popped when it returl

Shuttle Shuttle

Must specify to (the constructor o

Thread object the first method call

stack (method + parameters + obj
allowing M? to continue

ACTION OBJECT (METHOD OBJECT)

Action Object

(Method Object)

Provides an execute operation to
perform some action.

A method that does not take method
objects as arguments is a first-order
function

The execute operation takes as an
argument the object on which the
target operation is to invoked and
an array of parameters of the target
action.

A method that takes as an argument a
method object is a second (higher) order
function.

Can pass to a constructor a method
object.

A method that takes as an argument an N-
order method object is an N+1 order
method

Java reflection supports higher order
functions

‘!

USING REFLECTION TO CREATE THREAD OBJECT

public static void demoShuttleAnimation(
ShuttleAnimator aShuttleAnimator, PlottedShuttle aShuttle) {
aShuttleAnimator.animateFromOrigin(aShuttle, 5, 100);

}

public static void concurrentDemoShuttleAnimation(

ShuttleAnimator aShuttleAnimator, PlottedShuttle aShuttle) {

Thread thread = new Thread(aShuttleAnimator,

animateFromOriginMethod, new Object[] {aShuttle, 5, 100});

threadNumber++;

thread.setName(SHUTTLE THREAD NAME + " " + threadNumber);

thread.start();

&3

Reflection allows method
parameters

Exceptions can be thrown because a
method can be invoked on an arbitrary
object with arbitrary parameters

A la grammar/vocabulary vs. phrase book

ACTION VS. COMMAND

public static void demoShuttleAnimation(
ShuttleAnimator aShuttleAnimator, PlottedShuttle aShuttle) {

aShuttleAnimator.animateFromOrigin(aShuttle, 5, 100);
}

public static void concurrentDemoShuttleAnimation(
ShuttleAnimator aShuttleAnimator, PlottedShuttle aShuttle) {
Thread thread = new Thread
(new AShuttleAnimationCommand
(aShuttleAnimator, aShuttle, 5, 100));

threadNumber++;
thread.setName(SHUTTLE THREAD NAME + " " + threadNumber);

thread.start();

-~

Bundle the target object and the three arguments into a single command object
associated with some action

The constructor of the command object checks that the target and parameters are
compatible with its action

T@

ACTIONOBJECT (METHOD OBJECT)

execute
(targetObject,
params)

Action Object

(Method Object)

object in wt
arget and pa
dled togett

COMMAND OBJECT (METHOD OBJECT)

execute Commmand execute ()

(targetObject, (action with target §
params) + parameters)

Action Object

(Method Object) Constructor

(targetObject, params)

structor takes target object
parameters of operation as
arguments.

tion is an operation that can
invoked on many different
arguments

rovides a execute operation t
perform some action.

he execute operation takes n
arguments.

on vs. command object €2

vs “Bob, do your homework”

command is a specific actio
invocation.

ction vs. command object <
ove” vs “move Arthur 50 3

JAVA THREAD COMMAND OBJECT

execute Commmand run ()

(targetObject, (action + target + p

params) parameters) Constructor
(targetObject, params)
1 IS-A

package java.lang;
public interface Runnable {
public void run();

Action Object

(Method Object)

;

rface is called Runnable instead of Command and the method is call
execute() because Thread designers probably did not realize they
a command object

mand object like an observable, model, view is a general design obj
occurs in several contexts and was invented in the context of undo

RUNNABLE IMPLEMENTATION

public class AShuttleAnimationCommand implements Runnable {
ShuttleAnimator shuttleAnimator;

PlottedShuttle shuttle; Action is hardwired:
int animationStep; Separate implementation of
int animationPauseTime; Command Object Interface
public AShuttleAnimationCommand (for each action

ShuttleAnimator aShuttleAnimator,
PlottedShuttle aShuttle,
int anAnimationStep,

int anAnimationPauseTime) {
shuttleAnimator = aShuttleAhimator;

Action

shuttle = aShuttle;
animationStep = anAnimatignStep;
animationPauseTime = anAnimationPauseTime;
}
public void run() {
shuttleAnimator.anima

FromOrigin(shuttle,
animationStep, animationPauseTime);

¥ Parameters Target Object

TRACING COMMAND OBJECT

public static void demoShuttleAnimation(
ShuttleAnimator aShuttleAnimator, PlottedShuttle aShuttle) {
aShuttleAnimator.animateFromOrigin(aShuttle, 5, 100);

}

public static void concurrentDemoShuttleAnimation(
ShuttleAnimator aShuttleAnimator, PlottedShuttle aShuttle) {
Thread thread = new Thread(new AShuttleAnimationCommand
aShuttléAnimator, aShuttle, 5, 100));
threadNumber++;
thread.setName{SHUTTL
thread.start();

HREAD NAME + " " + threadNumber);

}

Creates a new

Starts the thread, which Invokes the run
Command

method on the command object passed to
constructor.

Creates a new . —
Uava thread The run method calls animateFromoQOigin() on

target object

TWO SHUTTLES AND ANIMATORS, TWO THREADS

AP H setShuttleX(Y)()
Shuttle
AShuttleAnimator AShuttleAnimator AT
Shuttle()
AShuttleAnimation AShuttleAnimation
Command Command

APlotted

setShuttleX(Y)()

\

Shuttle

Main

hrea

main() sta rt()

SYNCHRONOUS/ASYNCHRONOUS METHOD CALL

public static void demoShuttleAnimation(
ShuttleAnimator aShuttleAnimator, PlottedShuttle aShuttle) {
aShuttleAnimator.animateFromOrigin(aShuttle, 5, 100);

System.out.println (Yanimation finished”);

public static void concurrentDemoShuttleAnimation(
ShuttleAnimator aShuttleAnimator, PlottedShuttle aShuttle) {
Thread thread = new Thread(new AShuttleAnimationCommand
(aShuttleAnimator, aShuttle, 5, 100));
threadNumber++;
thread.setName(SHUTTLE THREAD NAME + " " + threadNumber);

+hronad c+aAaprn+7\ .
1 CAduUu e« OoO0CdAl L\/)

System.out.println (Yanimation finished”) “

Method caller waits for Thread creator does not wait
called method to finish. for created thread to finish.

Thread creation 1s typically the last step in a method call chain, so threac! |
creator will probably be gone by the time the started thread eecutes

SYNCHRONOUS VS. ASYNCHRONOUS

operation(<parms>)

animateFromOrigin();

System.out.printin(“hello”)

Synchronous: Operation invoker blocks or waits until the operation
finishes

Asynchronous: Operation invoker does not block until completion

Some other operation (e.g. observer notification) needed to wait for
result or completion status

SYNCHRONOUS/ASYNCHRONOUS ANALOGY

o Synchronous

» I ask you a question in class and wait for answer.

o I order food at subway and wait till my sandwich is made
o Asynchronous

» I give you the question as home work.

o I order food at a fancier restaurant with waiters.

COMMAND DESIGN PATTERN

setShuttleX(
Y)()

AnObservablePlotted

Shuttle

nd object: De

T xecute metho
AShuttleAnimator animate :
Shuttle() ;g and invoker:

) = / xecute metho
‘ ommand obj

AShuttleAnimation

Command nd Client: Inst
command ob

THREAD-BASED ANIMATION DESIGN PATTERN

AnObservablePlotted Animated object: performs each animation step,
Shuttle unaware of the animation

Animating object: Implements looping animation
AShuttleAnimator methods that take as parameters the animated
! object and optional animation controls

Animating command object: Its execute method
calls an animating method in an animating object
with parameters of the method. Constructor
takes as parameters the animating object,
animated object and animation controls.

] Animating thread: Invoker of the execute method
. of an animating command object

Animating client: Client of an animating
command object and creator and starter of an\J
N

animating thread

THREAD-BASED ANIMATION DESIGN PATTERN

AnObservablePlotted | setShuttleX(
Shuttle

mated obj

animate
Shuttle()

ating obj

ating comt

AShuttleAnimation :
object

Command

mating thr

imating clie

COMBINE ANIMATED AND ANIMATING?

imated obje

setShuttleX(
Y)

AnObservablePlotted &
Shuttle

animate

Shuttle() mating obj

b

ating com

AShuttleAnimation :
object

Command

mating thr

.mating clie ﬂ ¢

!

COMBINNG ANIMATED AND ANIMATING

setShuttleX(
Y)()

AnotherPlotted

Shuttle

erPlotted ,
animate

Shuttle()

b

AShuttleAnimation
Command

Main
Class |—

imated obje

mating obj

ating com
object

mating thr

!

.mating clie ﬂ C

THREAD-BASED ANIMATION DESIGN PATTERN

AnObservablePlotted | setShuttleX(

Y)()

I

AShuttleAnimator animate
Shuttle()

AShuttleAnimation
Command

Shuttle

ating ob

)servablePl
Shuttle

ating com
object

ating th

mating cli

THREAD-BASED ANIMATION DESIGN PATTERN

setShuttleX(
Y)()

I

AShuttleAnimator
Shuttle()
AShuttleAnimation %

Command

Class

P—

AnotherPlotted imated obje

Shuttle

r

Reusing animating code
for
AnotherPlottedShuttle

mating obj

ating com
object

mating thr

.mating clie ﬂ ¢

!

THREAD-BASED ANIMATION DESIGN PATTERN

setShuttleX(

AnotherPlotted

Y)()

Shuttle

Using a different
animator for same
animated object

I

AnotherShuttle animate
Animator Shuttle()

ating com
object

AShuttleAnimation
Command

.mating clie ﬂ ¢

Main
Class |—

COMBINE ANIMATOR AND COMMAND?

setShuttleX(
Y)()

AnObservablePlotted

Shuttle

Animated objecl

nimating object-
imating comma
object

nimating threa'

Animating client

1

animate Shuttle
Backwards()

Shuttle()

AShuttleAnimator :

y want forw
and backward
nimation in on
object

may want to
animation
ynchronously

Shuttle

Animation start()

Thread 1

Main
Class |r—

Run executes

ctly one met

THREAD-BASED ANIMATION DESIGN PATTERN

AnotherPlotted setShuttleX(imated obj
Shuttle Y)()
animate Shuttle anlmate
AShuttleAnimator
recarie - | Animating objec:
AnotherShuttIe AShuttleAnimation atlng com
Animation object
Command

Command

Our pattern allows a separaté\
command object to be
created for each method of
an object that is to be
executed asynchronously

ass Thread

AnAnimating
Command

SUBCLASS THREAD?

AnObservablePlotted | setShuttleX(
Shuttle Y)()

I

animate
Shuttle()

AShuttleAnimation
Command

imated obje

mating obj

ating com
object

mating thr

!

.mating clie ﬂ C

INHERITANCE AMONG COMMAND OBJECTS

AnObservablePlotted | setShuttleX(
Shuttle Y)()
0

- animate
AShuttleAnimator Shuttle mating obj
ating com
object

run()
.
Main
F_'

AnAnimating ® 1A AShuttleAnimation

Command

Command

Our pattern allows
inheritance among
Command objects

ABUSING IS-A AND INSTANTIATING
UNNECESSARY CODE

AnObservablePlotted | setShuttleX(imated Obj
Shuttle ()

ammate
AShuttleAnimator -matlng Obj.
ating com
object

.mating clie ﬂ C

AShuttleAnimation
Command

e
Parser/Undoer I-_..

objects s
and undoer
to share a t Thread

NOT INSTANTIATING UNNECESSARY CODE

AnObservablePlotted | setShuttleX(

Shuttle Y)()

I

animate
Shuttle()

AShuttleAnimator

Parser/Undoer

AShuttleAnimation
Command

No instantiation of un-
necessary Thread code
using our pattern

Main
Class |—

imated obje

mating obj

ating com
object

mating thr

!

imating clie

COMMAND OBJECTS VS. THREADS

o Threads can use command objects

o Command objects can be used in non thread contexts
o Undo/redo

* Processing command interpreter commands

°Fy

THREADS

o If we want multiple animations then we must create
our own threads

o Threads use command objects.
o Command objects represent method calls

ANIMATION PATTERN

o Begin with the object to be animated

o Write one or more animating object with one or more
looping methods to animate the animated object that
take animation controls as arguments

o Write one or more implementations of Runnable,
each of which takes the animation controls and the
above two objects as parameters and calls a looping
method of the animating objects

o In the main program or some model method, create
one or more Thread instace, passing to the Thread
constructor an instance of the Runnable command
object.

o Execute the start() method on each Thread instance.

