ComMP 401
SYNCHRONIZED METHODS

‘ Instructor: Prasun Dewan

PREREQUISITE

o Animation Threads Commands

THREADS AND SHARING

Same Lane ~
Same
Object/Resource

Different Lane ~
Different
Objects/Resources

Sharing Road ~ Sharing Computer

THE SEPARATE LANE SCENARIO

AnQObservable

AnQObservable

setShuttleX(Y)()

setShuttleX(Y)()

e

AShuttleAnimator animate :
- Shuttle() AShuttleAnimator Shuttle
AShuttleAnimation AShuttleAnimation
Command -—T— Command

URTEEE Meth

Class/lI

hread

Plotted
Shuttle

Plotted
Shuttle

>

main()

ONE SHUTTLE & ANIMATOR, TWO THREADS

AnQObservable

Plotted setShuttleX(Y)()

Shuttle ' \
AShuttleAnimator
Shuttle()

AShuttleAnimation

Shuttle Shuttle

l -
Animation start() |l start() Animation

Thread 1 Thread 2

AShuttleAnimation
run
Command

Main

TWO SHUTTLES AND ANIMATORS, TWO THREADS

public static void main(String[] args) {
PlottedShuttle shuttlel = new AnObservablePlottedShuttle(50, 100);
OEFrame oeFramel = ObjectEditor.edit(shuttlel);
oeFramel.hideMainPanel();
oeFramel.setlLocation(@, 9);
oeFramel.setSize (400, 400);
PlottedShuttle shuttle2 = new AnObservablePlottedShuttle(100, 50);
OEFrame oeFrame2 = ObjectEditor.edit(shuttle2);
oeFrame2.hideMainPanel();
oeFrame2.setlLocation (400, 0);
oeFrame2.setSize (400, 400);
ShuttleAnimaton shuttleAnimatorl = new AShuttleAnimator();
ShuttleAnimaton shuttleAnimator2 = new AShuttleAnimator();
concurrentDemoShuttleAnimation|(shuttleAnimatorl), shuttlel);
concurrentDemoShuttleAnimation|(shuttleAnimator2, shu

ONE SHUTTLES & ANIMATOR, TWO THREADS

public static void main(String[] args) {
PlottedShuttle shuttlel = new AnObservablePlottedShuttle(50, 100);
OEFrame oeFramel = ObjectEditor.edit(shuttlel);
oeFramel.setlLocation(@, 0);
oeFramel.setSize(500, 550);
ShuttleAnimator|aShuttleAnimator |= new AShuttleAnimator();
concurrentDemoShuttleAnimation(aShuttleAnimator, shuttlel);
ThreadSupport.sleep(500);
concurrentDemoShuttleAnimation(aShuttleAnimator, shuttlel);

Each thread
manipulates the
same shuttle

Second thread starts with
a 500 ms delay

INTERFERING ANIMATIONS

INTERFERENCE

while (curY < originalY) {
ThreadSupport.sleep(animationPauseTime);
curY += animationStep;
shuttle.setShuttleY(curY);

}

while (curY < originalY) {
ThreadSupport.sleep(animationPauseTime);
curY += animationStep;
shuttle.setShuttleY(curY);

}

Each call of method gets its own copy of local
variables such as curX and curY

TOoP THREAD SETS ITS CURY

while (curY < originalY) {
ThreadSupport.sleep(animationPauseTime);
curY += animationStep;

> shuttle.setShuttleY(curY);

}

while (curY < originalY) {
ThreadSupport.sleep(animationPauseTime);

—> curY += animationStep;
shuttle.setShuttleY(curY);

}

TOoP THREAD SLEEPS

while (curY < originalY) {
ThreadSupport.sleep(animationPauseTime);
curY += animationStep;
shuttle.setShuttleY(curY);

}

while (curY < originalY) {
ThreadSupport.sleep(animationPauseTime);
curY += animationStep;
shuttle.setShuttleY(curY);

}

BoTTOM THREAD SETS ITS CURY

while (curY < originalY) {

—> ThreadSupport.sleep(animationPauseTime);
curY += animationStep;
shuttle.setShuttleY(curY);

}

while (curY < originalY) {
ThreadSupport.sleep(animationPauseTime);
curY += animationStep;

> shuttle.setShuttleY(curY);
}

g® Thread [Sh
AShuttl
AShuttl
Thread.
hread [De
hread [5h
AShuttl
AShuttl

@
B

ez Z e

4 |

INTERFERENCE

7# Thread [Shuttle &nimation 1] (Suspended (breakpoint at line 22 in AShuttlefAnima
= AShuttleAnimator.animateFromOrigin(PlottedShuttle, int, int) line: 22
= AShuttleAnimationCommand.run() line: 22
= Thread.run() line: not available

p® Thread [DestroylavaVM] (Running)

g# Thread [Shuttle &nimation 2] (Suspended (breakpoint at line 16 in AShuttleAnima
= AShuttleAnimator.animateFromOrigin(PlottedShuttle, int, int) line: 16

| = AShuttleAnimationCommand.run() line: 22 |
4 1 b

=
41 ShuttleAnimationDriv

E
4] ShuttleAnimationDriv (m AConcurrentShuttlefn (m ConcurrentShuttleAni (H

shuttle
shuttle
£/ make
System.
while (¢
Thre
cur
shu

shuttle.setShuttleX({curX);

shuttle.setShuttleY(curY);

// make sure we don't go past final Y position

System.out.println(“Animaticn in ¥ Direction™);

while {(cur¥ < original¥) {
ThreadSupport.sleep(animationPauseTime);
curY += animationStep;
shuttle.setShuttleY({cury);

SOLUTION?

AnQObservable

Plotted setShuttleX(Y)()

Shuttle ' .\
AShuttleAnimator
Shuttle()

: : P
AShuttleAnimation

AShuttleAnimation

Command —r

Shuttle Shuttle

|
Animation start() |l start() Animation

Thread 1 Thread 2

Main
?
A

SYNCHRONIZED VERSION

public class ASynchronizedShuttleAnimator
extends AShuttleAnimator ({

nized void animateFromOrigin (

PlottedShuttle shuttle,

int animationStep,

int animationPauseTime) ({

super.animateFromQOrigin (

huttle,

animationStep,

animationPauseTime) ;

public synch

N\

Should use keyword synchronized in method with
shared data to tell Java that only one thread
should execute the method at one time

When a method Is locked by a thread other
threads wait in a queue, and when a
method is unlocked the first waiting thread

Atomic method execution — only one
thread executes it at one time

executes it

SYNCHRONIZED

ONE SHUTTLE AND SYNCHRONIZED ANIMATOR,
TwO THREADS

AnObservable 0
Plotted setShuttleX(Y)() nw
Shuttle , \ should 1
AShuttleAnimator -
Shuttle()

AShuttleAnimation AShuttleAnimation
run
Command : run() Command

Shuttle
Animation | | Animation

Thread 2

Shuttle

SYNCHRONIZE SET METHODS OF SHUTTLE?

AnQObservable

plotted |IEdtShuttleX(Y)()

Shuttle ' \
AShuttleAnimator
Shuttle()

AShuttleAnimation AShuttleAnimation
run
Command : run() Command

Shuttle Shuttle
Animation | | Animation

Thread 2

without 1
not ani

SYNCHRONIZE RUN METHODS OF COMMAND?

ach co
1ts ow

AnQObservable

Plotted setShuttleX(Y)()

Shuttle ' \
AShuttleAnimator
Shuttle()

AShuttleAnimation [fal s AShuttleAnimation

Shuttle

Shuttle

Animation | | Animation

Thread 2

SYNCHRONIZE THREAD CREATION?

AnQObservable

Plotted setShuttleX(Y)()

Shuttle ' \
AShuttleAnimator
Shuttle()

AShuttleAnimation | AShuttleAnimation
run
Command : S Command

Shuttle Shuttle
Animation

Thread 2

SYNCHRONIZE THREAD CREATOR?

public synch“\ized static void concurrentDemoShuttleAnimation(
ShuttleAnimator aShuttleAnimator, PlottedShuttle aShuttle) {
Thread thread = new Thread(this, animateFromOriginMethod,
new Object[] {aShuttle, 5, 100});

threadNumber++;

thread.setName(SHUTTLE THREAD NAME + " " + threadNumber);

thread.start();

}
Synchronize makes Method executed by new
caller wait till thread should be
interfering activity synchronized, not the
finishes method that created the
thread.

TWO SYNCHRONIZED METHODS

public class ASynchronizedShuttleAnimator

extends AShuttleAnimator ({

public synchronized void animateFromOrigin (
PlottedShuttle shuttle,
int animationStep,
int animationPauseTime) {

super.animateFromOrigin (

shuttle,
animationStep,
animationPauseTime) ;

}

public synchronized void animateFromOrigin (
PlottedShuttle shuttle,
int animationStep,
int animationPauseTime, OEFrame frame) ({

super.animateFromOrigin (

shuttle,
animationStep,
animationPauseTime,
frame) ;
Only one synchronized method can be | |Lock and queue is with the object,

executed at one time in a class not method $

SYNCHRONIZED METHODS

SYNCHRONIZED METHOD ANALOGY?

ONE SHUTTLE, TWO SYNCHRONIZED ANIMATORS

public class OneShuttleTwoSynchronizedShuttleAnimators
extends ConcurrentShuttleAnimationDriver {
public static void main(String[] args) ({

PlottedShuttle shuttlel =

new AnObservablePlottedShuttle (50, 100) ;
OEFrame oeFrame = ObjectEditor.edit (shuttlel);
oeFrame.hideMainPanel () ;
oeFrame.setSize (400, 400);
ShuttleAnimator aShuttleAnimatorl =

new ASynchronizedShuttleAnimator () ;
ShuttleAnimator aShuttleAnimator?2 =

new ASynchronizedShuttleAnimator () :
concurrentDemoShuttleAnimation|(aShuttleAnimatorl| shuttlel);
ThreadSupport.sleep (500) ;
concurrentDemoShuttleAnimation|aShuttleAnimator”?} shuttlel);

Lock, queue 1s with each object, not the

Will again get interference
class

4»

ONE SHUTTLE, TWO THREADS AND
SYNCHRONIZED ANIMATORS

APlotted setShuttIeX(Y)()
Shuttle »

ASynchronizedShuttle
Animator

ASynchronizedShuttle
Animator Shuttle()

AShuttleAnimation AShuttleAnimation

ee
Shuttle own sync
Animation Animation pro

Thread 2

Shuttle

Main

SYNCHRONIZATION

o Methods that access global state and can be
executed by multiple threads should be made
synchronized

o Only one synchronized method in an object will be
executed at one time.

