
COMP 401: THE DUAL ROLES OF

A CLASS

Instructor: Prasun Dewan (FB 150, dewan@unc.edu)

2

SCRIPTS ANALOGY

Script

Performer

Theater

Follows

Program

Follows

3

STRUCTURING IN SCRIPTS

Script (Folder)

Act (File)Act (File) Act (File)Act (File)

SceneScene Scene Scene

Sentence Sentence

4

SHAKESPEARE PLAYS VS. TWEETS

Sentence

TweetScript (Folder)

Act (File)Act (File) Act (File)Act (File)

SceneScene Scene Scene

Sentence Sentence

5

STRUCTURING IN JAVA PROGRAMS

Package (Folder)

Class (File)Class (File) Class (File)Class (File)

Global (Static)

Declaration

Local

Declaration
Statement

MethodMethod MethodMethod

6

JAVA VS. SCRIPTING LANGUAGES

Package (Folder)

Class (File)Class (File) Class (File)Class (File)

Global (Static)

Declaration

Local

Declaration
Statement

MethodMethod MethodMethod

Declaration

Perl

Statement

Java is designed for

“Shakespearean” programs

Java is designed for

“Shakespearean” programs

7

long product = 1;
while (n > 0) {

product *= n;
n -= 1;

}

LOOP AND VARIABLE

8

public static long loopingFactorial(int n) {
long product = 1;
while (n > 0) {

product *= n;
n -= 1;

}
return product;

}

METHOD ENCAPSULATION

9

package lectures.java_basics_overview;
public class Factorials {
public static long loopingFactorial(int n) {
long product = 1;
while (n > 0) {

product *= n;
n -= 1;

}
return product;

}
}

CLASS AND PACKAGE ENCAPSULATION

Static?Static?

Every class should be in a

named package

Every class should be in a

named package

Package declaration is optionalPackage declaration is optional

10

package lectures.java_basics_overview;
public class Permutations{
public static long permutations(int n, int r) {
return Factorials.loopingfactorial(n) /

Factorials.loopingFactorial(n-r);
}

}

FACTORIAL USER

11

package lectures.java_basics_overview;
public class StaticLoopingFactorialSpreadsheet {
static int number;
static long factorial;
public static int getNumber() {
return number;

}
public static void setNumber(int newVal) {
number = newVal ;
factorial = Factorials.loopingFactorial(number);

}
public static long getFactorial() {
return factorial;

}
}

REMEMBERING FACTORIALS

Can be accessed

from arbitrary

classes in other

packages

Can be accessed

from arbitrary

classes in other

packages

Cannot be

accessed from

arbitrary classes

in other packages

Cannot be

accessed from

arbitrary classes

in other packages

Computes the factorial of a stored number ~ grade

spreadsheet computing the grade of stored scores

Computes the factorial of a stored number ~ grade

spreadsheet computing the grade of stored scores

12

CLASSES AS MODULES

Class (File)Class (File)

Global (Static)

Declaration

Local

Declaration
Statement

MethodMethod MethodMethod

Classes are modules that put walls around the

methods and global variables in a program

Classes are modules that put walls around the

methods and global variables in a program

These walls make only certain methods and

variables visible outside

Principles about what should

be visible outside?

Principles about what should

be visible outside?

13

package lectures.java_basics_overview;
public class StaticLoopingFactorialSpreadsheet {
static int number;
static long factorial;
public static int getNumber() {
return number;

}
public static void setNumber(int newVal) {
number = newVal ;
factorial = Factorials.loopingFactorial(number);

}
public static long getFactorial() {
return factorial;

}
}

REMEMBERING FACTORIALS (REVIEW)

Can be accessed

from arbitrary

classes in other

packages

Can be accessed

from arbitrary

classes in other

packages

Cannot be

accessed from

arbitrary classes

in other packages

Cannot be

accessed from

arbitrary classes

in other packages

Computes the factorial of a stored number ~ grade

spreadsheet computing the grade of stored scores

Computes the factorial of a stored number ~ grade

spreadsheet computing the grade of stored scores

14

CLASSES AS MODULES

Class (File)Class (File)

Global (Static)

Declaration

Local

Declaration
Statement

MethodMethod MethodMethod

Classes are modules that put walls around the

methods and global variables in a program

Classes are modules that put walls around the

methods and global variables in a program

These walls make only certain methods and

variables visible outside

Principles about what should

be visible outside?

Principles about what should

be visible outside?

15

LEAST PRIVILEGE/NEED TO KNOW

/ENCAPSULATION/ABSTRACTION

Do not make non

final variable

public

Do not make non

final variable

public

Do not give user

of some code

more rights than

it needs

Do not give user

of some code

more rights than

it needs

Export state

through

properties

Export state

through

properties

package lectures.java_basics_overview;
public class StaticLoopingFactorialSpreadsheet {
static int number;
static long factorial;
public static int getNumber() {
return number;

}
public static void setNumber(int newVal) {
number = newVal ;
factorial = Factorials.loopingFactorial(number);

}
public static long getFactorial() {
return factorial;

}
}

16

CLASSIFYING METHODS

FunctionFunction

package lectures.java_basics_overview;
public class StaticLoopingFactorialSpreadsheet {
static int number;
static long factorial;
public static int getNumber() {
return number;

}
public static void setNumber(int newVal) {
number = newVal ;
factorial = Factorials.loopingFactorial(number);

}
public static long getFactorial() {
return factorial;

}
}

ProcedureProcedure

GetterGetter

SetterSetter

FunctionFunction

17

PROPERTIES

Number: intNumber: int

Factorial: intFactorial: int

package lectures.java_basics_overview;
public class StaticLoopingFactorialSpreadsheet {
static int number;
static long factorial;
public static int getNumber() {
return number;

}
public static void setNumber(int newVal) {
number = newVal ;
factorial = Factorials.loopingFactorial(number);

}
public static long getFactorial() {
return factorial;

}
}

18

PROPERTY WITH NO ASSOCIATED VARIABLE?

package lectures.java_basics_overview;
public class StaticLoopingFactorialSpreadsheet {
static int number;
public static int getNumber() {
return number;

}
public static void setNumber(int newVal) {
number = newVal ;

}
public static long getFactorial() {
return Factorials.loopingFactorial(number);

}
}

Number: intNumber: int

Factorial: intFactorial: int

19

READ-ONLY AND EDITABLE STATIC PROPERTIES

public class C

{

}

public static T getP() {

...

}

public static void setP(T newValue)

{

...

}

Typed, Named Unit of Exported Class State

Name P

Type T

Name P

Type T

Read-onlyRead-only

EditableEditable

Getter method

Setter method

newPobtainP
Violates Bean

convention

Bean

Bean

convention:

For humans

and tools

20

READONLY AND EDITABLE PROPERTIES

NumberNumber

FactorialFactorial

readonly

editable

package lectures.java_basics_overview;
public class StaticLoopingFactorialSpreadsheet {
static int number;
static long factorial;
public static int getNumber() {
return number;

}
public static void setNumber(int newVal) {
number = newVal ;
factorial = Factorials.loopingFactorial(number);

}
public static long getFactorial() {
return factorial;

}
}

21

DEPENDENT AND INDEPENDENT

Dependent

Independent

package lectures.java_basics_overview;
public class StaticLoopingFactorialSpreadsheet {
static int number;
static long factorial;
public static int getNumber() {
return number;

}
public static void setNumber(int newVal) {
number = newVal ;
factorial = Factorials.loopingFactorial(number);

}
public static long getFactorial() {
return factorial;

}
}

NumberNumber

FactorialFactorial

22

STORED AND COMPUTED

package lectures.java_basics_overview;
public class StaticLoopingFactorialSpreadsheet {
static int number;
public static int getNumber() {
return number;

}
public static void setNumber(int newVal) {
number = newVal ;

}
public static long getFactorial() {
return Factorials.loopingFactorial(number);

}
}

Computed

Stored

NumberNumber

FactorialFactorial

23

MY FACTORIAL

A second

spreadsheet?

A second

spreadsheet?

package lectures.java_basics_overview;
public class StaticLoopingFactorialSpreadsheet {
static int number;
static long factorial;
public static int getNumber() {
return number;

}
public static void setNumber(int newVal) {
number = newVal ;
factorial = Factorials.loopingFactorial(number);

}
public static long getFactorial() {
return factorial;

}
}

24

REUSE THROUGH COPY AND PASTE

package lectures.java_basics_overview;
public class StaticLoopingFactorialSpreadsheet2 {
static int number;
static long factorial;
public static int getNumber() {
return number;

}
public static void setNumber(int newVal) {
number = newVal ;
factorial = Factorials.loopingFactorial(number);

}
public static long getFactorial() {
return factorial;

}
}

StaticLoopingFactorialSpreadsheet.setNumber(2);

StaticLoopingFactorialSpreadsheet2.setNumber(4);

Initial workInitial work
Code

duplication

Code

duplication
MaintenanceMaintenance

25

CLASSES AS MODULES

Class (File)Class (File)

Global (Static)

Declaration

Local

Declaration
Statement

MethodMethod MethodMethod

Classes are modules that put walls around the

methods and global variables in a program

Classes are modules that put walls around the

methods and global variables in a program

These walls make only certain methods and

variables visible outside

26

CLASSES AS TYPES

Class (File)Class (File)

Global (Static)

Declaration

Local

Declaration
Statement

MethodMethod MethodMethod

Classes are ways for programmers to define their

own types

Classes are ways for programmers to define their

own types

Values of these types are created by instantiating

the classes and share the behavior defined by the

type. These values have copies of the dynamic

variables defined by the class

A class is a template or blue

print for generating instances

A class is a template or blue

print for generating instances

27

ALoopingFactorialSpreadsheet factorial1 =
new ALoopingFactorialSpreadsheet ();

ALoopingFactorialSpreadsheet factorial2 =
new ALoopingFactorialSpreadsheet ();

ALoopingFactorialSpreadsheet factorial =
new ALoopingFactorialSpreadsheet ();

factorial1.setNumber(2);
factorial2.setNumber(4);

CLASSES AS TYPES

public class ALoopingFactorialSpreadsheet {
int number;
long factorial;
public int getNumber() {
return number;

}
public void setNumber(int newVal) {
number = newVal ;
factorial = Factorials.loopingFactorial(number);

}
public long getFactorial() {
return factorial;

}
}

A new set of instance

variables dynamically

created each time a new

instance is created

A new set of instance

variables dynamically

created each time a new

instance is created

Dynamically creating a

Class instance

Dynamically creating a

Class instance

Class as

type

Class as

type

Instance is essentially

an extra parameter to

instance method

Instance is essentially

an extra parameter to

instance method

No static: instance

variables and instance

methods

No static: instance

variables and instance

methods

28

JAVA INSTANCEOF BOOLEAN OPERATOR

(new ALoopingFactorialSpreasheet()) instanceof

ALoopingFactorialSpreasheet
true

(new ALoopingFactorialSpreasheet()) instanceof Factorials false

(new ALoopingFactorialSpreasheet()) instanceof String false

true and false are values of Java type booleantrue and false are values of Java type boolean

If class of object o is T then o instanceof T returns trueIf class of object o is T then o instanceof T returns true

instanceof is Java keywordinstanceof is Java keyword

29

DOUBLE ROLE OF CLASS

Classes are modules that puts walls around the

methods and variables in a program

Classes are modules that puts walls around the

methods and variables in a program

These walls make only certain methods and

variables visible outside

Classes are ways for programmers to define their

own types

Classes are ways for programmers to define their

own types

Values of these types are created by instantiating

the classes

30

PROGRAM OBJECTS~ PHYSICAL OBJECTS

Natural Objects

Manufactured Objects

~ Program Components~ Program Components

31

FACTORY ANALOGY FOR BOTH ROLES

Operations

accelerateaccelerate

classclass instanceinstance

instanceinstance

Instance
Methods

getFactorial()getFactorial()

start

assembly

start

assembly

Factory Operations

Class (static) Methods

Since class can be active, more
like a factory than a blue print.
Since class can be active, more
like a factory than a blue print.

looping

Factorial()

looping

Factorial() Factory-metaphor != factory
pattern.

Factory-metaphor != factory
pattern.

Class (instance) method: method
invoked on class (class instance)
Class (instance) method: method
invoked on class (class instance)

Factory

32

PROPERTIES OF STATIC SPREADSHEET

package lectures.java_basics_overview;
public class StaticLoopingFactorialSpreadsheet {
static int number;
static long factorial;
public static int getNumber() {
return number;

}
public static void setNumber(int newVal) {
number = newVal ;
factorial = Factorials.loopingFactorial(number);

}
public static long getFactorial() {
return factorial;

}
}

NumberNumber

FactorialFactorial

33

PROPERTIES OF DYNAMIC SPREADSHEET?

NumberNumber

FactorialFactorial

public class ALoopingFactorialSpreadsheet {
int number;
long factorial;
public int getNumber() {
return number;

}
public void setNumber(int newVal) {
number = newVal ;
factorial = Factorials.loopingFactorial(number);

}
public long getFactorial() {
return factorial;

}
}

34

READ-ONLY AND EDITABLE STATIC PROPERTIES

public class C

{

public static T getP() {

...

}

public static void setP(T newValue)

{

...

}

Typed, Named Unit of Exported Class State

Name P

Type T

Name P

Type T

Read-onlyRead-only

EditableEditable

Bean

35

READ-ONLY AND EDITABLE INSTANCE

PROPERTIES

public class C

{

}

public getP() {

...

}

public void setP(T newValue) {

...

}

Typed, Named Unit of Exported Class State

Name P

Type T

Name P

Type T

Read-onlyRead-only

EditableEditable

Bean

No staticNo static

36

STATIC GLOBAL VARIABLES

Static (global) variable
created in memory
without creating an

object

Static (global) variable
created in memory
without creating an

object

Global variable declared
outside a method

Global variable declared
outside a method

static void setNumber (int newVal)

{

number = newVal;

}

static int number = 1;

Static methods can access only
static global variables as they

are invoked on classes and

would not know which

instance’s variables should

be accessed

Static methods can access only
static global variables as they

are invoked on classes and

would not know which

instance’s variables should

be accessed

37

INSTANCE GLOBAL VARIABLES

Instance (global) variable
created in memory as

part of a specific object

Instance (global) variable
created in memory as

part of a specific object

void setNumber (int newVal)

{

number = newVal;

}

int number = 1;

Instance methods are invoked on
a specific instance and can access
that instance’s variables and also

static variables of the class

Instance methods are invoked on
a specific instance and can access
that instance’s variables and also

static variables of the class

Static variables are more global
than instance variables as they
can accessed by both instance

and static methods

Static variables are more global
than instance variables as they
can accessed by both instance

and static methods

38

MORE ON INSTANCE VS. STATIC

110 (401
Prerequisite

)

Static State PowerPoint PDF Static
Chapter

lectures.static_state P

110 and 401 State and
Properties (9/5,

9/10)

PowerPoint PDF State
Chapter

Video lectures.state.properties Package

110 and 401 Object-first
Introduction to
Programming
(8/27, 8/29)

PowerPoint PDF Objects
Chapter

lectures.objects Package

http://www.cs.unc.edu/~dewan/comp401/current/Lectures/StaticState.pptx
http://www.cs.unc.edu/~dewan/comp401/current/Lectures/StaticState.pdf
http://www.cs.unc.edu/~dewan/comp401/current/Class Notes/8_Static_Notes.pdf
http://www.cs.unc.edu/~dewan/j2h/JavaTeaching/lectures.static_state.index.html
http://www.cs.unc.edu/~dewan/comp401/current/Lectures/StateProperties.pptx
http://www.cs.unc.edu/~dewan/comp401/current/Lectures/StateProperties.pdf
http://www.cs.unc.edu/~dewan/comp401/current/Class Notes/4_State_Notes.pdf
http://www.cs.unc.edu/~dewan/comp401/current/Videos/StateProperties.avi
http://www.cs.unc.edu/~dewan/j2h/JavaTeaching/lectures.state_properties.index.html
http://www.cs.unc.edu/~dewan/comp401/current/Lectures/Objects.pptx
http://www.cs.unc.edu/~dewan/comp401/current/Lectures/Objects.pdf
http://www.cs.unc.edu/~dewan/comp401/current/Class Notes/2_Objects_Notes.pdf
http://www.cs.unc.edu/~dewan/j2h/JavaTeaching/lectures.objects.index.html

39

DOUBLE ROLE OF CLASS

Classes are modules that puts walls around the

methods and variables in a program

Classes are modules that puts walls around the

methods and variables in a program

These walls make only certain methods and

variables visible outside

Classes are ways for programmers to define their

own types

Classes are ways for programmers to define their

own types

Values of these types are created by instantiating

the classes

In either case they are used to create reusable

code

In either case they are used to create reusable

code

Reusable code is often packaged as libraries to be

used by other projects

Reusable code is often packaged as libraries to be

used by other projects

