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PREREQUISITE 

 Animation Threads Commands 
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ANIMATIONS FROM MAIN 

public static void main(String[] args) { 
  PlottedShuttle shuttle = new APlottedShuttle(50, 100); 
  OEFrame oeFrame = ObjectEditor.edit(shuttle); 
  oeFrame.hideMainPanel(); 
  oeFrame.setSize (450, 450); 
  ShuttleAnimator shuttleAnimator = new AShuttleAnimator(); 
  shuttleAnimator.animateFromOrigin(aShuttle, 5, 100); 
} 

No thread as single animation 
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ANIMATIONS FROM MAIN 

public static void main(String[] args) { 
  PlottedShuttle shuttle1 = new AnObservablePlottedShuttle(50, 100); 
  OEFrame oeFrame1 = ObjectEditor.edit(shuttle1); 
  oeFrame1.hideMainPanel(); 
  oeFrame1.setLocation(0, 0); 
  oeFrame1.setSize(400, 400); 
  PlottedShuttle shuttle2 = new AnObservablePlottedShuttle(100, 50); 
  OEFrame oeFrame2 = ObjectEditor.edit(shuttle2); 
  oeFrame2.hideMainPanel(); 
  oeFrame2.setLocation(400, 0); 
  oeFrame2.setSize(400, 400); 
  ShuttleAnimator shuttleAnimator1 = new AShuttleAnimator(); 
  ShuttleAnimator shuttleAnimator2 = new AShuttleAnimator();     
  concurrentDemoShuttleAnimation(shuttleAnimator1, shuttle1); 
  concurrentDemoShuttleAnimation(shuttleAnimator2, shuttle2); 
} 

Threads created, as multiple independent 
animations wanted 
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SINGLE ANIMATION FROM MAIN: NO SPECIAL 

THREAD 
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CONSIDER SINGLE ANIMATION 

public static void main(String[] args) { 
  PlottedShuttle shuttle = new APlottedShuttle(50, 100); 
  OEFrame oeFrame = ObjectEditor.edit(shuttle); 
  oeFrame.hideMainPanel(); 
  oeFrame.setSize (450, 450); 
  ShuttleAnimator shuttleAnimator = new AShuttleAnimator(); 
  shuttleAnimator.animateFromOrigin(aShuttle, 5, 100); 
} 

Start animation from the user interface? 

Extension of ShuttleAnimator that allows 
parameters to be properties 

We can edit these properties interactively and 
start animation with them as parameters 
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GUI 
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MAIN VS. INTERACTIVE ANIMATION 

public static void main(String[] args) { 
  PlottedShuttle shuttle = new APlottedShuttle(50, 100); 
  OEFrame oeFrame = ObjectEditor.edit(shuttle); 
  oeFrame.hideMainPanel(); 
  oeFrame.setSize (450, 450); 
  ShuttleAnimator shuttleAnimator = new AShuttleAnimator(); 
  shuttleAnimator.animateFromOrigin(aShuttle, 5, 100); 
} 

public static void main (String[] args) { 
  PlottedShuttle shuttle = new APlottedShuttle(50, 100); 
  OEFrame oeFrame = ObjectEditor.edit(shuttle); 
  oeFrame.hideMainPanel(); 
  oeFrame.setSize (450, 450); 
  FancyShuttleAnimator shuttleAnimator = new AFancyShuttleAnimator(); 
  ObjectEditor.edit(shuttleAnimator); 
} 
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FANCY ANIMATOR 
public class AFancyShuttleAnimator extends AShuttleAnimator  
                                   implements FancyShuttleAnimator { 
  int animationStep = 5;  
  int animationPauseTime = 100; 
  PlottedShuttle shuttle; 
  public AFancyShuttleAnimator(PlottedShuttle theShuttle) { 
    shuttle = theShuttle; 
  } 
  public int getAnimationStep() { 
    return animationStep; 
  } 
  public void setAnimationStep(int animationStep) { 
    this.animationStep = animationStep; 
  } 
  public int getAnimationPauseTime() { 
    return animationPauseTime; 
  } 
  public void setAnimationPauseTime(int animationPauseTime) { 
    this.animationPauseTime = animationPauseTime; 
  } 
  public void animateShuttle() { 
    animateFromOrigin(shuttle, animationStep, animationPauseTime); 
  } 
} 
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VIDEO 
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WHEN DOES MAIN TERMINATE? 

public static void main(String[] args) { 
  PlottedShuttle shuttle = new APlottedShuttle(50, 100); 
  OEFrame oeFrame = ObjectEditor.edit(shuttle); 
  oeFrame.hideMainPanel(); 
  oeFrame.setSize (450, 450); 
  ShuttleAnimator shuttleAnimator = new AShuttleAnimator(); 
  shuttleAnimator.animateFromOrigin(aShuttle, 5, 100); 
} 

public static void main (String[] args) { 
  PlottedShuttle shuttle = new APlottedShuttle(50, 100); 
  OEFrame oeFrame = ObjectEditor.edit(shuttle); 
  oeFrame.hideMainPanel(); 
  oeFrame.setSize (450, 450); 
  FancyShuttleAnimator shuttleAnimator = new AFancyShuttleAnimator(); 
  ObjectEditor.edit(shuttleAnimator); 
} 

UI Thread (created by Java) 
executes loop 
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CONSIDER SINGLE ANIMATION 

UI Thread (created by 
Java) executes loop 

Main thread 

executes loop 
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INTERACTIVE ANIMATION: NO SPECIAL THREAD 
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INTERACTIVE ANIMATION: NO SPECIAL THREAD 
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SINGLE ANIMATION FROM MAIN: NO SPECIAL 

THREAD 
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INTERLEAVING WITH UI THREAD 

while (true) { 

      //wait for and process paint,  
   // menu and other events 

      waitForAndProcessNextQueuedUIEvent();  

} 
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LOOP EXECUTES 

while (curY < originalY) { 
    ThreadSupport.sleep( 
        animationPauseTime); 
    curY += animationStep; 
    shuttle.setShuttleY(curY); 
  } 
  

while (true) { 

      //wait for and process paint,  
   // menu and other events 

      waitForAndProcessNextQueuedUIEvent();  

} 
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LOOPING THREAD UPDATES SHUTTLE AND 

ENQUEUES REPAINT EVENT 

while (curY < originalY) { 
    ThreadSupport.sleep( 
        animationPauseTime); 
    curY += animationStep; 
    shuttle.setShuttleY(curY); 
  } 
  

//in Java component showing  
//the shuttle 
public void repaint() { 

        enqueueRepaintEvent(this ); 

}  
  

while (true) { 

      //wait for and process paint,  
   // menu and other events 

      waitForAndProcessNextQueuedUIEvent();  

} 
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LOOP RE-EXECUTES 

while (curY < originalY) { 
    ThreadSupport.sleep( 
        animationPauseTime); 
    curY += animationStep; 
    shuttle.setShuttleY(curY); 
  } 
  

while (true) { 

      //wait for and process paint,  
   // menu and other events 

      waitForAndProcessNextQueuedUIEvent();  

} 
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LOOPING THREAD UPDATES SHUTTLE AND 

ENQUEUES ANOTHER REPAINT EVENT 

while (true) { 

      //wait for and process paint,  
   // menu and other events 

      waitForAndProcessNextQueuedUIEvent();  

} 

while (curY < originalY) { 
    ThreadSupport.sleep( 
        animationPauseTime); 
    curY += animationStep; 
    shuttle.setShuttleY(curY); 
  } 
  

//in Java compoent showing  
//the shuttle 
public void repaint() { 

        enqueueRepaintEvent(this ); 

}  
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LOOP FINISHES 

while (true) { 

      //wait for and process paint,  
   // menu and other events 

      processNextQueuedUIEvent();  

} 
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UI THREAD PROCESSES ENQUEUED PAINTS 

while (true) { 

      //wait for and process paint,  
   // menu and other events 

      processNextQueuedUIEvent();  

} 

public void paint(Graphics g) 

{ 
   //draw shuttle  

}  
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UI THREAD WAITS FOR NEXT EVENT 

while (true) { 

      //wait for and process paint,  
   // menu and other events 

      waitForAndProcessNextQueuedUIEvent();  

} 
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UI EVENT LOOP AND ANIMATIONS 

while (true) { 

      //wait for and process paint,  
   // menu and other events 

      waitForAndProcessNextQueuedUIEvent();  

} 

AWT Thread 

while (curY < originalY) { 
    ThreadSupport.sleep( 
        animationPauseTime); 
    curY += animationStep; 
    shuttle.setShuttleY(curY); 
  } 
  

Listener Code 

Event Loop 

Mouse Click 

Mouse Click 

Repaint 

Repaint 

New UI event not processed until 

listeners for previous event finish  

Animating listener should create new 

thread for animation code 
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INTERACTIVE ANIMATION: SPECIAL THREAD 
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CONCURRENT FANCY ANIMATOR 

public class AConcurrentShuttleAnimator extends 
AFancyShuttleAnimator  { 
  public AConcurrentShuttleAnimator(PlottedShuttle theShuttle) { 
    super(theShuttle); 
  } 
  public void animateShuttle() { 
    Thread thread =  
        new Thread( 
            (new AShuttleAnimationCommand( 
                  this, shuttle, animationStep,  
                  animationPauseTime))); 
    thread.start(); 
} 
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STARTING CONCURRENT FANCY ANIMATOR 

public static void main (String[] args) { 
  PlottedShuttle shuttle = new APlottedShuttle(50, 100); 
  OEFrame oeFrame = ObjectEditor.edit(shuttle); 
  oeFrame.hideMainPanel(); 
  oeFrame.setSize (450, 450); 
  FancyShuttleAnimator shuttleAnimator =  
       new AConcurrentShuttleAnimator(); 
  ObjectEditor.edit(shuttleAnimator); 
} 
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VIDEO 
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GUI PROCESSING 

 Even if main thread terminates, the application 
continues to run as long as a GUI has been created, 
which creates the GUI thread. 

 A single GUI thread is created for processing the 
controller (menu/button/… processing) and view 
(repaint) actions of all models. 

 View updates cannot occur until controller returns. 

 Controller  action should result in a new thread if it 
starts an animation . 

 If a single animation is started from main then no 
thread needs to be created a main thread executes 
loop and separate GUI thread updates view.  
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REPAINT AND UI THREAD SEMANTICS 

 When a thread (GUI or some other) calls repaint on 
a component C 
 It puts a repaint event for C in the GUI event queue if 

such an event is not already in the queue. 

 This queue contains all UI events such as mouse and key 
clicks. 

 The GUI thread performs the following loop 
1. Waits for the GUI event queue to be non empty 

2. Removes and services the next event from the queue 
 If the next event is a repaint event for component C, it calls the 

update() method in C, passing it a graphics object. The update() 
method clears the component and calls paint() method. 

 If the next event is not a repaint() event, then it does some 
event-specific processing such as calling a listener for the event. 

3. Goes back to 1. 

 

 


