
COMP 401

CONCLUDING REMARKS

Instructor: Prasun Dewan

2

COURSE  FUTURE

Project

Topics

Praxes

Diaries

Quizzes

Exam(s)

Internships

LAship

Research

Advanced Courses

Building an app

3

TOPICS

Topics

Scanning

Objects

Overloading

Properties

Interfaces

Shape objects

Composite objects

Collections

Inheritance

MVC, Observer

Toolkits

Graphics (painting) views

Assertions

Animation

Command Objects

Threads

Synchronized Methods

Wait and Notify

Abstract Classes

Recursive Parsing and Grammars

Trees, DAGs

Generics

Factories, Adapter, Delegation

Exceptions

Advanced Java Features

Advanced Algorithms

Design Patterns

Complex Data Structures

4

QUICK REVIEW OF DESIGN PATTERNS

The design
patterns taught

in Comp 401

Prasun Dewan, Teaching Inter-Object Design Patterns to Freshmen.
Proceedings of ACM SIGCSE. 2005

PPT

http://dl.acm.org/citation.cfm?id=1047498&dl=ACM&coll=DL&CFID=62760571&CFTOKEN=27987502
http://www.cs.unc.edu/~dewan/talks/designpatterns.ppt

5

FUTURE OPTIONAL COURSES

Topics

Scanning

Objects

Overloading

Properties

Interfaces

Shape objects

Composite objects

Collections

Inheritance

MVC, Observer

Toolkits

Graphics (painting) views

Assertions

Animation

Command Objects

Threads

Synchronized Methods

Wait and Notify

Abstract Classes

Recursive Parsing and Grammars

Trees, DAGs

Generics

Factories, Adapter, Delegation

Exceptions

Operating Systems

Compilers/PL/Internet
Protocols

Software Engineering
(Design Patterns)

Human Computer
Interaction

6

LARGE-SCALE OBJECT-ORIENTED PROGRAMMING!

Large in terms of number of number
of classes/types

Defined by you (Programmer-
defined)

Count them!

Army of “paint listeners”

Largest (in terms of components)
you may write at UNC or elsewhere

Refactoring

7

PROGRAMMING PROCESS AND TOOLS

Class path and libraries (Eclipse)

Debugging (Eclipse)
Using a Test Suite (JUnit)

Following Requirements

8

STYLE CHECKS (CHECK STYLE)  SECURITY

9

PRAXIS: ACTIVE LEARNING, MAINTENANCE,

VERSION CONTROL

Sharing code and version
control (GIT)

10

INTERPRETER OF PROGRAMMING LANGUAGE

11Barbara Ericson ericson@cc.gatech.edu

Georgia Institute of Technology

USE METHODS

Drag method names

from the details

window Methods area

 to world.my first method

Can Group Methods

 Do in order

One after the other

 Or Do together

At the same time

You built an Alice-like visual programming environment
that can be used by others to program

Beginning programmers learn how to use Alice

12

BUILDING AN APP

Scanning

Parsing

Handling of User and Internal Errors

Geometry Processing

Flexible, Multiple User Interface

Use of Window Systems and Toolkits

Concurrency

13

LOGICAL DATA STRUCTURE VISUALIZER, STYLE-

BASED TOOL, TRAINING WHEELS (OBJECTEDITOR)

public Line getXAxis() {return xAxis;}
public Line getYAxis() {return yAxis;}
public StringShape getXLabel() {return xLabel;}
public StringShape getYLabel() {return yLabel;}
public int getAxesLength() {return axesLength;}
public void setAxesLength(int anAxesLength) {
axesLength = anAxesLength;
xAxis.setWidth(axesLength);
yAxis.setHeight(axesLength);
xAxis.setX(toXAxisX());
xAxis.setY(toXAxisY());
yAxis.setX(toYAxisX());
…
}

14

DIARIES AND Q/A

Written and oral skills

Abstraction

15

QUIZZES AND EXAMS

Make you (and me) think about and identify what you have
programmed

16

MODULARITY

Class Decomposition into Methods: Recursive descent
programming

Program Decomposition into Classes: Design Patterns

Process Decomposition into Threads: wait, notify,
synchronized methods, command objectys

17

WHAT DID YOU NOT LEARN

Distributed Systems

Efficient and Complex Data Structures and Algorithms
(Implemented by Java)

How a computer system works on regular and mobile
computing (Architecture, OS, Compilers)

Proving things about what your program can (not) do

Team Programming

