
COMP 401

USER-INTERFACE VS. MAIN

THREADS

Instructor: Prasun Dewan

2

PREREQUISITE

 Animation Threads Commands

3

ANIMATIONS FROM MAIN

public static void main(String[] args) {
 PlottedShuttle shuttle = new APlottedShuttle(50, 100);
 OEFrame oeFrame = ObjectEditor.edit(shuttle);
 oeFrame.hideMainPanel();
 oeFrame.setSize (450, 450);
 ShuttleAnimator shuttleAnimator = new AShuttleAnimator();
 shuttleAnimator.animateFromOrigin(aShuttle, 5, 100);
}

No thread as single animation

4

ANIMATIONS FROM MAIN

public static void main(String[] args) {
 PlottedShuttle shuttle1 = new AnObservablePlottedShuttle(50, 100);
 OEFrame oeFrame1 = ObjectEditor.edit(shuttle1);
 oeFrame1.hideMainPanel();
 oeFrame1.setLocation(0, 0);
 oeFrame1.setSize(400, 400);
 PlottedShuttle shuttle2 = new AnObservablePlottedShuttle(100, 50);
 OEFrame oeFrame2 = ObjectEditor.edit(shuttle2);
 oeFrame2.hideMainPanel();
 oeFrame2.setLocation(400, 0);
 oeFrame2.setSize(400, 400);
 ShuttleAnimator shuttleAnimator1 = new AShuttleAnimator();
 ShuttleAnimator shuttleAnimator2 = new AShuttleAnimator();
 concurrentDemoShuttleAnimation(shuttleAnimator1, shuttle1);
 concurrentDemoShuttleAnimation(shuttleAnimator2, shuttle2);
}

Threads created, as multiple independent
animations wanted

5

SINGLE ANIMATION FROM MAIN: NO SPECIAL

THREAD

APlotted
Shuttle

AShuttleAnimator

main

animate
Shuttle()

setShuttleX(Y)()

Main
Class

JPanel repaint()

paint()

Main
Thread

6

CONSIDER SINGLE ANIMATION

public static void main(String[] args) {
 PlottedShuttle shuttle = new APlottedShuttle(50, 100);
 OEFrame oeFrame = ObjectEditor.edit(shuttle);
 oeFrame.hideMainPanel();
 oeFrame.setSize (450, 450);
 ShuttleAnimator shuttleAnimator = new AShuttleAnimator();
 shuttleAnimator.animateFromOrigin(aShuttle, 5, 100);
}

Start animation from the user interface?

Extension of ShuttleAnimator that allows
parameters to be properties

We can edit these properties interactively and
start animation with them as parameters

7

GUI

8

MAIN VS. INTERACTIVE ANIMATION

public static void main(String[] args) {
 PlottedShuttle shuttle = new APlottedShuttle(50, 100);
 OEFrame oeFrame = ObjectEditor.edit(shuttle);
 oeFrame.hideMainPanel();
 oeFrame.setSize (450, 450);
 ShuttleAnimator shuttleAnimator = new AShuttleAnimator();
 shuttleAnimator.animateFromOrigin(aShuttle, 5, 100);
}

public static void main (String[] args) {
 PlottedShuttle shuttle = new APlottedShuttle(50, 100);
 OEFrame oeFrame = ObjectEditor.edit(shuttle);
 oeFrame.hideMainPanel();
 oeFrame.setSize (450, 450);
 FancyShuttleAnimator shuttleAnimator = new AFancyShuttleAnimator();
 ObjectEditor.edit(shuttleAnimator);
}

9

FANCY ANIMATOR
public class AFancyShuttleAnimator extends AShuttleAnimator
 implements FancyShuttleAnimator {
 int animationStep = 5;
 int animationPauseTime = 100;
 PlottedShuttle shuttle;
 public AFancyShuttleAnimator(PlottedShuttle theShuttle) {
 shuttle = theShuttle;
 }
 public int getAnimationStep() {
 return animationStep;
 }
 public void setAnimationStep(int animationStep) {
 this.animationStep = animationStep;
 }
 public int getAnimationPauseTime() {
 return animationPauseTime;
 }
 public void setAnimationPauseTime(int animationPauseTime) {
 this.animationPauseTime = animationPauseTime;
 }
 public void animateShuttle() {
 animateFromOrigin(shuttle, animationStep, animationPauseTime);
 }
}

10

VIDEO

11

WHEN DOES MAIN TERMINATE?

public static void main(String[] args) {
 PlottedShuttle shuttle = new APlottedShuttle(50, 100);
 OEFrame oeFrame = ObjectEditor.edit(shuttle);
 oeFrame.hideMainPanel();
 oeFrame.setSize (450, 450);
 ShuttleAnimator shuttleAnimator = new AShuttleAnimator();
 shuttleAnimator.animateFromOrigin(aShuttle, 5, 100);
}

public static void main (String[] args) {
 PlottedShuttle shuttle = new APlottedShuttle(50, 100);
 OEFrame oeFrame = ObjectEditor.edit(shuttle);
 oeFrame.hideMainPanel();
 oeFrame.setSize (450, 450);
 FancyShuttleAnimator shuttleAnimator = new AFancyShuttleAnimator();
 ObjectEditor.edit(shuttleAnimator);
}

UI Thread (created by Java)
executes loop

12

CONSIDER SINGLE ANIMATION

UI Thread (created by
Java) executes loop

Main thread

executes loop

13

INTERACTIVE ANIMATION: NO SPECIAL THREAD

APlotted
Shuttle

AFancy
ShuttleAnimator

main

setShuttleX(Y)()

Main
Class

JPanel repaint()

paint()

Main
Thread

JFrame setVisible()

AWT Thread

setVisible() JFrame

animate
FromOrigin()

animate
Shuttle()

14

INTERACTIVE ANIMATION: NO SPECIAL THREAD

(REVIEW)

APlotted
Shuttle

AFancy
ShuttleAnimator

main

setShuttleX(Y)()

Main
Class

JPanel repaint()

paint()

Main
Thread

JFrame setVisible()

AWT Thread

setVisible() JFrame

animate
FromOrigin()

animate
Shuttle()

15

SINGLE ANIMATION FROM MAIN: NO SPECIAL

THREAD

APlotted
Shuttle

AShuttleAnimator

main

setShuttleX(Y)()

Main
Class

JPanel repaint()

paint()

Main
Thread

setVisible() JFrame

AWT Thread

animate
FromOrigin()

animate
Shuttle()

16

INTERLEAVING WITH UI THREAD

while (true) {

 //wait for and process paint,
 // menu and other events

 waitForAndProcessNextQueuedUIEvent();

}

17

LOOP EXECUTES

while (curY < originalY) {
 ThreadSupport.sleep(
 animationPauseTime);
 curY += animationStep;
 shuttle.setShuttleY(curY);
 }

while (true) {

 //wait for and process paint,
 // menu and other events

 waitForAndProcessNextQueuedUIEvent();

}

18

LOOPING THREAD UPDATES SHUTTLE AND

ENQUEUES REPAINT EVENT

while (curY < originalY) {
 ThreadSupport.sleep(
 animationPauseTime);
 curY += animationStep;
 shuttle.setShuttleY(curY);
 }

//in Java component showing
//the shuttle
public void repaint() {

 enqueueRepaintEvent(this);

}

while (true) {

 //wait for and process paint,
 // menu and other events

 waitForAndProcessNextQueuedUIEvent();

}

19

LOOP RE-EXECUTES

while (curY < originalY) {
 ThreadSupport.sleep(
 animationPauseTime);
 curY += animationStep;
 shuttle.setShuttleY(curY);
 }

while (true) {

 //wait for and process paint,
 // menu and other events

 waitForAndProcessNextQueuedUIEvent();

}

20

LOOPING THREAD UPDATES SHUTTLE AND

ENQUEUES ANOTHER REPAINT EVENT

while (true) {

 //wait for and process paint,
 // menu and other events

 waitForAndProcessNextQueuedUIEvent();

}

while (curY < originalY) {
 ThreadSupport.sleep(
 animationPauseTime);
 curY += animationStep;
 shuttle.setShuttleY(curY);
 }

//in Java compoent showing
//the shuttle
public void repaint() {

 enqueueRepaintEvent(this);

}

21

LOOP FINISHES

while (true) {

 //wait for and process paint,
 // menu and other events

 processNextQueuedUIEvent();

}

22

UI THREAD PROCESSES ENQUEUED PAINTS

while (true) {

 //wait for and process paint,
 // menu and other events

 processNextQueuedUIEvent();

}

public void paint(Graphics g)

{
 //draw shuttle

}

23

UI THREAD WAITS FOR NEXT EVENT

while (true) {

 //wait for and process paint,
 // menu and other events

 waitForAndProcessNextQueuedUIEvent();

}

24

UI EVENT LOOP AND ANIMATIONS

while (true) {

 //wait for and process paint,
 // menu and other events

 waitForAndProcessNextQueuedUIEvent();

}

AWT Thread

while (curY < originalY) {
 ThreadSupport.sleep(
 animationPauseTime);
 curY += animationStep;
 shuttle.setShuttleY(curY);
 }

Listener Code

Event Loop

Mouse Click

Mouse Click

Repaint

Repaint

New UI event not processed until

listeners for previous event finish

Animating listener should create new

thread for animation code

25

INTERACTIVE ANIMATION: SPECIAL THREAD

APlotted
Shuttle

AConcurrentFancy
ShuttleAnimator

main

setShuttleX(Y)()

Main
Class

JPanel repaint()

paint()

Main
Thread

JFrame setVisible()

AWT Thread

setVisible() JFrame Shuttle
Animation

Thread

AShuttleAnimation
Command

run() animate
FromOrigin()

animate
Shuttle()

26

CONCURRENT FANCY ANIMATOR

public class AConcurrentShuttleAnimator extends
AFancyShuttleAnimator {
 public AConcurrentShuttleAnimator(PlottedShuttle theShuttle) {
 super(theShuttle);
 }
 public void animateShuttle() {
 Thread thread =
 new Thread(
 (new AShuttleAnimationCommand(
 this, shuttle, animationStep,
 animationPauseTime)));
 thread.start();
}

27

STARTING CONCURRENT FANCY ANIMATOR

public static void main (String[] args) {
 PlottedShuttle shuttle = new APlottedShuttle(50, 100);
 OEFrame oeFrame = ObjectEditor.edit(shuttle);
 oeFrame.hideMainPanel();
 oeFrame.setSize (450, 450);
 FancyShuttleAnimator shuttleAnimator =
 new AConcurrentShuttleAnimator();
 ObjectEditor.edit(shuttleAnimator);
}

28

VIDEO

The animation

method is

synchronized

29

GUI PROCESSING

 Even if main thread terminates, the application
continues to run as long as a GUI has been created,
which creates the GUI thread.

 A single GUI thread is created for processing the
controller (menu/button/… processing) and view
(repaint) actions of all models.

 View updates cannot occur until controller returns.

 Controller action should result in a new thread if it
starts an animation .

 If a single animation is started from main then no
thread needs to be created a main thread executes
loop and separate GUI thread updates view.

30

REPAINT AND UI THREAD SEMANTICS

 When a thread (GUI or some other) calls repaint on
a component C
 It puts a repaint event for C in the GUI event queue if

such an event is not already in the queue.

 This queue contains all UI events such as mouse and key
clicks.

 The GUI thread performs the following loop
1. Waits for the GUI event queue to be non empty

2. Removes and services the next event from the queue
 If the next event is a repaint event for component C, it calls the

update() method in C, passing it a graphics object. The update()
method clears the component and calls paint() method.

 If the next event is not a repaint() event, then it does some
event-specific processing such as calling a listener for the event.

3. Goes back to 1.

