COMP 401: CONSTRUCTORS AND
POINTERS

‘ Instructor: Prasun Dewan (FB 150, dewan@unc.edu)

NS

A CLASS (WITH PROPERTIES)

public class ALoopingFactorialSpreadsheet {
int number;
long factorial;
public int getNumber() {
return number;
}
public void setNumber(int newVal) {
number = newVal ;
factorial = Factorials.loopingFactorial (number);
}
public long getFactorial() {
return factorial;

}
}

ALoopingFactorialSpreadsheet factoriall =
new ALoopingFactorialSpreadsheet ();
ALoopingFactorialSpreadsheet factorial =
new ALoopingFactorialSpreadsheet ();
ALoopingFactorialSpreadsheet factorial =
new ALoopingFactorialSpreadsheet ();
factoriall.setNumber(2);
factorial2.setNumber(2);

Weight

Height

BMI

ANOTHER CLASS WITH PROPERTIES

}

public class ABMISpreadsheet {

double height;

double weight;

public double getWeight() {
return weight;

}

public void setWeight(double newWeight) {
weight = newWeight;

}

public double getHeight() {
return height;

}

public void setHeight(double newHeight) {
height = newHeight;

}

public double getBMI() {
return weight/(height*height);

}

USING BMISPREADSHEET

public class BMISpreadsheetUser {
public static void main(String[] args) {
ABMISpreadsheet bmiSpreadsheet = new ABMISpreadsheet();
bmiSpreadsheet.setHeight(1.77);
bmiSpreadsheet.setWeight(75);
System.out.println(bmi.getBMI());

ABMISPREADSHEET AND CONSTRUCTOR

public class|ABMISpreadsheet |{

double height;
double weight;

public|ABMISpreadsheet(doub1e theInitialHeight, double theInitialWeight) {
setHelg elnitialHeight);

setWeight(theInitialWeight); Constructor name

} must be the name of
public double getWeight() {

return weight;

the class

}

public void setWeight(double newWeight) { Constructor name i1s
weight = newWeight; also the type of

} object returned

public double getHeight() {
return height;

} Constructors do not

pUbliC void setHeight(double newHeight) { appear in interfaces
height = newHeight;

}

pu?i ABMISpreadsheet aBMISpreadsheet = new ABMISpreadsheet(‘

} 1.77, 75.0);

N

= 70\

EVERY CLASS HAS A CONSTRUCTOR

public class ABMISpreadsheet {

}

double height;

double weight;

public double getWeight() {
return weight;

}

public void setWeight(double newWeight) {
weight = newWeight;

}

public double getHeight() {
return height;

}

public void setHeight(double newHeight) {
height = newHeight;

}

public double getBMI() {
return weight/(height*height);

}

-

EQUIVALENT CLASS CREATED BY JAVA

public class ABMISpreadsheet {

}

double height;

double weight;
public ABMISpreadsheet() { 4?_————"”'_—_—_—_—_—_——

}
public double getWeight() {

return weight;

}

public void setWeight(double newWeight) {
weight = newWeight;

}

public double getHeight() {
return height;

}

public void setHeight(double newHeight) {
height = newHeight;

}

public double getBMI() {
return weight/(height*height);

}

Inserted in Object

Code not 1n Source
Code

If Programmer
Specifies no
Constructor, Java
mserts a null
constructor

-

A CLASS CAN HAVE MULTIPLE CONSTRUCTORS

public class ABMISpreadsheet {

double height;
double weight; = — Overloaded
?ubllc ABMISpreadsheet() {] Constructor

public ABMISpreadsheet(double theInitialHeight, double
theInitialWeight) {
setHeight(theInitialHeight);
setWeight(theInitialWeight);

Two methods with

}
public double getWeight() { the same name are
return weight; Overloaded
}
public void setWeight(double newWeight) {
weight = newWeight; :
} The lists of
public double getHeight() { parameter types
y return height; must be different
public void setHeight(double newHeight) {
height = newHeight; The method headers
) t be different
public double getBMI() { e
return weight/(height*height); 1gnoring the return
} 4

}

A CLASS CAN HAVE MULTIPLE CONSTRUCTORS
(REVIEW)

public class ABMISpreadsheet {

double height;
double weight; = — Overloaded
?ubllc ABMISpreadsheet() {] Constructor

public ABMISpreadsheet(double theInitialHeight, double
theInitialWeight) {
setHeight(theInitialHeight);
setWeight(theInitialWeight);

Two methods with

}
public double getWeight() { the same name are
return weight; Overloaded
}
public void setWeight(double newWeight) {
weight = newWeight; :
} The lists of
public double getHeight() { parameter types
y return height; must be different
public void setHeight(double newHeight) {
height = newHeight; The method headers
) t be different
public double getBMI() { e
return weight/(height*height); 1gnoring the return
} 4

}

USING OVERLOADED CONSTRUCTORS

public class BMISpreadsheetUser {
public static void main(String[] args) {
ABMISpreadsheet bmiSpreadsheet = new ABMISpreadsheet();
bmiSpreadsheet.setHeight(1.77);
bmiSpreadsheet.setWeight(75);
/lequivalent computation
bmiSpreadsheet = new ABMISpreadsheet(1.77, 75);

i ~

Using
Overloaded

Constructor

7

ARE (PROGRAMMER-DEFINED) CONSTRUCTORS
EVER ABSOLUTELY NECESSARY?

ABMISpreadsheet aBMISpreadsheet = new ABMISpreadsheet(
1.77, 75.0);

ABMISpreadsheet aBMISpreadsheet = new ABMISpreadsheet();
aBMISpreadsheet.setHeight(1.77);
aBMISpreadsheet.setWeight(75.0);

Programmer can
initialize state after Always possible?
Instantiation (requires
a bit more work but
possible 1n this case)

Some part of the exported
state (e.g. height) may be
readonly

Can use the full
functionality of class
without programmer-

defined constructor

IMMUTABLE OBJECTS

String s “hello";

String s = new String("hello");

CHANGING VARIABLE VS. OBJECT

String s = "hello";

String hello = s;

s += " world";
System.out.println (s == hello);,;

Assigns to s a new String object

Does not change the original String

false

StringBuffer s = new StringBuffer ("hello");

StringBuffer hello = s;
s.append (" world");
System.out.println (s == hello),

true

Does not reassign s

Reassigning a new object less
efficient

Changes the object to which s points

OBJECTS VS. PRIMITIVES

public class BMISpreadsheetUser {

public static void main(String[] args) {

ABMISpreadsheet bmiSpreadsheet = new ABMISpreadsheet();

bmiSpreadsheet.setHeight(1.77);
bmiSpreadsheet.setWeight(75);

double computedBMI =Db

preatlsheet.get BMI();

System.out.priitln(computedBMI)

Primitive Primitive

Variable Value

Object
Variable

Object Value

p

S
N

PRIMITIVES VS. OBJECT VARIABLES

[Primitive Variabll

double computed BMI
= 22.5;

double weight = 75.8;

[Object Variables.

ABMISpreadsheet
bmiSpreadsheet =

new
ABMISpreadsheet(1.77, 75)

variables memory
computed BMI 22.5
weight 75.8
92 height 1.77
weight 75
bmiSpreadsheet 52

Y

PRIMITIVES VS. OBJECTS STORAGE

ABMISpreadsheet bmiSpreadsheetl = new ABMISpreadsheet();
ABMISpreadsheet bmiSpreadsheet2 = new ABMISpreadsheet();
bmiSpreadsheetl.setHeight(1.77);

bmiSpreadsheet2 = bmiSpreadsheetl;

addresses variables | memory
ariable 22 —> height | 3.77
/ weight 0
Primitive
Value 64 height 0
1ght
Object wele
Variable
Object Value .
(Address) bmiSprea 64
bmiSpreadsheetl 52

UNINITIALIZED PRIMITIVE VS. OBJECT VARIABLES

public class BMISpreadsheetUser {

public static void main(String[] args) {

ABMISpreadsheet bmiSpreadsheet;
bmiSpreadsheet.setHeight(1.77);

bmiSpreadsheet.setWeight(75);

double computedBMI,;

System.out println(computed BMN);

Uninitialized

Uninitialized
Primitive
Variable

Object
Variable

DEFAULT VALUES FOR VARIABLES

[R)
Primitive Varlab.

double computedBMI,

double weight;

| Object Variables |

ABMISpreadsheet
bmiSpreadsheet;

variables memory
computed BMI 0.0
weight 0.0
bmiSpreadsheet null

Legal

double
values

INVOKING METHODS ON NULL

o bmiSpreadsheet.get BMI()

null pointer exception

Exception 1s an unexpected event (error)

Guilty method will be terminated and exception reported
Will see other exceptions later

EXTRA

WHY IMMUTABLE STRING?

String sl = "hello world";
String s2 = "hello world"; true
System.out.println (sl == s2);

WHY IMMUTABLE STRING?

String sl = new String ("hello world");
String s2 = new String ("hello world");
System.out.println (sl == s2);

false

