
COMP 401

SYNCHRONIZED METHODS

Instructor: Prasun Dewan

2

PREREQUISITE

 Animation Threads Commands

More?

3

THREADS AND SHARING

 Sharing Road ~ Sharing Computer

Different Lane ~

Different

Objects/Resources

Same Lane ~

Same

Object/Resource

4

THE SEPARATE LANE SCENARIO

AShuttleAnimator

AShuttleAnimation
Command

AShuttleAnimation
Command

Thread Thread

run() run()

main()

animate
Shuttle()

setShuttleX(Y)()

AShuttleAnimator
animate
Shuttle()

Main
Class

AnObservable
Plotted
Shuttle

setShuttleX(Y)()

Main
Thread start()

start() start()

AnObservable
Plotted
Shuttle

 Call

Diagram

Node labels:

Method and

Class/Interface

Edges denote

calls

 Shared lane?

5

ONE SHUTTLE & ANIMATOR, TWO THREADS

AShuttleAnimator animate
Shuttle()

setShuttleX(Y)()

AShuttleAnimation
Command

AShuttleAnimation
Command

Shuttle
Animation
Thread 1

Shuttle
Animation
Thread 2

run() run()

main()
Main
Class

Main
Thread start()

start() start()

Two threads

accessing

same

animator and

shuttle

AnObservable
Plotted
Shuttle

6

TWO SHUTTLES AND ANIMATORS, TWO THREADS

public static void main(String[] args) {
 PlottedShuttle shuttle1 = new AnObservablePlottedShuttle(50, 100);
 OEFrame oeFrame1 = ObjectEditor.edit(shuttle1);
 oeFrame1.hideMainPanel();
 oeFrame1.setLocation(0, 0);
 oeFrame1.setSize(400, 400);
 PlottedShuttle shuttle2 = new AnObservablePlottedShuttle(100, 50);
 OEFrame oeFrame2 = ObjectEditor.edit(shuttle2);
 oeFrame2.hideMainPanel();
 oeFrame2.setLocation(400, 0);
 oeFrame2.setSize(400, 400);
 ShuttleAnimator shuttleAnimator1 = new AShuttleAnimator();
 ShuttleAnimator shuttleAnimator2 = new AShuttleAnimator();
 concurrentDemoShuttleAnimation(shuttleAnimator1, shuttle1);
 concurrentDemoShuttleAnimation(shuttleAnimator2, shuttle2);
}

7

ONE SHUTTLES & ANIMATOR, TWO THREADS

public static void main(String[] args) {
 PlottedShuttle shuttle1 = new AnObservablePlottedShuttle(50, 100);
 OEFrame oeFrame1 = ObjectEditor.edit(shuttle1);
 oeFrame1.setLocation(0, 0);
 oeFrame1.setSize(500, 550);
 ShuttleAnimator aShuttleAnimator = new AShuttleAnimator();
 concurrentDemoShuttleAnimation(aShuttleAnimator, shuttle1);
 ThreadSupport.sleep(500);
 concurrentDemoShuttleAnimation(aShuttleAnimator, shuttle1);
}

Each thread
manipulates the

same shuttle

Second thread starts with
a 500 ms delay

8

INTERFERING ANIMATIONS

9

INTERFERENCE

while (curY < originalY) {
 ThreadSupport.sleep(animationPauseTime);
 curY += animationStep;
 shuttle.setShuttleY(curY);
 }

while (curY < originalY) {
 ThreadSupport.sleep(animationPauseTime);
 curY += animationStep;
 shuttle.setShuttleY(curY);
 }

Each call of method gets its own copy of local

variables such as curX and curY

10

TOP THREAD SETS ITS CURY

while (curY < originalY) {
 ThreadSupport.sleep(animationPauseTime);
 curY += animationStep;
 shuttle.setShuttleY(curY);
 }

while (curY < originalY) {
 ThreadSupport.sleep(animationPauseTime);
 curY += animationStep;
 shuttle.setShuttleY(curY);
 }

11

TOP THREAD SLEEPS

while (curY < originalY) {
 ThreadSupport.sleep(animationPauseTime);
 curY += animationStep;
 shuttle.setShuttleY(curY);
 }

while (curY < originalY) {
 ThreadSupport.sleep(animationPauseTime);
 curY += animationStep;
 shuttle.setShuttleY(curY);
 }

12

BOTTOM THREAD SETS ITS CURY

while (curY < originalY) {
 ThreadSupport.sleep(animationPauseTime);
 curY += animationStep;
 shuttle.setShuttleY(curY);
 }

while (curY < originalY) {
 ThreadSupport.sleep(animationPauseTime);
 curY += animationStep;
 shuttle.setShuttleY(curY);
 }

13

INTERFERENCE

14

SOLUTION?

AShuttleAnimator animate
Shuttle()

setShuttleX(Y)()

AShuttleAnimation
Command

AShuttleAnimation
Command

Shuttle
Animation
Thread 1

Shuttle
Animation
Thread 2

run() run()

main()
Main
Class

Main
Thread start()

start() start()

What?

AnObservable
Plotted
Shuttle

How?

15

public class ASynchronizedShuttleAnimator

 extends AShuttleAnimator {

 public synchronized void animateFromOrigin(

 PlottedShuttle shuttle,

 int animationStep,

 int animationPauseTime) {

 super.animateFromOrigin(

 shuttle,

 animationStep,

 animationPauseTime);

 }

}

SYNCHRONIZED VERSION

Should use keyword synchronized in method with
shared data to tell Java that only one thread

should execute the method at one time

Atomic method execution – only one
thread executes it at one time

When a method is locked by a thread other
threads wait in a queue, and when a

method is unlocked the first waiting thread
executes it

16

SYNCHRONIZED

17

ONE SHUTTLE AND SYNCHRONIZED ANIMATOR,

TWO THREADS

AShuttleAnimator

AShuttleAnimation
Command

AShuttleAnimation
Command

Shuttle
Animation
Thread 1

Shuttle
Animation
Thread 2

run() run()

main

animate
Shuttle()

Main
Class

setShuttleX(Y)()

Main
Thread

AnObservable
Plotted
Shuttle

On what method

should lock be put?

18

SYNCHRONIZE SET METHODS OF SHUTTLE?

AShuttleAnimator

AShuttleAnimation
Command

AShuttleAnimation
Command

Shuttle
Animation
Thread 1

Shuttle
Animation
Thread 2

run() run()

main

animate
Shuttle()

Main
Class

setShuttleX(Y)()

Main
Thread

AnObservable
Plotted
Shuttle

Set method executes

without interference,

not animation loop

19

SYNCHRONIZE RUN METHODS OF COMMAND?

AShuttleAnimator

AShuttleAnimation
Command

AShuttleAnimation
Command

Shuttle
Animation
Thread 1

Shuttle
Animation
Thread 2

run() run()

main

animate
Shuttle()

Main
Class

setShuttleX(Y)()

Main
Thread

AnObservable
Plotted
Shuttle

Each command has

its own queue

20

SYNCHRONIZE THREAD CREATION?

AShuttleAnimator

AShuttleAnimation
Command

AShuttleAnimation
Command

Shuttle
Animation
Thread 1

Shuttle
Animation
Thread 2

run() run()

main

animate
Shuttle()

Main
Class

setShuttleX(Y)()

Main
Thread

AnObservable
Plotted
Shuttle

Threads created

atomically, but then

they can interfere

21

public synchronized static void concurrentDemoShuttleAnimation(
 ShuttleAnimator aShuttleAnimator, PlottedShuttle aShuttle) {
 Thread thread = new Thread(this, animateFromOriginMethod,
 new Object[] {aShuttle, 5, 100});
 threadNumber++;
 thread.setName(SHUTTLE_THREAD_NAME + " " + threadNumber);
 thread.start();
}

SYNCHRONIZE THREAD CREATOR?

Synchronize makes

caller wait till

interfering activity

finishes

Method executed by new

thread should be

synchronized, not the

method that created the

thread.

22

public class ASynchronizedShuttleAnimator

 extends AShuttleAnimator {

 public synchronized void animateFromOrigin(

 PlottedShuttle shuttle,

 int animationStep,

 int animationPauseTime) {

 super.animateFromOrigin(

 shuttle,

 animationStep,

 animationPauseTime);

 }

 public synchronized void animateFromOrigin(

 PlottedShuttle shuttle,

 int animationStep,

 int animationPauseTime, OEFrame frame) {

 super.animateFromOrigin(

 shuttle,

 animationStep,

 animationPauseTime,

 frame);

 }

}

TWO SYNCHRONIZED METHODS

Only one synchronized method can be

executed at one time in a class

Lock and queue is with the object,

not method

23

SYNCHRONIZED METHODS

Start call to synchronized method
on object O

Finish call to synchronized
method on object O

if some synchronized method is
executing in O, then makes calling

thread wait in O’s queue

Unblocks first waiting thread in O’s
queue

24

SYNCHRONIZED METHOD ANALOGY?

25

ONE SHUTTLE, TWO SYNCHRONIZED ANIMATORS

public class OneShuttleTwoSynchronizedShuttleAnimators

 extends ConcurrentShuttleAnimationDriver {

 public static void main(String[] args) {

 PlottedShuttle shuttle1 =

 new AnObservablePlottedShuttle(50, 100);

 OEFrame oeFrame = ObjectEditor.edit(shuttle1);

 oeFrame.hideMainPanel();

 oeFrame.setSize(400, 400);

 ShuttleAnimator aShuttleAnimator1 =

 new ASynchronizedShuttleAnimator();

 ShuttleAnimator aShuttleAnimator2 =

 new ASynchronizedShuttleAnimator();

 concurrentDemoShuttleAnimation(aShuttleAnimator1, shuttle1);

 ThreadSupport.sleep(500);

 concurrentDemoShuttleAnimation(aShuttleAnimator2, shuttle1);

 }

}

Lock, queue is with each object, not the

class
Will again get interference

26

ONE SHUTTLE, TWO THREADS AND

SYNCHRONIZED ANIMATORS

ASynchronizedShuttle
Animator

animate
Shuttle()

setShuttleX(Y)()

ASynchronizedShuttle
Animator

animate
Shuttle()

APlotted
Shuttle

AShuttleAnimation
Command

AShuttleAnimation
Command

Shuttle
Animation
Thread 1

Shuttle
Animation
Thread 2

run() run()

main
Main
Class

Main
Thread

Need to define our

own synchronization

protocol

27

SYNCHRONIZATION

 Methods that access global state and can be
executed by multiple threads should be made
synchronized

 Only one synchronized method in an object will be
executed at one time.

