
COMP 401

COPY: SHALLOW AND DEEP

Instructor: Prasun Dewan

2

PREREQUISITE

 Composite Object Shapes

 Inheritance

3

CLONE SEMANTICS?

Object

toString()

equals()

clone()

Need to understand memory
representation

4

COPYING OBJECTS

What if we want copy rather than reference.

 The properties can be changed independently

Backup

p1 = new AMutablePoint(200, 200);

p2 = p1;

p1.setX (100);

p2.getX() == p1.getX() true

5

COPIER DOES THE WORK

p1 = new AMutablePoint(200, 200);

p2 = new AMutablePoint (p1.getX(), p1.getY());

p1.setX (100);

p2.getX() == p1.getX() false

6

COPIED OBJECT DOES THE WORK
// in Object, subtype can increase access of overridden method

protected Object clone(){ … }

p2.getX() == p1.getX() false

// Cloneable is an empty interface, should be an annotation

public class ACloneablePoint extends AMutablePoint

 implements CloneablePoint, Cloneable {

 public ACloneablePoint(int theX, int theY) {

 super(theX, theY);

 }

 public Object clone() {

 return super.clone();

 }

}

public interface CloneablePoint extends MutablePoint {

 public Object clone();

}

CloneablePoint p1 = new ACloneablePoint(200, 200);

CloneablePoint p2 = (CloneablePoint) p1.clone();

p1.setX (100);

7

BOUNDEDPOINT CLONE

public class ACloneableBoundedPoint extends ABoundedPoint

 implements CloneableBoundedPoint, Cloneable {

 public ACloneableBoundedPoint(int initX, int initY,

 CloneablePoint theUpperLeftCorner,

 CloneablePoint theLowerRightCorner) {

 super(initX, initY, theUpperLeftCorner, theLowerRightCorner);

 }

 public Object clone() {

 return super.clone();

 }

}

8

BOUNDEDPOINT CLONE

p2.getX() == p1.getX() false

p1.getUpperLeftCorner().getX() ==

p2.getUpperLeftCorner().getX()
 true

CloneableBoundedPoint p1 =

 new ACloneableBoundedPoint (75, 75,

 new AMutablePoint(50,50), new AMutablePoint(100,100));

CloneableBoundedPoint p2 = (CloneableBoundedPoint) p1.clone();

p1.setX (100);

p1.getUpperLeftCorner().setX(200);

9

REPLICATING INSTANCE VARIABLE VALUES

8

16

50

50
AMutablePoint@8 8

48 ABoundedPoint@48

100
16 AMutablePoint@16

100

75

75

8

16

96 ABoundedPoint@96 75

75

10

SHALLOW COPY

ABoundedPoint@96 ABoundedPoint@48

75 75 ACartsianPoint@16 AMutablePoint@24 75 75

50 50 100 100

Pointer Variable Primitive Variable

11

DEEP COPY

ABoundedPoint@96 ABoundedPoint@48

75 75 AMutablePoint@16 AMutablePoint@24 75 75

50 50 100 100

Pointer Variable Primitive Variable

AMutablePoint@32 AMutablePoint@36

50 50 100 100

12

OBJECT CLONE

// Object implements shallow copy

protected Object clone() { … }

//class can implement multiple interfaces, and interface such as
Cloneable can be empty

public class AMutablePoint implements Point, Cloneable

// Subclass can make it public

public Object clone() { return super.clone() } // need exception
handling, discussed later

13

BOUNDED POINT DEEP COPY ?

public Object clone() {

};

public class ABoundedPoint extends AMutablePoint implements

BoundedPoint {

 Point upperLeftCorner, lowerRightCorner;

 public ABoundedPoint (int initX, int initY,

 Point initUpperLeftCorner, Point initLowerRightCorner) {

 super(initX, initY);

 upperLeftCorner = initUpperLeftCorner;

 lowerRightCorner = initLowerRightCorner;

 }

…

}

14

BOUNDED POINT DEEP COPY

CloneableBoundedPoint p1 =

 new ACloneableBoundedPoint (75, 75,

 new ACloneablePoint(50,50), new ACloneablePoint(100,100));

 CloneableBoundedPoint p2 = p1.clone();

 p1.setX (100);

 p1.getUpperLeftCorner().setX(200);

p2.getX() == p1.getX() false

p1.getUpperLeftCorner().getX() ==

p2.getUpperLeftCorner().getX()
 false

public CloneableBoundedPoint clone() {

 return new ACloneableBoundedPoint (x, y,

 (CloneablePoint) ((CloneablePoint)upperLeftCorner).clone(),

 (CloneablePoint) ((CloneablePoint)lowerRightCorner).clone());

}

15

BOUNDED POINT DEEP COPY PROBLEMS

CloneableBoundedPoint p1 =

 new ACloneableBoundedPoint (75, 75,

 new ACloneablePoint(50,50), new ACloneablePoint(100,100));

p1.setUpperLeftCorner(p1);

CloneableBoundedPoint p2 = p1.clone();

Infinite recursion

16

CLONING GRAPH STRUCTURES

75 75 AMutablePoint@24

100 100

ABoundedPoint@48

100

ABoundedPoint@296

75 75 AMutablePoint@324

100

Graph structures are useful and make
deep copy problematic

ABoundedPoint@196

75 75 AMutablePoint@224

100 100

100

ABoundedPoint@396

75 75 AMutablePoint@424

100

100

ABoundedPoint@496

75 75 AMutablePoint@524

100

100

ABoundedPoint@596

75 75 AMutablePoint@324

100

Link from child to
parent often occurs

public CloneableBoundedPoint clone() {

 return

 new ACloneableBoundedPoint (

 x, y,

 upperLeftCorner.clone(),

 lowerRightCorner.clone());

}

17

SHALLOW VS. DEEP COPY

 Shallow copy:

 Copies the instance but not its components

 Creates a new object and assigns instance variables of

copied object to corresponding instance variables of new

object.

 Deep copy

 Creates a new object and assigns (deep or shallow?)

copies of instance variables of copied object to

corresponding instance variables of new object.

18

SMALLTALK SHALLOW, DEEP(ER), AND

REGULAR COPY

 Copy

 Programmer makes it either shallow or deep copy. By default it

is shallow.

 Shallow copy:

 Copies the instance but not its components

 Creates a new object and assigns instance variables of copied

object to corresponding instance variables of new object.

 Deep copy

 Creates a new object and assigns copy of each instance variable

of copied object to corresponding instance variable of new

object.

19

DEEP COPY OF GRAPH STRUCTURE

75 75 AMutablePoint@24

100 100

ABoundedPoint@48

100

ABoundedPoint@296

75 75 AMutablePoint@324

100

ABoundedPoint@196

75 75 AMutablePoint@224

100 100

100

ABoundedPoint@396

75 75 AMutablePoint@424

100

100

ABoundedPoint@496

75 75 AMutablePoint@524

100

100

ABoundedPoint@596

75 75 AMutablePoint@324

100

If copy is deepCopy

20

DEEP COPY OF GRAPH STRUCTURE

75 75 AMutablePoint@24

100 100

ABoundedPoint@48

ABoundedPoint@296

75 75

If copy is shallowCopy

ABoundedPoint@196

75 75 AMutablePoint@224

100 100

21

ISOMORPHIC DEEP COPY

75 75 AMutablePoint@24

100 100

ABoundedPoint@48

75 75 AMutablePoint@44

100 100

ABoundedPoint@84

22

JAVA SERIALIZATION

 Used to copy object (implementing java.io.Serializable

empty interface) to file or network

 Deep isomorphic copy

 Created a deep isomorphic copy of object

 Used by OE library to create a deepCopy

 public Object Misc.deepCopy(Object object)

 Deep copy used for automatic refresh

import java.io.Serializable;

public class AMutablePoint extends AMutablePoint implements Point,

Serializable { … }

23

OBJECT EDITOR AUTOMATIC REFRESHES

75 75 AMutablePoint@24

100 100

ABoundedPoint@48

200

How does OE know that the value changed?

Suppose some operation on ABoundedPoint@48 changes Y coordinate of
AMutablePoint@24

All components of ABoundedPoint@48 have the same value

24

OBJECT EDITOR AUTOMATIC REFRESHES

Creates an isomorphic copy when it first encounters an object

75 75 AMutablePoint@24

100 100

ABoundedPoint@48

75 75 AMutablePoint@44

100 200

ABoundedPoint@84

Suppose an operation is executed on an object

Calls equals() on new object to compare it with copy

If equals returns false, efficiently updates display of changed object and creates new
copy of changed object

100 200

AMutablePoint@48

100

25

COMPLETE BRUTE FORCE REFRESH

75 75 AMutablePoint@24

100 100

ABoundedPoint@48

100

If object and all of its descendants not Serializable then no deep copy of efficient refresh

26

COMPLETE BRUTE FORCE REFRESH

75 75 AMutablePoint@24

100 100

ABoundedPoint@48

100

If object and all of its descendants Serializable, but no overridden equals(), then
complete brute force refresh

75 75 AMutablePoint@44

100 200

ABoundedPoint@84

AMutablePoint@48

100

Can override equals() and set break point in it to verify it is called with copy

27

WHY SIMPLISTIC ARRAY PRINT?

[Ljava.lang.Object;@27391d

Object[] recursive = new Object[1];

recursive[0] = recursive;

System.out.println(recursive);

[Ljava.lang.Object;@27391d

Infinite recursion if println() recursively printed each element

28

OTHER OBJECT OPERATIONS

 hashCode()

 Relevant to hashtables – will learn about in data structures.

 Think of it as the internal address of object.

 Various versions of wait() and notify()

 Relevant to threads – will study them in depth in operating

systems course

 See section on synchronization and wait and notify.

 Useful for animations.

 getClass()

 Returns the class, on which one can invoke “reflection”

methods

 Used by ObjectEditor to edit arbitrary object.

 finalize()

 Called when object is garbage collected.

29

GARBAGE COLLECTION

variables memory address Point p1 = new

 AMutablePoint(100,100);

AMutablePoint@8 8 50

100

Point p1 52 8

Point p2 56

AMutablePoint@8

p1 p2

100

76

Point p2 = new

 AMutablePoint(150,75);

AMutablePoint@76 76 50

75

150

8

AMutablePoint@76

p2 = p1 ;

Garbage Collected

Covered
elsewhere

