
COMP 401

ANIMATION, THREADS,

COMMAND OBJECTS

Instructor: Prasun Dewan

2

PREREQUISITE

 Animation MVC

3

TOPICS

 Animation

 Command Object

 Object representing an action invocation such as “Do

your homework”.

 Threads

 Support non blocking action invocation.

4

ANIMATION AND MVC

5

ANIMATEFROMORIGIN

public void animateFromOrigin(PlottedShuttle shuttle,

int animationStep, int animationPauseTime) {

int originalX = shuttle.getShuttleX();

int originalY = shuttle.getShuttleY();

int curX = 0;

int curY = 0;

shuttle.setShuttleX(curX);

shuttle.setShuttleY(curY);

animateYFromOrigin(shuttle, animationStep,

animationPauseTime, curY, originalY);

animateXFromOrigin(shuttle, animationStep,

animationPauseTime, curX, originalX);

}

6

ANIMATION IN Y DIRECTION

protected void animateYFromOrigin(PlottedShuttle shuttle,

int animationStep, int animationPauseTime,

int startY, int endY) {

// make sure we don’t go past final Y position

while (startY < endY) {

ThreadSupport.sleep(animationPauseTime);

startY += animationStep;

shuttle.setShuttleY(startY);

}

// move to destination Y position

shuttle.setShuttleY(endY);

}

7

OBSERVABLE ARCHITECTURE

AnObservable
PlottedShuttle

AShuttleAnimator

main

setShuttleX(Y)()

Main
Class

Componentrepaint()

paint()

animateFromOrigin

8

ANIMATION AND MVC

9

TWO INDEPENDENT ANIMATIONS

10

INDEPENDENT ANIMATIONS?

public static void main(String[] args) {
PlottedShuttle shuttle1 = new AnObservablePlottedShuttle(50, 100);
OEFrame oeFrame1 = ObjectEditor.edit(shuttle1);
oeFrame1.hideMainPanel();
oeFrame1.setLocation(0, 0);
oeFrame1.setSize(400, 400);
PlottedShuttle shuttle2 = new AnObservablePlottedShuttle(100, 50);
OEFrame oeFrame2 = ObjectEditor.edit(shuttle2);
oeFrame2.hideMainPanel();
oeFrame2.setLocation(400, 0);
oeFrame2.setSize(400, 400);
ShuttleAnimator shuttleAnimator1 = new AShuttleAnimator();
ShuttleAnimator shuttleAnimator2 = new AShuttleAnimator();
shuttleAnimator1.animateFromOrigin(shuttle1, 5, 100);
shuttleAnimator2.animateFromOrigin(shuttle2, 5, 100);

}

Need multitasking

11

WHAT WE NEED

public static void main(String[] args) {
PlottedShuttle shuttle1 = new AnObservablePlottedShuttle(50, 100);
OEFrame oeFrame1 = ObjectEditor.edit(shuttle1);
oeFrame1.hideMainPanel();
oeFrame1.setLocation(0, 0);
oeFrame1.setSize(400, 400);
PlottedShuttle shuttle2 = new AnObservablePlottedShuttle(100, 50);
OEFrame oeFrame2 = ObjectEditor.edit(shuttle2);
oeFrame2.hideMainPanel();
oeFrame2.setLocation(400, 0);
oeFrame2.setSize(400, 400);
ShuttleAnimator shuttleAnimator1 = new AShuttleAnimator();
ShuttleAnimator shuttleAnimator2 = new AShuttleAnimator();
concurrentDemoShuttleAnimation(shuttleAnimator1, shuttle1);
concurrentDemoShuttleAnimation(shuttleAnimator2, shuttle2);

}

12

INTERLEAVING EXAMPLE

while (curY < originalY) {
ThreadSupport.sleep(animationPauseTime);
curY += animationStep;
shuttle.setShuttleY(curY);

}

while (curY < originalY) {
ThreadSupport.sleep(animationPauseTime);
curY += animationStep;
shuttle.setShuttleY(curY);

}

13

INTERLEAVING EXAMPLE

while (curY < originalY) {
ThreadSupport.sleep(animationPauseTime);
curY += animationStep;
shuttle.setShuttleY(curY);

}

while (curY < originalY) {
ThreadSupport.sleep(animationPauseTime);
curY += animationStep;
shuttle.setShuttleY(curY);

}

14

INTERLEAVING EXAMPLE

while (curY < originalY) {
ThreadSupport.sleep(animationPauseTime);
curY += animationStep;
shuttle.setShuttleY(curY);

}

while (curY < originalY) {
ThreadSupport.sleep(animationPauseTime);
curY += animationStep;
shuttle.setShuttleY(curY);

}

15

INTERLEAVING EXAMPLE

while (curY < originalY) {
ThreadSupport.sleep(animationPauseTime);
curY += animationStep;
shuttle.setShuttleY(curY);

}

while (curY < originalY) {
ThreadSupport.sleep(animationPauseTime);
curY += animationStep;
shuttle.setShuttleY(curY);

}

16

INTERLEAVING EXAMPLE

while (curY < originalY) {
ThreadSupport.sleep(animationPauseTime);
curY += animationStep;
shuttle.setShuttleY(curY);

}

while (curY < originalY) {
ThreadSupport.sleep(animationPauseTime);
curY += animationStep;
shuttle.setShuttleY(curY);

}

17

INTERLEAVING EXAMPLE

while (curY < originalY) {
ThreadSupport.sleep(animationPauseTime);
curY += animationStep;
shuttle.setShuttleY(curY);

}

while (curY < originalY) {
ThreadSupport.sleep(animationPauseTime);
curY += animationStep;
shuttle.setShuttleY(curY);

}

18

INTERLEAVING EXAMPLE

while (curY < originalY) {
ThreadSupport.sleep(animationPauseTime);
curY += animationStep;
shuttle.setShuttleY(curY);

}

while (curY < originalY) {
ThreadSupport.sleep(animationPauseTime);
curY += animationStep;
shuttle.setShuttleY(curY);

}

19

INTERLEAVING EXAMPLE

while (curY < originalY) {
ThreadSupport.sleep(animationPauseTime);
curY += animationStep;
shuttle.setShuttleY(curY);

}

while (curY < originalY) {
ThreadSupport.sleep(animationPauseTime);
curY += animationStep;
shuttle.setShuttleY(curY);

}

20

INTERLEAVING EXAMPLE

while (curY < originalY) {
ThreadSupport.sleep(animationPauseTime);
curY += animationStep;
shuttle.setShuttleY(curY);

}

while (curY < originalY) {
ThreadSupport.sleep(animationPauseTime);
curY += animationStep;
shuttle.setShuttleY(curY);

}

21

INTERLEAVING EXAMPLE

while (curY < originalY) {
ThreadSupport.sleep(animationPauseTime);
curY += animationStep;
shuttle.setShuttleY(curY);

}

while (curY < originalY) {
ThreadSupport.sleep(animationPauseTime);
curY += animationStep;
shuttle.setShuttleY(curY);

}

22

INTERLEAVING ACTIVITIES

Each interleaved activity is associated with
its own program counter, which marks the
next statement to be executed for that
activity.

At any one time, a single CPU executes the
statement of only one activity called the
current activity.

The CPU does not wait for the current
activity to complete before switching to
another activity.

23

INTERLEAVING ACTIVITIES IN REAL LIFE

Smile at

baby

Read

email

Feed dog

Feed baby

Reply to

email

Hug

baby

Threads can

have different

priorities

24

INTERLEAVED PROCESSES

Process is an interleaved activity created by the

Operating System each time a main method is run

25

INTERLEAVED THREADS

Thread is an interleaved activity within a process.

Java creates several threads when running our program for UI

processing, garbage collection, main method, ….

Threads in a process work cooperatively to do the job of the process.

26

THE PROGRAM COUNTER OF OTHER THREAD

27

CONCURRENT ACTIVITIES

while (curY < originalY) {
ThreadSupport.sleep(animationPauseTime);
curY += animationStep;
shuttle.setShuttleY(curY);

}

while (curY < originalY) {
ThreadSupport.sleep(animationPauseTime);
curY += animationStep;
shuttle.setShuttleY(curY);

}

28

CONCURRENT ACTIVITIES

while (curY < originalY) {
ThreadSupport.sleep(animationPauseTime);
curY += animationStep;
shuttle.setShuttleY(curY);

}

while (curY < originalY) {
ThreadSupport.sleep(animationPauseTime);
curY += animationStep;
shuttle.setShuttleY(curY);

}

Processes/threads can

execute concurrently in

multi-processor, multi-

core computers.

On single-core, single-

processor, a single

processor/core

interleaves their

execution.

29

CONCURRENCY IN “REAL” LIFE

30

CONCURRENCY AND INTERLEAVING

while (curY < originalY) {
ThreadSupport.sleep(animationPauseTime);
curY += animationStep;
shuttle.setShuttleY(curY);

}

while (curY < originalY) {
ThreadSupport.sleep(animationPauseTime);
curY += animationStep;
shuttle.setShuttleY(curY);

}

while (curY < originalY) {
ThreadSupport.sleep(animationPauseTime);
curY += animationStep;
shuttle.setShuttleY(curY);

}

31

CONCURRENCY AND INTERLEAVING

while (curY < originalY) {
ThreadSupport.sleep(animationPauseTime);
curY += animationStep;
shuttle.setShuttleY(curY);

}

while (curY < originalY) {
ThreadSupport.sleep(animationPauseTime);
curY += animationStep;
shuttle.setShuttleY(curY);

}

while (curY < originalY) {
ThreadSupport.sleep(animationPauseTime);
curY += animationStep;
shuttle.setShuttleY(curY);

}

32

CONCURRENCY AND INTERLEAVING

while (curY < originalY) {
ThreadSupport.sleep(animationPauseTime);
curY += animationStep;
shuttle.setShuttleY(curY);

}

while (curY < originalY) {
ThreadSupport.sleep(animationPauseTime);
curY += animationStep;
shuttle.setShuttleY(curY);

}

while (curY < originalY) {
ThreadSupport.sleep(animationPauseTime);
curY += animationStep;
shuttle.setShuttleY(curY);

}

33

CONCURRENCY AND INTERLEAVING

Two hands serving

three balls ~ two cores

serving three threads.

While a ball is the air the other balls

can be served ~ while a thread is

waiting for user input or sleeping,

others can be served.

34

INTERLEAVING ACTIVITIES

Each interleaved activity is associated with
its own program counter, which marks the
next statement to be executed for that
activity.

At any one time, a single CPU executes the
statement of only one activity called the
current activity.

The CPU does not wait for the current
activity to complete before switching to
another activity.

How should we create a separate thread to execute

animateFromOrigin?

Java creates the threads.

Requires us to tell it what method to execute.

35

INDEPENDENT ANIMATIONS?

public static void main(String[] args) {
PlottedShuttle shuttle1 = new AnObservablePlottedShuttle(50, 100);
OEFrame oeFrame1 = ObjectEditor.edit(shuttle1);
oeFrame1.hideMainPanel();
oeFrame1.setLocation(0, 0);
oeFrame1.setSize(400, 400);
PlottedShuttle shuttle2 = new AnObservablePlottedShuttle(100, 50);
OEFrame oeFrame2 = ObjectEditor.edit(shuttle2);
oeFrame2.hideMainPanel();
oeFrame2.setLocation(400, 0);
oeFrame2.setSize(400, 400);
ShuttleAnimator shuttleAnimator1 = new AShuttleAnimator();
ShuttleAnimator shuttleAnimator2 = new AShuttleAnimator();
shuttleAnimator1.animateFromOrigin(shuttle1, 5, 100);
shuttleAnimator2.animateFromOrigin(shuttle2, 5, 100);

}

How to get two
threads

36

THREAD OBJECT

suspend()

resume()

changePriority()

interrupt()

start()

A thread is an object that
can be started., suspended,
resumed, interrupted while
sleeping, given lower/higher

priority …

Thread

Thread

How to create a startable
thread?

37

THREAD OBJECT (REVIEW)

suspend()

resume()

changePriority()

interrupt()

start()

A thread is an object that
can be started., suspended,
resumed, interrupted while
sleeping, given lower/higher

priority …

Thread

Thread

How to create a startable
thread?

38

INDEPENDENT ANIMATIONS?

public static void main(String[] args) {
PlottedShuttle shuttle1 = new AnObservablePlottedShuttle(50, 100);
OEFrame oeFrame1 = ObjectEditor.edit(shuttle1);
oeFrame1.hideMainPanel();
oeFrame1.setLocation(0, 0);
oeFrame1.setSize(400, 400);
PlottedShuttle shuttle2 = new AnObservablePlottedShuttle(100, 50);
OEFrame oeFrame2 = ObjectEditor.edit(shuttle2);
oeFrame2.hideMainPanel();
oeFrame2.setLocation(400, 0);
oeFrame2.setSize(400, 400);
ShuttleAnimator shuttleAnimator1 = new AShuttleAnimator();
ShuttleAnimator shuttleAnimator2 = new AShuttleAnimator();
shuttleAnimator1.animateFromOrigin(shuttle1, 5, 100);
shuttleAnimator2.animateFromOrigin(shuttle2, 5, 100);

}

Need multitasking

39

PREDEFINED MAIN THREAD

AShuttleAnimator

main

animate
Shuttle()

setShuttleX(Y)()

AShuttleAnimator
animate
Shuttle()

APlotted
Shuttle

Main
Class

APlotted
Shuttle

setShuttleX(Y)()

Main
Thread

Each thread has a stack of method calls

A call to a method M2 by M1 gets pushed
on top of the call to M1 which blocks

The call to M2 is popped when it returns,
allowing M1 to continue

Creating a new thread means asking a
Thread object to create a new stack so no

blocking occurs

Must specify to (the constructor of)
the Thread object the first method call in
the stack (method + parameters + object)

start()

How to specify a method as a parameter?

40

Action Object
(Method Object)

ACTION OBJECT (METHOD OBJECT)

Provides an execute operation to
perform some action.

The execute operation takes as an
argument the object on which the
target operation is to invoked and

an array of parameters of the target
action.

execute (targetObject, params)

A method that takes as an argument a
method object is a second (higher) order

function.

Can pass to a constructor a method
object.

A method that takes as an argument an N-
order method object is an N+1 order

method

A method that does not take method
objects as arguments is a first-order

function

Java reflection supports higher order
functions

41

USING REFLECTION TO CREATE THREAD OBJECT

public static void concurrentDemoShuttleAnimation(
ShuttleAnimator aShuttleAnimator, PlottedShuttle aShuttle) {

Thread thread = new Thread(aShuttleAnimator,
animateFromOriginMethod, new Object[] {aShuttle, 5, 100});

threadNumber++;
thread.setName(SHUTTLE_THREAD_NAME + " " + threadNumber);
thread.start();

}

public static void demoShuttleAnimation(
ShuttleAnimator aShuttleAnimator, PlottedShuttle aShuttle) {
aShuttleAnimator.animateFromOrigin(aShuttle, 5, 100);

}

Reflection allows method
parameters

Exceptions can be thrown because a
method can be invoked on an arbitrary

object with arbitrary parameters

A la grammar/vocabulary vs. phrase book

42

ACTION VS. COMMAND

public static void concurrentDemoShuttleAnimation(
ShuttleAnimator aShuttleAnimator, PlottedShuttle aShuttle) {

Thread thread = new Thread
(new AShuttleAnimationCommand
(aShuttleAnimator, aShuttle, 5, 100));

threadNumber++;
thread.setName(SHUTTLE_THREAD_NAME + " " + threadNumber);
thread.start();

}

public static void demoShuttleAnimation(
ShuttleAnimator aShuttleAnimator, PlottedShuttle aShuttle) {
aShuttleAnimator.animateFromOrigin(aShuttle, 5, 100);

}

The constructor of the command object checks that the target and parameters are
compatible with its action

Bundle the target object and the three arguments into a single command object
associated with some action

43

ACTIONOBJECT (METHOD OBJECT)

Use an object in which the
action, target and params are

bundled together

Action Object
(Method Object)

execute
(targetObject,

params)

44

Commmand
(action with target

+ parameters)

COMMAND OBJECT (METHOD OBJECT)

execute ()

Constructor
(targetObject, params)

Provides a execute operation to
perform some action.

The execute operation takes no
arguments.

Constructor takes target object and
parameters of operation as

arguments.

Action is an operation that can be
invoked on many different

arguments

A command is a specific action
invocation.

Action vs. command object  “do”
vs “Bob, do your homework”

Action Object
(Method Object)

execute
(targetObject,

params)

Action vs. command object 
“move” vs “move Arthur 50 30”

45

Commmand
(action + target +

parameters)

JAVA THREAD COMMAND OBJECT

run ()

Constructor
(targetObject, params)

Action Object
(Method Object)

execute
(targetObject,

params)

package java.lang;

public interface Runnable {

public void run();

}

IS-A

The interface is called Runnable instead of Command and the method is called run()
instead of execute() because Thread designers probably did not realize they were using

a command object

The command object like an observable, model, view is a general design object that
occurs in several contexts and was invented in the context of undo

46

RUNNABLE IMPLEMENTATION

public class AShuttleAnimationCommand implements Runnable {
ShuttleAnimator shuttleAnimator;
PlottedShuttle shuttle;
int animationStep;
int animationPauseTime;
public AShuttleAnimationCommand (

ShuttleAnimator aShuttleAnimator,
PlottedShuttle aShuttle,
int anAnimationStep,
int anAnimationPauseTime) {

shuttleAnimator = aShuttleAnimator;
shuttle = aShuttle;
animationStep = anAnimationStep;
animationPauseTime = anAnimationPauseTime;

}
public void run() {
shuttleAnimator.animateFromOrigin(shuttle,

animationStep, animationPauseTime);
}

}
Parameters Target Object

Action

Action is hardwired:
Separate implementation of
Command Object Interface

for each action

47

public static void concurrentDemoShuttleAnimation(
ShuttleAnimator aShuttleAnimator, PlottedShuttle aShuttle) {

Thread thread = new Thread(new AShuttleAnimationCommand
(aShuttleAnimator, aShuttle, 5, 100));

threadNumber++;
thread.setName(SHUTTLE_THREAD_NAME + " " + threadNumber);
thread.start();

}

public static void demoShuttleAnimation(
ShuttleAnimator aShuttleAnimator, PlottedShuttle aShuttle) {
aShuttleAnimator.animateFromOrigin(aShuttle, 5, 100);

}

TRACING COMMAND OBJECT

Creates a new

Java thread The run method calls animateFromoOigin() on

target object

Starts the thread, which Invokes the run

method on the command object passed to

constructor.

Creates a new

Command

48

TWO SHUTTLES AND ANIMATORS, TWO THREADS

AShuttleAnimator

AShuttleAnimation
Command

AShuttleAnimation
Command

Thread Thread

run()run()

main()

animate
Shuttle()

setShuttleX(Y)()

AShuttleAnimator
animate
Shuttle()

APlotted
Shuttle

Main
Class

APlotted
Shuttle

setShuttleX(Y)()

Main
Threadstart()

start() start()

49

public static void concurrentDemoShuttleAnimation(
ShuttleAnimator aShuttleAnimator, PlottedShuttle aShuttle) {

Thread thread = new Thread(new AShuttleAnimationCommand
(aShuttleAnimator, aShuttle, 5, 100));

threadNumber++;
thread.setName(SHUTTLE_THREAD_NAME + " " + threadNumber);
thread.start();
System.out.println(“animation finished”);

}

SYNCHRONOUS/ASYNCHRONOUS METHOD CALL

Thread creator does not wait

for created thread to finish.

Method caller waits for

called method to finish.

Thread creation is typically the last step in a method call chain, so thread

creator will probably be gone by the time the started thread eecutes

public static void demoShuttleAnimation(
ShuttleAnimator aShuttleAnimator, PlottedShuttle aShuttle) {
aShuttleAnimator.animateFromOrigin(aShuttle, 5, 100);
System.out.println(“animation finished”);

}

50

SYNCHRONOUS VS. ASYNCHRONOUS

operation(<parms>)

Synchronous: Operation invoker blocks or waits until the operation
finishes

Asynchronous: Operation invoker does not block until completion

Some other operation (e.g. observer notification) needed to wait for
result or completion status

animateFromOrigin();

System.out.println(“hello”)

51

SYNCHRONOUS/ASYNCHRONOUS ANALOGY

 Synchronous

 I ask you a question in class and wait for answer.

 I order food at subway and wait till my sandwich is made

 Asynchronous

 I give you the question as home work.

 I order food at a fancier restaurant with waiters.

52

COMMAND DESIGN PATTERN

Command object: Defines an
execute method

Command Client: Instantiates
the command object

Command invoker: invokes
the execute method of a

command object

AShuttleAnimator

AShuttleAnimation
Command

Thread

run()

main()
Main
Class

AnObservablePlotted
Shuttle

setShuttleX(
Y)()

start()

animate
Shuttle()

53

THREAD-BASED ANIMATION DESIGN PATTERN

Animated object: performs each animation step,
unaware of the animation

Animating client: Client of an animating
command object and creator and starter of an

animating thread

Animating object: Implements looping animation
methods that take as parameters the animated

object and optional animation controls

Animating command object: Its execute method
calls an animating method in an animating object

with parameters of the method. Constructor
takes as parameters the animating object,
animated object and animation controls.

Animating thread: Invoker of the execute method
of an animating command object

AShuttleAnimator

AShuttleAnimation
Command

Thread

run()

main()
Main
Class

AnObservablePlotted
Shuttle

setShuttleX(
Y)()

start()

animate
Shuttle()

54

THREAD-BASED ANIMATION DESIGN PATTERN

Animated object

Animating client

Animating object:

Animating command
object

Animating thread

AShuttleAnimator

Thread

run()

main()
Main
Class

AnObservablePlotted
Shuttle

setShuttleX(
Y)()

start()

animate
Shuttle()

Combine objects?

AShuttleAnimation
Command

Combine animated and
animating object?

55

COMBINE ANIMATED AND ANIMATING?

Animated object

Animating client

Animating object:

Animating command
object

Animating threadThread

run()

main()
Main
Class

AnObservablePlotted
Shuttle

setShuttleX(
Y)()

start()

animate
Shuttle()

Combine animated and
animating object?

AShuttleAnimation
Command

56

COMBINNG ANIMATED AND ANIMATING

Animated object

Animating client

Animating object:

Animating command
object

Animating thread

run()

main()
Main
Class

AnotherPlotted
Shuttle

setShuttleX(
Y)()

start()

animate
Shuttle()

Must duplicate
animating code for

AnotherPlottedShuttle

Thread

AShuttleAnimation
Command

57

THREAD-BASED ANIMATION DESIGN PATTERN

Animated object

Animating client

Animating object:

Animating command
object

Animating thread

AShuttleAnimator

run()

main()
Main
Class

AnObservablePlotted
Shuttle

setShuttleX(
Y)()

start()

animate
Shuttle()

Thread

AShuttleAnimation
Command

Original Code working
with

AnObservablePlotted
Shuttle

58

THREAD-BASED ANIMATION DESIGN PATTERN

Animated object

Animating client

Animating object:

Animating command
object

Animating thread

AShuttleAnimator

AShuttleAnimation
Command

run()

main()
Main
Class

AnotherPlotted
Shuttle

setShuttleX(
Y)()

start()

animate
Shuttle()

Reusing animating code
for

AnotherPlottedShuttle

Thread

59

THREAD-BASED ANIMATION DESIGN PATTERN

Animated object

Animating client

Animating object

Animating command
object

Animating thread

AnotherShuttle
Animator

AShuttleAnimation
Command

run()

main()
Main
Class

AnotherPlotted
Shuttle

setShuttleX(
Y)()

start()

animate
Shuttle()

Using a different
animator for same
animated object

Thread

Combine animating
object and command?

60

COMBINE ANIMATOR AND COMMAND?

Animated object

Animating client

Animating object:

Animating command
object

Animating thread

AShuttleAnimator

Shuttle
Animation
Thread 1

run()

main()
Main
Class

AnObservablePlotted
Shuttle

setShuttleX(
Y)()

start()

animate
Shuttle()

Run executes
asynchronously

exactly one method

animate Shuttle
Backwards()

May want forward
and backward

animation in one
object

Or may want to run
animation

synchronously

61

THREAD-BASED ANIMATION DESIGN PATTERN

Animated object

Animating client

Animating object:

Animating command
object

Animating thread

AShuttleAnimator

AShuttleAnimation
Command

run()

main()
Main
Class

AnotherPlotted
Shuttle

setShuttleX(
Y)()

start()

animate
Shuttle()

Our pattern allows a separate
command object to be

created for each method of
an object that is to be

executed asynchronously

AnotherShuttle
Animation
Command

Thread

run()

animate Shuttle
Backwards()

62

SUBCLASS THREAD?

Animated object

Animating client

Animating object:

Animating command
object

Animating thread

AShuttleAnimator

run()

main()
Main
Class

AnObservablePlotted
Shuttle

setShuttleX(
Y)()

start()

animate
Shuttle()

Thread

AShuttleAnimation
Command

IS-A
run()

Subclassed thread
cannot inherit from

another class

AnAnimating
Command

IS-A

Subclass Thread rather
than give it a

constructor argument

A command is executed by
a thread and is not a

thread!

63

INHERITANCE AMONG COMMAND OBJECTS

Animated object

Animating client

Animating object:

Animating command
object

Animating thread

AShuttleAnimator

run()

main()
Main
Class

AnObservablePlotted
Shuttle

setShuttleX(
Y)()

start()

animate
Shuttle()

Thread

AShuttleAnimation
Command

run()
Our pattern allows
inheritance among
Command objects

AnAnimating
Command

IS-A

64

ABUSING IS-A AND INSTANTIATING

UNNECESSARY CODE

Animated object

Animating client

Animating object:

Animating command
object

Animating thread

AShuttleAnimator

run()

main()
Main
Class

AnObservablePlotted
Shuttle

setShuttleX(
Y)()

start()

animate
Shuttle()

Thread

AShuttleAnimation
Command

IS-A
run()

Parser/Undoer HAS-A

Other objects such as
parser and undoer might
need to share a thread

command objects

Unnecessary run code in
these classes if we

combine thread with
command object

65

NOT INSTANTIATING UNNECESSARY CODE

Animated object

Animating client

Animating object:

Animating command
object

Animating thread

Parser/Undoer
HAS-A

No instantiation of un-
necessary Thread code

using our pattern

AShuttleAnimator

run()

main()
Main
Class

AnObservablePlotted
Shuttle

setShuttleX(
Y)()

start()

animate
Shuttle()

Thread

AShuttleAnimation
Command

run()

66

COMMAND OBJECTS VS. THREADS

 Threads can use command objects

 Command objects can be used in non thread contexts
 Undo/redo

 Processing command interpreter commands

67

THREADS

 If we want multiple animations then we must create
our own threads

 Threads use command objects.

 Command objects represent method calls

68

ANIMATION PATTERN

 Begin with the object to be animated

 Write one or more animating object with one or more
looping methods to animate the animated object that
take animation controls as arguments

 Write one or more implementations of Runnable,
each of which takes the animation controls and the
above two objects as parameters and calls a looping
method of the animating objects

 In the main program or some model method, create
one or more Thread instace, passing to the Thread
constructor an instance of the Runnable command
object.

 Execute the start() method on each Thread instance.

