CoMP 401
USER-INTERFACE VS. MAIN
THREADS

‘ Instructor: Prasun Dewan

PREREQUISITE

o Animation Threads Commands

ANIMATIONS FROM MAIN

public static void main(String[] args) {
PlottedShuttle shuttle = new APlottedShuttle(50, 100);
OEFrame oeFrame = ObjectEditor.edit(shuttle);
oeFrame.hideMainPanel();
oeFrame.setSize (450, 450);
ShuttleAnimator shuttleAnimator = new AShuttleAnimator();
shuttleAnimator.animateFromOrigin(aShuttle, 5, 100);

No thread as single animation

ANIMATIONS FROM MAIN

public static void main(String[] args) {
PlottedShuttle shuttlel = new AnObservablePlottedShuttle(50, 1090);
OEFrame oeFramel = ObjectEditor.edit(shuttlel);
oeFramel.hideMainPanel();
oeFramel.setlLocation(@, 0);
oeFramel.setSize (400, 400);
PlottedShuttle shuttle2 = new AnObservablePlottedShuttle(100, 50);
OEFrame oeFrame2 = ObjectEditor.edit(shuttle2);
oeFrame2.hideMainPanel();
oeFrame2.setlLocation (400, 0);
oeFrame2.setSize (400, 400);
ShuttleAnimator shuttleAnimatorl = new AShuttleAnimator();
ShuttleAnimator shuttleAnimator2 = new AShuttleAnimator();
concurrentDemoShuttleAnimation(shuttleAnimatorl, shuttlel);
concurrentDemoShuttleAnimation(shuttleAnimator2, shuttle2);

Threads created, as multiple independent
animations wanted

SINGLE ANIMATION FROM MAIN: NO SPECIAL

THREAD

e

s -

Shuttle

AShuttleAnimator

CONSIDER SINGLE ANIMATION

public static void main(String[] args) {
PlottedShuttle shuttle = new APlottedShuttle(50, 100);
OEFrame oeFrame = ObjectEditor.edit(shuttle);
oeFrame.hideMainPanel();
oeFrame.setSize (450, 450);
ShuttleAnimator shuttleAnimator = new AShuttleAnimator();
shuttleAnimator.animateFromOrigin(aShuttle, 5, 100);

Start animation from the user interface?

Extension of ShuttleAnimator that allows
parameters to be properties

We can edit these properties interactively and
start animation with them as parameters

| 4| [AFancyShuttleAnimator]

| Animation| Animate From Origin{Plotted Shuttle, int, int)
Animation| Animate From Origin({Plotted Shuttle, int, int, OEFrame)

MAIN VS. INTERACTIVE ANIMATION

public static void main(String[] args) {
PlottedShuttle shuttle = new APlottedShuttle(50, 100);
OEFrame oeFrame = ObjectEditor.edit(shuttle);
oeFrame.hideMainPanel();
oeFrame.setSize (450, 450);
ShuttleAnimator shuttleAnimator = new AShuttleAnimator();

shuttleAnimator.animateFromOrigini{aShuttle, 5, 1080);

public static void main (String[] args) {
PlottedShuttle shuttle = new APlottedShuttle(50, 100);
OEFrame oeFrame = ObjectEditor.edit(shuttle);
oeFrame.hideMainPanel();

oeFrame.setSize (450, 450);
FancyShuttleAnimator shuttleAnimatort = new AFancyShuttleAnimator();
ObjectEditor.edit(shuttleAnimator);

FANCY ANIMATOR

public class AFancyShuttleAnimator extends AShuttleAnimator
implements FancyShuttleAnimator {

int animationStep = 5;

int animationPauseTime = 100;

PlottedShuttle shuttle;

public AFancyShuttleAnimator(PlottedShuttle theShuttle) {
shuttle = theShuttle;

}

public int getAnimationStep() {
return animationStep;

}

public void setAnimationStep(int animationStep) {
this.animationStep = animationStep;

}

public int getAnimationPauseTime() {
return animationPauseTime;

}

public void setAnimationPauseTime(int animationPauseTime) {
this.animationPauseTime = animationPauseTime;

¥

ublic void animateShuttle() {
animateFromOrigin(shuttle, animationStep, animationPauseTime);

ho

\v—

VIDEO

" [anObsenvablePiotedsret NN, D B

Commaon

|%| [AFancyShuttlefnimator] = | B &
|Cﬂl‘|ll'l10ll AFancyShuttleAnimator

Animation Pause Time: 100

Animation Step: 5

PlottedShuttle shuttle = new
OEFrame oeFrame = ObjectEdj
oeFrame.hideMainPanel()\:
oeFrame.setSize (450,

ShuttleAnimator shuttl

public static void main (String|
PlottedShuttle shuttle = ne

OEFrame oeFrame = Object Shuttle); &b
oeFrame.hideMainPane QFSnga
oeFrame.setSize (450 & o
FancyShuttleAnimato eAnimato §§'669' ShuttleAnimator();

ObjectEditor.edit(shuttIeAnimator);

Ul Thread (created by Java)

executes loop 7@

CONSIDER SINGLE ANIMATION

7] ShuttlefinimationDriver [Java Application]

4 lectures.animation.loops.ShuttleAnimationDriver at localhosk58863
4 o Thread [main] (Suspended (breakpoint at line 16 in &

AShuttleAnimateor.animateFromOrigin(Plotted

Main thread
executes loop

1%

ShuttleAnimationDriver.main(String[]) ine: 20

p# Thread [AWT-Shutdown] (Running)
p# Daemon Thread [AWT-Windows] (Running)
p# Thread [AWT-EventQueue-0] (Running)
p# Thread [Tool Tip Thread] (Running)

7] AFancyShuttleAnimator [Java Application]
lectures.animation.threads. AFancyShutt
p# Thread [AWT-Shutdown] (Running)

p# Daemon Thread [AWT-Windows] (Running] | Ul Thread (created by
g# Thread [AWT-EventQueue-0] (Suspended (breakpoin Java) executes loop
AFancyShuttleAnimator{AShuttleAnimator).animate

101

AFancyShuttleAnimator.animateShuttle() line: 32

-] M orEoa [L - L

U

INTERACTIVE ANIMATION: NO SPECIAL THREAD

APlotted
Shuttle

AFancy

) AWT Thread
ShuttleAnimator

=

\ETl
Thread

[Z] [AFancyShuttleAnimator] e

Common | AFancyShuttieAnimator |

Animation| Animate From Origin{Plotted Shuttle, int, int)
Animation| Animate From Origin{Plotted Shuttle, int, int, OEFrame)
Animate Shuttie

INTERACTIVE ANIMATION: NO SPECIAL THREAD
(REVIEW)

APlotted
Shuttle

AFancy

) AWT Thread
ShuttleAnimator

=

\ETl
Thread

[Z] [AFancyShuttleAnimator] e

Common | AFancyShuttieAnimator |

Animation| Animate From Origin{Plotted Shuttle, int, int)
Animation| Animate From Origin{Plotted Shuttle, int, int, OEFrame)
Animate Shuttie

SINGLE ANIMATION FROM MAIN: NO SPECIAL
THREAD

Aot _>

I
FromOrigin
AShuttleAnimator AWT Thread
animate
Shuttle

setVisible()

Main
\ Thread |

4@

INTERLEAVING WITH Ul THREAD

while (true) {
//wait for and process paint,
// menu and other events
 — waitForAndProcessNextQueuedUIEvent();

}

LOOP EXECUTES

while (true) {
//wait for and process paint,
// menu and other events
waitForAndProcessNextQueuedUIEvent();

!

while (curY < originalY) {
ThreadSupport.sleep(
animationPauseTime);
curY += animationStep;
shuttle.setShuttleY(curY);

}

LOOPING THREAD UPDATES SHUTTLE AND
ENQUEUES REPAINT EVENT

while (true) {
//wait for and process paint,
// menu and other events
waitForAndProcessNextQueuedUIEvent();

!

while (curY < originalY) {
ThreadSupport.sleep(
animationPauseTime);
curY += animationStep;
shuttle.setShuttleY(curY);

}

A 4

//in Java component showing

//the shuttle

public void repaint() {
enqueueRepaintEvent(this);

}

LOOP RE-EXECUTES

while (true) {
//wait for and process paint,
// menu and other events
waitForAndProcessNextQueuedUIEvent();

!

while (curY < originalY) {
ThreadSupport.sleep(
animationPauseTime);
curY += animationStep;
shuttle.setShuttleY(curY);

}

LOOPING THREAD UPDATES SHUTTLE AND
ENQUEUES ANOTHER REPAINT EVENT

while (true) {
//wait for and process paint,
// menu and other events
waitForAndProcessNextQueuedUIEvent();

!

while (curY < originalY) {
ThreadSupport.sleep(
animationPauseTime);
curY += animationStep;
shuttle.setShuttleY(curY);

}

A 4

//in Java compoent showing

//the shuttle

public void repaint() {
enqueueRepaintEvent(this);

}

LOOP FINISHES

ﬁl

while (true) {
//wait for and process paint,
// menu and other events
processNextQueuedUIEvent();

}

Ul THREAD PROCESSES ENQUEUED PAINTS

while (true) {
//wait for and process paint,
// menu and other events
processNextQueuedUIEvent();

}

\ 4

public void paint(Graphics g)

4@

—>| //draw shuttle

}

Ul THREAD WAITS FOR NEXT EVENT

while (true) {
//wait for and process paint,
// menu and other events
 — waitForAndProcessNextQueuedUIEvent();

}

UI EVENT LOOP AND ANIMATIONS

AWT Thread

while (true) {
//wait for and process paint,
// menu and other events
wailtForAndProcessNextQueuedUI

Event Loop

v \/LLUV,

Mouse Click

l

Mouse Click

Repaint
Repaint
|£| [AFancyShuttleAnimator] (=] & -]
Common | AFancyShuttieAnimator |
Animation| Animate From Origin(Plotted Shuttle, int, int)
Animation| Animate From Origin(Plotted Shuttie, int, int, OEFrame)
Animate Shuttie

while (curY < originalY) {
ThreadSupport.sleep(
animationPauseTime);
curY += animationStep;
shuttle.setShuttleY(curY);
}

Listener Code

New UI event not processed until
listeners for previous event finish

Animating listener should create new
thread for animation code

INTERACTIVE ANIMATION: SPECIAL THREAD

JPanel

APlotted |

Shuttle

AShuttleAnimation
FromOrigin

AConcurreptFancy r AT Thread
ShuttleAnimator
animate
Shuttle
\ Shuttle setVisible()
[Z] [AFancyShuttleAnimator] (o 50] Animation

Common

Animation| Animate From Origin{Plotted Shuttle, int, int)
Animation| Animate From Origin{Plotted Shuttle, int, int, OEFrame)

setVisible()

\ETl

Thread

CONCURRENT FANCY ANIMATOR

public class AConcurrentShuttleAnimator extends
AFancyShuttleAnimator {
public AConcurrentShuttleAnimator(PlottedShuttle theShuttle) {
super(theShuttle);
}
public void animateShuttle() {
Thread thread =
new Thread(

(new AShuttleAnimationCommand(
this, shuttle, animationStep,
animationPauseTime)));

thread.start();

STARTING CONCURRENT FANCY ANIMATOR

public static void main (String[] args) {
PlottedShuttle shuttle = new APlottedShuttle(560, 100);
OEFrame oeFrame = ObjectEditor.edit(shuttle);
oeFrame.hideMainPanel();
oeFrame.setSize (450, 450);
FancyShuttleAnimator shuttleAnimator =

new AConcurrentShuttleAnimator();

ObjectEditor.edit(shuttleAnimator);

VIDEO

@J [AConcurmentShutiledAnimator]
Comman AConcurrentShuttlefnimator

Animation Pause Time:

Animation Step:

The animation
method is
synchronized

GUI PROCESSING

o Even if main thread terminates, the application

continues to run as long as a GUI has been created,
which creates the GUI thread.

o A single GUI thread 1s created for processing the
controller (menu/button/... processing) and view
(repaint) actions of all models.

o View updates cannot occur until controller returns.

o Controller action should result in a new thread if it
starts an animation .

o If a single animation is started from main then no
thread needs to be created a main thread executes
loop and separate GUI thread updates view.

REPAINT AND Ul THREAD SEMANTICS

o When a thread (GUI or some other) calls repaint on
a component C

o It puts a repaint event for C in the GUI event queue if
such an event is not already in the queue.

° 'Iih1li queue contains all Ul events such as mouse and key
clicks.

o The GUI thread performs the following loop
1. Waits for the GUI event queue to be non empty

2. Removes and services the next event from the queue

o If the next event is a repaint event for component C, it calls the
update() method in C, passing it a graphics object. The update()
method clears the component and calls paint() method.

o If the next event is not a repaint() event, then it does some
event-specific processing such as calhng a listener for the event.

3. Goes back to 1.

