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PREREQUISITE 

 Animation Threads Commands 

 

More? 
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THREADS AND SHARING 
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THE SEPARATE LANE SCENARIO 

AShuttleAnimator 

AShuttleAnimation 
Command 

AShuttleAnimation 
Command 

Thread  Thread 

run() run() 

main() 

animate 
Shuttle() 

setShuttleX(Y)() 

AShuttleAnimator 
animate 
Shuttle() 

Main 
Class 

AnObservable
Plotted 
Shuttle 

setShuttleX(Y)() 

Main 
Thread start() 

start() start() 

AnObservable
Plotted 
Shuttle 

 Call 

Diagram 

Node labels: 

Method and 

Class/Interface 

Edges denote 

calls 

 Shared lane? 



5 

ONE SHUTTLE & ANIMATOR, TWO THREADS 
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TWO SHUTTLES AND ANIMATORS, TWO  THREADS 

public static void main(String[] args) { 
  PlottedShuttle shuttle1 = new AnObservablePlottedShuttle(50, 100); 
  OEFrame oeFrame1 = ObjectEditor.edit(shuttle1); 
  oeFrame1.hideMainPanel(); 
  oeFrame1.setLocation(0, 0); 
  oeFrame1.setSize(400, 400); 
  PlottedShuttle shuttle2 = new AnObservablePlottedShuttle(100, 50); 
  OEFrame oeFrame2 = ObjectEditor.edit(shuttle2); 
  oeFrame2.hideMainPanel(); 
  oeFrame2.setLocation(400, 0); 
  oeFrame2.setSize(400, 400); 
  ShuttleAnimator shuttleAnimator1 = new AShuttleAnimator(); 
  ShuttleAnimator shuttleAnimator2 = new AShuttleAnimator();     
  concurrentDemoShuttleAnimation(shuttleAnimator1, shuttle1); 
  concurrentDemoShuttleAnimation(shuttleAnimator2, shuttle2); 
} 
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ONE SHUTTLES & ANIMATOR, TWO THREADS 

public static void main(String[] args) { 
  PlottedShuttle shuttle1 = new AnObservablePlottedShuttle(50, 100); 
  OEFrame oeFrame1 = ObjectEditor.edit(shuttle1); 
  oeFrame1.setLocation(0, 0); 
  oeFrame1.setSize(500, 550); 
  ShuttleAnimator aShuttleAnimator = new AShuttleAnimator(); 
  concurrentDemoShuttleAnimation(aShuttleAnimator, shuttle1); 
  ThreadSupport.sleep(500); 
  concurrentDemoShuttleAnimation(aShuttleAnimator, shuttle1); 
} 

Each thread 
manipulates the 

same  shuttle 

Second thread starts with 
a 500 ms delay 
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INTERFERING ANIMATIONS 
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INTERFERENCE 

while (curY < originalY) { 
    ThreadSupport.sleep(animationPauseTime); 
    curY += animationStep; 
    shuttle.setShuttleY(curY); 
  } 
  

while (curY < originalY) { 
    ThreadSupport.sleep(animationPauseTime); 
    curY += animationStep; 
    shuttle.setShuttleY(curY); 
  } 
  

Each call of method gets its own copy of local 

variables such as curX and curY 
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TOP THREAD SETS ITS CURY 

while (curY < originalY) { 
    ThreadSupport.sleep(animationPauseTime); 
    curY += animationStep; 
    shuttle.setShuttleY(curY); 
  } 
  

while (curY < originalY) { 
    ThreadSupport.sleep(animationPauseTime); 
    curY += animationStep; 
    shuttle.setShuttleY(curY); 
  } 
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TOP THREAD SLEEPS 

while (curY < originalY) { 
    ThreadSupport.sleep(animationPauseTime); 
    curY += animationStep; 
    shuttle.setShuttleY(curY); 
  } 
  

while (curY < originalY) { 
    ThreadSupport.sleep(animationPauseTime); 
    curY += animationStep; 
    shuttle.setShuttleY(curY); 
  } 
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BOTTOM THREAD SETS ITS CURY 

while (curY < originalY) { 
    ThreadSupport.sleep(animationPauseTime); 
    curY += animationStep; 
    shuttle.setShuttleY(curY); 
  } 
  

while (curY < originalY) { 
    ThreadSupport.sleep(animationPauseTime); 
    curY += animationStep; 
    shuttle.setShuttleY(curY); 
  } 
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INTERFERENCE 
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SOLUTION? 
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public class ASynchronizedShuttleAnimator  

                      extends AShuttleAnimator { 

  public synchronized void animateFromOrigin( 

                     PlottedShuttle shuttle,  

   int animationStep,  

   int animationPauseTime) { 

    super.animateFromOrigin( 

   shuttle,  

   animationStep, 

                     animationPauseTime); 

  } 

} 

SYNCHRONIZED VERSION 

Should use keyword synchronized  in method with 
shared data to tell Java that only one thread 

should execute the method at one time 

Atomic method execution – only one 
thread executes it at one time 

When a method is locked by a thread other 
threads wait in a queue, and when a 

method is unlocked the first waiting thread 
executes it 
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SYNCHRONIZED 
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ONE SHUTTLE AND SYNCHRONIZED ANIMATOR, 

TWO THREADS 
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On what method 

should lock be put? 
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SYNCHRONIZE SET METHODS OF SHUTTLE? 
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Set method executes 

without interference, 

not animation loop 
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SYNCHRONIZE RUN METHODS OF  COMMAND? 
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Each command has 

its own queue 
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SYNCHRONIZE THREAD CREATION? 
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Threads created 

atomically, but then 
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public synchronized static void concurrentDemoShuttleAnimation( 
    ShuttleAnimator aShuttleAnimator, PlottedShuttle aShuttle) { 
  Thread thread = new Thread(this, animateFromOriginMethod, 
                              new Object[] {aShuttle, 5, 100}); 
  threadNumber++; 
  thread.setName(SHUTTLE_THREAD_NAME + " " + threadNumber); 
  thread.start(); 
} 

SYNCHRONIZE THREAD CREATOR? 

Synchronize makes 

caller wait till 

interfering activity 

finishes 

Method executed by new 

thread should be 

synchronized, not the 

method that created the 

thread. 



22 

public class ASynchronizedShuttleAnimator  

                      extends AShuttleAnimator { 

  public synchronized void animateFromOrigin( 

                     PlottedShuttle shuttle,  

   int animationStep,  

   int animationPauseTime) { 

    super.animateFromOrigin( 

   shuttle,  

   animationStep, 

                     animationPauseTime); 

  } 

  public synchronized void animateFromOrigin( 

   PlottedShuttle shuttle,  

   int animationStep,  

   int animationPauseTime, OEFrame frame) { 

    super.animateFromOrigin( 

   shuttle,  

   animationStep,  

   animationPauseTime,  

   frame); 

  } 

} 

TWO SYNCHRONIZED METHODS 

Only one synchronized method can be 

executed at one time in a class 

Lock and queue is with the object, 

not method 
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SYNCHRONIZED METHODS 

Start call to synchronized method 
on object O 

Finish call  to synchronized 
method on object O 

if some synchronized method is 
executing in O, then makes calling 

thread wait in O’s queue 

Unblocks first waiting thread in O’s 
queue  
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SYNCHRONIZED METHOD ANALOGY? 
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ONE SHUTTLE, TWO SYNCHRONIZED ANIMATORS 

public class OneShuttleTwoSynchronizedShuttleAnimators 

              extends ConcurrentShuttleAnimationDriver  { 

  public static void main(String[] args) { 

    PlottedShuttle shuttle1 =  

           new AnObservablePlottedShuttle(50, 100); 

    OEFrame oeFrame = ObjectEditor.edit(shuttle1); 

    oeFrame.hideMainPanel(); 

    oeFrame.setSize(400, 400); 

    ShuttleAnimator aShuttleAnimator1 = 

  new ASynchronizedShuttleAnimator(); 

    ShuttleAnimator aShuttleAnimator2 =  

  new ASynchronizedShuttleAnimator(); 

    concurrentDemoShuttleAnimation(aShuttleAnimator1, shuttle1); 

    ThreadSupport.sleep(500); 

    concurrentDemoShuttleAnimation(aShuttleAnimator2, shuttle1); 

  } 

} 

Lock, queue is with each object, not the 

class 
Will again get interference 
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ONE SHUTTLE, TWO THREADS AND 

SYNCHRONIZED ANIMATORS 
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own synchronization 

protocol 



27 

SYNCHRONIZATION 

 Methods that access global state and can be 
executed by multiple threads  should be made 
synchronized 

 Only one synchronized method in an object will be 
executed at one time. 

 

 

 


