
COMP 401: CONSTRUCTORS AND

POINTERS

Instructor: Prasun Dewan (FB 150, dewan@unc.edu)

2

ALoopingFactorialSpreadsheet factorial1 =
 new ALoopingFactorialSpreadsheet ();
ALoopingFactorialSpreadsheet factorial =
 new ALoopingFactorialSpreadsheet ();
ALoopingFactorialSpreadsheet factorial =
 new ALoopingFactorialSpreadsheet ();
factorial1.setNumber(2);
factorial2.setNumber(2);

A CLASS (WITH PROPERTIES)

public class ALoopingFactorialSpreadsheet {
 int number;
 long factorial;
 public int getNumber() {
 return number;
 }
 public void setNumber(int newVal) {
 number = newVal ;
 factorial = Factorials.loopingFactorial(number);
 }
 public long getFactorial() {
 return factorial;
 }
}

3

ANOTHER CLASS WITH PROPERTIES
public class ABMISpreadsheet {
 double height;
 double weight;
 public double getWeight() {
 return weight;
 }
 public void setWeight(double newWeight) {
 weight = newWeight;
 }
 public double getHeight() {
 return height;
 }
 public void setHeight(double newHeight) {
 height = newHeight;
 }
 public double getBMI() {
 return weight/(height*height);
 }
}

Height

Weight

BMI

4

public class BMISpreadsheetUser {

 public static void main(String[] args) {

 ABMISpreadsheet bmiSpreadsheet = new ABMISpreadsheet();

 bmiSpreadsheet.setHeight(1.77);

 bmiSpreadsheet.setWeight(75);

 System.out.println(bmi.getBMI());

 }

}

USING BMISPREADSHEET

5

ABMISPREADSHEET AND CONSTRUCTOR

public class ABMISpreadsheet {
 double height;
 double weight;
 public ABMISpreadsheet(double theInitialHeight, double theInitialWeight) {
 setHeight(theInitialHeight);
 setWeight(theInitialWeight);
 }
 public double getWeight() {
 return weight;
 }
 public void setWeight(double newWeight) {
 weight = newWeight;
 }
 public double getHeight() {
 return height;
 }
 public void setHeight(double newHeight) {
 height = newHeight;
 }
 public double getBMI() {
 return weight/(height*height);
 }
}

Constructor name

must be the name of

the class

Constructor name is

also the type of

object returned

ABMISpreadsheet aBMISpreadsheet = new ABMISpreadsheet(

 1.77, 75.0);

Constructors do not

appear in interfaces

6

EVERY CLASS HAS A CONSTRUCTOR

public class ABMISpreadsheet {
 double height;
 double weight;
 public double getWeight() {
 return weight;
 }
 public void setWeight(double newWeight) {
 weight = newWeight;
 }
 public double getHeight() {
 return height;
 }
 public void setHeight(double newHeight) {
 height = newHeight;
 }
 public double getBMI() {
 return weight/(height*height);
 }
}

7

public class ABMISpreadsheet {
 double height;
 double weight;
 public ABMISpreadsheet() {
 }
 public double getWeight() {
 return weight;
 }
 public void setWeight(double newWeight) {
 weight = newWeight;
 }
 public double getHeight() {
 return height;
 }
 public void setHeight(double newHeight) {
 height = newHeight;
 }
 public double getBMI() {
 return weight/(height*height);
 }
}

EQUIVALENT CLASS CREATED BY JAVA

If Programmer

Specifies no

Constructor, Java

inserts a null

constructor

Inserted in Object

Code not in Source

Code

8

A CLASS CAN HAVE MULTIPLE CONSTRUCTORS

public class ABMISpreadsheet {
 double height;
 double weight;
 public ABMISpreadsheet() {
 }
 public ABMISpreadsheet(double theInitialHeight, double
theInitialWeight) {
 setHeight(theInitialHeight);
 setWeight(theInitialWeight);
 }
 public double getWeight() {
 return weight;
 }
 public void setWeight(double newWeight) {
 weight = newWeight;
 }
 public double getHeight() {
 return height;
 }
 public void setHeight(double newHeight) {
 height = newHeight;
 }
 public double getBMI() {
 return weight/(height*height);
 }
}

Overloaded

Constructor

Two methods with

the same name are

overloaded

The lists of

parameter types

must be different

The method headers

must be different

ignoring the return

type

9

A CLASS CAN HAVE MULTIPLE CONSTRUCTORS

(REVIEW)
public class ABMISpreadsheet {
 double height;
 double weight;
 public ABMISpreadsheet() {
 }
 public ABMISpreadsheet(double theInitialHeight, double
theInitialWeight) {
 setHeight(theInitialHeight);
 setWeight(theInitialWeight);
 }
 public double getWeight() {
 return weight;
 }
 public void setWeight(double newWeight) {
 weight = newWeight;
 }
 public double getHeight() {
 return height;
 }
 public void setHeight(double newHeight) {
 height = newHeight;
 }
 public double getBMI() {
 return weight/(height*height);
 }
}

Overloaded

Constructor

Two methods with

the same name are

overloaded

The lists of

parameter types

must be different

The method headers

must be different

ignoring the return

type

10

public class BMISpreadsheetUser {

 public static void main(String[] args) {

 ABMISpreadsheet bmiSpreadsheet = new ABMISpreadsheet();

 bmiSpreadsheet.setHeight(1.77);

 bmiSpreadsheet.setWeight(75);

 //equivalent computation

 bmiSpreadsheet = new ABMISpreadsheet(1.77, 75);

 }

}

USING OVERLOADED CONSTRUCTORS

Using

Overloaded

Constructor

11

ARE (PROGRAMMER-DEFINED) CONSTRUCTORS

EVER ABSOLUTELY NECESSARY?

ABMISpreadsheet aBMISpreadsheet = new ABMISpreadsheet();

aBMISpreadsheet.setHeight(1.77);

aBMISpreadsheet.setWeight(75.0);

Programmer can

initialize state after

instantiation (requires

a bit more work but

possible in this case)

ABMISpreadsheet aBMISpreadsheet = new ABMISpreadsheet(

 1.77, 75.0);

Always possible?

Can use the full

functionality of class

without programmer-

defined constructor

Some part of the exported

state (e.g. height) may be

readonly

12

IMMUTABLE OBJECTS

String s = new String("hello");

String is immutable.

An immutable object cannot be changed after initialization.

An immutable object with state must have one or more programmer-
defined constructors to initialize the state

String s = “hello";

13

CHANGING VARIABLE VS. OBJECT
String s = "hello";

String hello = s;

s += " world";

System.out.println(s == hello);

Assigns to s a new String object

Does not change the original String

StringBuffer s = new StringBuffer("hello");

StringBuffer hello = s;

s.append(" world");

System.out.println(s == hello);

Does not reassign s

Changes the object to which s points

Reassigning a new object less
efficient

false

true

14

public class BMISpreadsheetUser {

 public static void main(String[] args) {

 ABMISpreadsheet bmiSpreadsheet = new ABMISpreadsheet();

 bmiSpreadsheet.setHeight(1.77);

 bmiSpreadsheet.setWeight(75);

 double computedBMI = bmiSpreadsheet.getBMI();

 System.out.println(computedBMI);

 }

}

OBJECTS VS. PRIMITIVES

Primitive

Variable

Object

Variable
Object Value

Primitive

Value

15

PRIMITIVES VS. OBJECT VARIABLES

Primitive Variables

double computedBMI

= 22.5;

double weight = 75.8;

Object Variables

ABMISpreadsheet

bmiSpreadsheet =

new

ABMISpreadsheet(1.77, 75)

;

variables memory

22.5

75.8

52

computedBMI

weight

bmiSpreadsheet

1.77 height

weight 75

52

16

PRIMITIVES VS. OBJECTS STORAGE

variables memory addresses

1.77 height

weight 0

0 height

weight 0

bmiSpreadsheet2 64

bmiSpreadsheet1 52

52

64

Primitive

Variable

Object

Variable

Primitive

Value

Object Value

(Address)

ABMISpreadsheet bmiSpreadsheet1 = new ABMISpreadsheet();

ABMISpreadsheet bmiSpreadsheet2 = new ABMISpreadsheet();

bmiSpreadsheet1.setHeight(1.77);

bmiSpreadsheet2 = bmiSpreadsheet1;

17

public class BMISpreadsheetUser {

 public static void main(String[] args) {

 ABMISpreadsheet bmiSpreadsheet;

 bmiSpreadsheet.setHeight(1.77);

 bmiSpreadsheet.setWeight(75);

 double computedBMI;

 System.out.println(computedBMI);

 }

}

UNINITIALIZED PRIMITIVE VS. OBJECT VARIABLES

Uninitialized

Primitive

Variable

Uninitialized

Object

Variable

18

DEFAULT VALUES FOR VARIABLES

Primitive Variables

double computedBMI;

double weight;

Object Variables

ABMISpreadsheet

bmiSpreadsheet;

variables memory

0.0

0.0

null

computedBMI

weight

bmiSpreadsheet

Legal

double

values

Illegal ABMISpreadsheet

value

19

INVOKING METHODS ON NULL

 bmiSpreadsheet.getBMI()

 null pointer exception

 Exception is an unexpected event (error)

 Guilty method will be terminated and exception reported

 Will see other exceptions later

20

EXTRA

21

WHY IMMUTABLE STRING?

Easier to implement (do not have to address insertions)

Immutable objects make it is easier to implement correct
programs with threads and hashtables

StringBuffer supports mutable strings

String s1 = "hello world";

String s2 = "hello world";

System.out.println(s1 == s2);

true

Allows literals (String constants) to share memory location

22

WHY IMMUTABLE STRING?

StringBuffer supports mutable strings

String s1 = new String ("hello world");

String s2 = new String ("hello world");

System.out.println(s1 == s2);

false

New String Allocated

