
COMP 401

THREAD COORDINATION

Instructor: Prasun Dewan

2

INTERACTIVE TRAFFIC CONTROL

How does a thread wait

for an event?

3

WAIT FOR ANOTHER THREAD TO RELEASE

METHOD

AShuttle

Animator
synchronized

animateShuttle()

Shuttle
Animation
Thread 1

Shuttle
Animation
Thread 2

Shuttle
Animation
Thread 2

Waiting on previous event rather than some future
event to occur

4

WAIT FOR TIME TO PASS

Thread static sleep()

AShuttle

Animator
animateShuttle()

Shuttle
Animation

Thread

Shuttle
Animation

Thread

Could continuously “poll” for event  would not
react immediately and would waste CPU time

Need to wait for signal produced by some other
thread

5

ANALOGIES

waitFor

Proceed()
proceed()

6

WAIT AND NOTIFY

AClearance

Manager proceed() waitForProceed()

AWT Thread

Shuttle
Animation

Thread

Shuttle
Animation

Thread

ObjectEditor.edit(clearanceManager);

7

WAIT AND NOTIFY

public class AClearanceManager

 implements ClearanceManager {

 @Row(0)

 @ComponentWidth(100)

 public synchronized void proceed() {

 notify();

 }

 public synchronized void waitForProceed() {

 try {

 wait();

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

 }

}

wait and notify() implemented
by Object, must be executed in
synchronized methods as they

access shared Queue

proceed() invoked by AWT thread (executing ObjectEditor code)

waitForProceed() called by waiting shuttle animator thread

Wait releases synchronized
lock on object, makes calling
thread wait, and lets some

other thread get object
synchronized lock

8

WAIT AND NOTIFY

Object final wait() final notify()

AClearance

Manager
synchronized

proceed()

IS-A

synchronized

waitForProceed()

AWT Thread

Shuttle
Animation

Thread

wait and notify must be executed in synchronized
methods as they access shared Queue

Wait releases synchronized lock on object, makes
calling thread wait, and lets some other thread get

object synchronized lock

Shuttle
Animation

Thread

9

WAIT AND NOTIFY METHODS

Object

toString()

equals()

clone()

wait()

notify()

o.wait(): makes the calling thread wait (in a queue) until the next o.notify()
 call (by some other thread), allows other synchronized methods to execute

o.notify(): if some threads are waiting as a result of o.wait(), then unblocks
the first one who waited

wait changes some internal variable (a Queue) in class Object which is
accessed by notify

Since shared data structure accessed by multiple threads, wait() and notify()
must execute in synchronized methods

10

WAITING SHUTTLE ANIMATOR

public class AShuttleAnimatorWaitingForClearance

 extends AConcurrentShuttleAnimator {

 ClearanceManager clearanceManager;

 public AShuttleAnimatorWaitingForClearance(PlottedShuttle

theShuttle,

 ClearanceManager aClearanceManager) {

 super(theShuttle);

 clearanceManager = aClearanceManager;

 }

 protected void animateYFromOrigin(PlottedShuttle shuttle,

 int animationStep, int animationPauseTime,

 int startY, int endY) {

 clearanceManager.waitForProceed();

 super.animateYFromOrigin(shuttle, animationStep,

 animationPauseTime, startY, endY);

 }

}

11

MAIN
public class ManualShuttleTrafficControl
 extends ConcurrentShuttleLaunchAnimation {
 public static int ANIMATOR_FRAME_HEIGHT = 125;
 public static int CLEARANCE_FRAME_WIDTH = 200;
 public static int CLEARANCE_FRAME_HEIGHT = 150;
 static int animatorNumber;
 public static void displayShuttleAnimator(
 ShuttleAnimator shuttleAnimator1) {
 OEFrame frame = ObjectEditor.edit(shuttleAnimator1);
 frame.setLocation(START_FRAME_X +
 (animatorNumber * SHUTTLE_FRAME_WIDTH),
 START_FRAME_Y + SHUTTLE_FRAME_HEIGHT);
 frame.setSize(SHUTTLE_FRAME_WIDTH, ANIMATOR_FRAME_HEIGHT);
 animatorNumber++;
 }
 public static void displayClearanceManager(
 ClearanceManager aClearanceManager) {
 OEFrame frame = ObjectEditor.edit(aClearanceManager);
 frame.setLocation(START_FRAME_X,
 START_FRAME_Y + SHUTTLE_FRAME_HEIGHT/2);
 frame.setSize(CLEARANCE_FRAME_WIDTH, CLEARANCE_FRAME_HEIGHT);
 }

12

MAIN

 public static void main(String[] args) {

 ClearanceManager clearanceManager =

 new AClearanceManager();

 PlottedShuttle shuttle1 =

 new AnObservablePlottedShuttle(SHUTTLE1_X, SHUTTLE1_Y);

 displayShuttleFrame(shuttle1);

 ShuttleAnimator shuttleAnimator1 =

 new AShuttleAnimatorWaitingForClearance(

 shuttle1, clearanceManager);

 displayShuttleAnimator(shuttleAnimator1);

 PlottedShuttle shuttle2 =

 new AnObservablePlottedShuttle(SHUTTLE2_X, SHUTTLE2_Y);

 displayShuttleFrame(shuttle2);

 ShuttleAnimator shuttleAnimator2 =

 new AShuttleAnimatorWaitingForClearance(

 shuttle2, clearanceManager);

 displayShuttleAnimator(shuttleAnimator2);

 displayClearanceManager(clearanceManager);

 }

13

SIMULTANEOUS LAUNCH

14

ANALOGIES

proceedAll()
waitFor

Proceed()
proceed()

proceedAll()

Every one waiting
proceeds

One person proceeds

15

BROADCASTING CLEARANCE MANAGER:

NOTIFYALL

public class ABroadcastingClearanceManager extends AClearanceManager

 implements BroadcastingClearanceManager {

 @Row(1)

 @ComponentWidth(100)

 public synchronized void proceedAll() {

 notifyAll();

 }

}

16

NOTIFYALL

Object

toString()

equals()

clone()

wait()

notify()

o.wait(): makes the calling thread wait (in a queue) until the next o.notify()
 call (by some other thread)

notifyAll()

o.notify(): if some threads are waiting as a result of o.wait(), then unblocks
the first one who waited

o.notifyAll(): if some threads are waiting as a result of o.wait(), then
unblocks all of them

17

MAIN

public class ManualSimultaneousShuttleLaunchAnimation

 extends ManualShuttleTrafficControl {
 public static void main(String[] args) {

 ClearanceManager clearanceManager =

 new ABroadcastingClearanceManager();

 PlottedShuttle shuttle1 =

 new AnObservablePlottedShuttle(SHUTTLE1_X, SHUTTLE1_Y);

 displayShuttleFrame(shuttle1);

 ShuttleAnimator shuttleAnimator1 =

 new AShuttleAnimatorWaitingForClearance(shuttle1,

 clearanceManager);

 displayShuttleAnimator(shuttleAnimator1);

 PlottedShuttle shuttle2 =

 new AnObservablePlottedShuttle(SHUTTLE2_X, SHUTTLE2_Y);

 displayShuttleFrame(shuttle2);

 ShuttleAnimator shuttleAnimator2 =

 new AShuttleAnimatorWaitingForClearance(shuttle2,

 clearanceManager);

 displayShuttleAnimator(shuttleAnimator2);

 displayClearanceManager(clearanceManager);

 }

18

EQUAL ARBITRARY NUMBER OF SHUTTLES

Separate Y axes so
cannot synchronize on it

Even if axes shared, do
not really invoke any
methods on Y axes

Need to build our own
synchronization lock

that allows operations
on multiple objects to

be synchronized

A la reserving a bunch of
rooms for a conference

19

LOCK

public class ALock implements Lock {

 boolean locked;

 public synchronized void getLock() {

 if (locked) {

 try {

 wait();

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

 locked = true;

 }

 public synchronized void releaseLock() {

 locked = false;

 notify();

 }

}

20

COORDINATED SHUTTLE

public class AControlledShuttleAnimator

 extends AConcurrentShuttleAnimator {

 Lock lock;

 public AControlledShuttleAnimator(PlottedShuttle theShuttle,

 Lock aLock) {

 super(theShuttle);

 lock = aLock;

 }

 protected void animateYFromOrigin(PlottedShuttle shuttle,

 int animationStep, int animationPauseTime,

 int startY, int endY) {

 lock.getLock();

 super.animateYFromOrigin(shuttle, animationStep,

 animationPauseTime, startY, endY);

 lock.releaseLock();

 }

}

21

COORDINATED SHUTTLE MAIN
public class AutomaticAirTrafficControl {

 static final int SHUTTLE_FRAME_X = 50;

 static final int START_FRAME_Y = 50;

 static final int FRAME_WIDTH = 400;

 static final int FRAME_HEIGHT = 275;

 static final int ANIMATION_FRAME_X =

 SHUTTLE_FRAME_X + FRAME_WIDTH;

 static int shuttleNumber = 0;

 static void createAndDisplayShuttleAndAnimator(int shuttleX,

 int shuttleY, Lock aLock) {

 int frameY = START_FRAME_Y + shuttleNumber*FRAME_HEIGHT;

 PlottedShuttle shuttle =

 new AnObservablePlottedShuttle(shuttleX, shuttleY);

 OEFrame shuttleFrame = ObjectEditor.edit(shuttle);

 shuttleFrame.hideMainPanel();

 shuttleFrame.setLocation(SHUTTLE_FRAME_X, frameY);

 shuttleFrame.setSize(FRAME_WIDTH, FRAME_HEIGHT);

 ShuttleAnimator shuttleAnimator =

 new AControlledShuttleAnimator(shuttle, aLock);

 OEFrame animatorFrame = ObjectEditor.edit(shuttleAnimator);

 animatorFrame.setSize(FRAME_WIDTH, FRAME_HEIGHT);

 animatorFrame.setLocation(ANIMATION_FRAME_X, frameY);

 shuttleNumber++;

}

22

COORDINATED SHUTTLE MAIN

 public static void main(String[] args) {

 Lock lock = new ALock();

 createAndDisplayShuttleAndAnimator(100, 100, lock);

 createAndDisplayShuttleAndAnimator(100, 50, lock);

 createAndDisplayShuttleAndAnimator(50, 50, lock);

 }

}

23

WAIT, NOTIFY, NOTIFYALL

 Methods provided by Object

 Can be used to make threads wait until some
condition decided by our program is met.

 Wait on an object makes a thread block until a
notify or notifyAll() is executed on that object

 All three methods must be executed in synchronized
methods of the object.

 Waiting thread releases synchronized Object lock so
some other object can execute notify() or notifyAll()
on that object.

 Notify() and notifyAll() can be executed when
condition to proceed occurs

 There are complicated ways to use them you will see
in OS courses

24

25

SLEEP FOR DEMOING

public class ABMISpreadsheetInteractiveDemoer {

 public static void main (String[] args) {

 ClearanceManager clearanceManager = new AClearanceManager();

 ObjectEditor.edit(clearanceManager);

 BMISpreadsheet bmiSpreadsheet = new ABMISpreadsheet();

 bmiSpreadsheet.setHeight(1.77);

 bmiSpreadsheet.setWeight(75);

 OEFrame editor = ObjectEditor.edit(bmiSpreadsheet);

 ThreadSupport.sleep (2000);

 editor.select(bmiSpreadsheet, "Weight");

 bmiSpreadsheet.setWeight(70);

 editor.refresh();

 ThreadSupport.sleep (2000);

 editor.select(bmiSpreadsheet, "Height");

 bmiSpreadsheet.setHeight(0);

 editor.refresh();

 ThreadSupport.sleep (2000);

 editor.select(bmiSpreadsheet, "Weight");

 bmiSpreadsheet.setWeight(0);

 editor.refresh();

 }

}

26

MAIN

public class ABMISpreadsheetInteractiveDemoer {

 public static void main (String[] args) {

 ClearanceManager clearanceManager = new AClearanceManager();

 ObjectEditor.edit(clearanceManager);

 BMISpreadsheet bmiSpreadsheet = new ABMISpreadsheet();

 bmiSpreadsheet.setHeight(1.77);

 bmiSpreadsheet.setWeight(75);

 OEFrame editor = ObjectEditor.edit(bmiSpreadsheet);

 clearanceManager.waitForProceed();

 editor.select(bmiSpreadsheet, "Weight");

 bmiSpreadsheet.setWeight(70);

 editor.refresh();

 clearanceManager.waitForProceed();

 editor.select(bmiSpreadsheet, "Height");

 bmiSpreadsheet.setHeight(0);

 editor.refresh();

 clearanceManager.waitForProceed();

 editor.select(bmiSpreadsheet, "Weight");

 bmiSpreadsheet.setWeight(0);

 editor.refresh();

 }

}

27

INTERACTIVE DEMOER

