ComMP 401
COPY: SHALLOW AND DEEP

‘ Instructor: Prasun Dewan

PREREQUISITE

o Composite Object Shapes
o Inheritance

CLONE SEMANTICS?

Need to u
repr

COPYING OBJECTS

pl = new AMutablePoint(200, 200);

p2 =pl;
pl.setX (100);

p2.getX() == pl.getX() - true

o What if we want copy rather than reference.
o The properties can be changed independently
o Backup

COPIER DOES THE WORK

pl = new AMutablePoint(200, 200);
p2 = new AMutablePoint (p1.getX(), pl.getY();
pl.setX (100);

p2.getX() == pl.getX() - false

COPIED OBJECT DOES THE WORK

// in Object, subtype can increase access of overridden method

protected Object clone(){...}

public interface CloneablePoint extends MutablePoint {
public Object clone() ;
}

/I Cloneable 1s an empty interface, should be an annotation
public class ACloneablePoint extends AMutablePoint
implements CloneablePoint, Cloneable {
public ACloneablePoint (int theX, int theY) ({
super (theX, theY);
}
public Object clone() {
return super.clone() ;

}

CloneablePoint pl = new ACloneablePoint (200, 200);
CloneablePoint p2 = (CloneablePoint) pl.clone();

pl.setX (100);

p2.getX() == pl.getX() - false

BOUNDEDPOINT CLONE

public class ACloneableBoundedPoint extends ABoundedPoint
implements CloneableBoundedPoint, Cloneable ({
public ACloneableBoundedPoint (int initX, int initY,
CloneablePoint theUpperLeftCorner,
CloneablePoint thelLowerRightCorner) {
super (initX, initY, theUpperLeftCorner, thelLowerRightCorner) ;
}
public Object clone() {
return super.clone() ;

BOUNDEDPOINT CLONE

CloneableBoundedPoint pl =
new ACloneableBoundedPoint (75, 75,
new AMutablePoint (50,50), new AMutablePoint (100,100)) ;
CloneableBoundedPoint p2 = (CloneableBoundedPoint) pl.clone();
pl.setX (100);
pl.getUpperLeftCorner () .setX (200) ;

p2.getX() == pl.getX() - false

pl.getUpperLeftCorner().getX() == S true

p2.getUpperLeftCorner().getX()

REPLICATING INSTANCE VARIABLE VALUES

AMutablePoint@8

|oo

50

50

AMutablePoint@16

100

100

ABoundedPoint@48

|r—AIOOQQ
(o)) Ot | Ot

ABoundedPoint@96

|r—A|OO\1\1
(@p) Ot | Ot

SHALLOW COPY

ABoundedPoint@48 ABoundedPoint@96

ACartsianPoint@16

AMutablePoint@24

50 50 100 100

® > Pointer Variable ® ® Primitive Variable

DEEP COPY

ABoundedPoint@48

AMutablePoint@16 | AMutablePoint@24

® > Pointer Variable

ABoundedPoint@96

AMutablePoint@32

AMutablePoint@36

50 50 100 100

Ps ® Primitive Variable

50 50 100

100

OBJECT CLONE

// Object implements shallow copy
protected Object clone() { ...}

//class can implement multiple interfaces, and interface such as
Cloneable can be empty

public class AMutablePoint implements Point, Cloneable
// Subclass can make i1t public

public Object clone() { return super.clone() } // need exception
handling, discussed later

BOUNDED POINT DEEP COPY ?

public Object clone() {

¥

public class ABoundedPoint extends AMutablePoint implements
BoundedPoint {
Point upperLeftCorner, lowerRightCorner;
public ABoundedPoint (int in1tX, int initY,
Point initUpperLeftCorner, Point initLowerRightCorner) {
super(initX, initY);
upperLeftCorner = initUpperLeftCorner;
lowerRightCorner = initLowerRightCorner;

O

BOUNDED PoOINT DEEP COPY

public CloneableBoundedPoint clone () ({
return new ACloneableBoundedPoint (x, y,
(CloneablePoint) ((CloneablePoint)upperlLeftCorner).clone(),
(CloneablePoint) ((CloneablePoint)lowerRightCorner) .clone());

CloneableBoundedPoint pl =
new ACloneableBoundedPoint (75, 75,
new ACloneablePoint (50,50), new ACloneablePoint (100,100));
CloneableBoundedPoint p2 = pl.clone();
pl.setX (100);
pl.getUpperlLeftCorner () .setX (200);

p2.getX() == pl.getX() - false

pl.getUpperLeftCorner().getX() == S false
p2.getUpperLeftCorner().getX()

BOUNDED POINT DEEP COPY PROBLEMS

CloneableBoundedPoint pl =
new ACloneableBoundedPoint (75, 75,
new ACloneablePoint (50,50), new ACloneablePoint (100,100));
pl.setUpperLeftCorner (pl);

CloneableBoundedPoint p?Z2 pl.clone () ;

ﬁ

Infinite recursion

CLONING GRAPH STRUCTURES

ABoundedPoint@196

ABoundedPoint@48

AMutablePoint@24

ABoundedPoint@296 |/ AMutablePoint@224

public CloneableBoundedPoint clone () {
return
new ACloneableBoundedPoint (

ABoundedPoint@396

X, ¥,
upperLeftCorner.clone(),
lowerRightCorner.clone()) ;

ABoundedPoint@496 |/AMutablePoint@424

Graph structures are useful and ma
deep copy problematic

ABoundedPoint@596 |/ AMutablePoint@524

Link from child to
parent often occurs

AMutablePoint@324
Ve

SHALLOW VS. DEEP COPY

o Shallow copy:
» Copies the instance but not its components

o Creates a new object and assigns instance variables of
copied object to corresponding instance variables of new
object.

o Deep copy

o Creates a new object and assigns (deep or shallow?)
copies of instance variables of copied object to
corresponding instance variables of new object.

SMALLTALK SHALLOW, DEEP(ER), AND
REGULAR COPY

o Copy
 Programmer makes it either shallow or deep copy. By default it
1s shallow.
o Shallow copy:
» Copies the instance but not its components
» (Creates a new object and assigns instance variables of copied
object to corresponding instance variables of new object.
o Deep copy

* Creates a new object and assigns copy of each instance variable
of copied object to corresponding instance variable of new
object.

DEEP COPY OF GRAPH STRUCTURE

ABoundedPoint@196

ABoundedPoint@48

AMutablePoint@24

ABoundedPoint@296 |/ AMutablePoint@224

ABoundedPoint@396

ABoundedPoint@496 |/AMutablePoint@424

If copy is deepCopy .

ABoundedPoint@596 |/ AMutablePoint@524

AMutablePoint@324
Ve

DEEP COPY OF GRAPH STRUCTURE

ABoundedPoint@196

ABoundedPoint@48 |€

AMutablePoint@24

ABoundedPoint@?296

AMutablePoint@224

If copy is shallowCopy -

ISOMORPHIC DEEP COPY

ABoundedPoint@48
5 5 AMutablePoint@24

ABoundedPoint@84

o=
57

AMutablePoint@44

JAVA SERIALIZATION

o Used to copy object (implementing java.io.Serializable
empty interface) to file or network

o Deep 1somorphic copy

* Created a deep 1isomorphic copy of object

o Used by OE library to create a deepCopy
o public Object Misc.deepCopy(Object object)

o Deep copy used for automatic refresh

import java.io.Serializable;
public class AMutablePoint extends AMutablePoint implements Point,
Serializable { ...}

©

OBJECT EDITOR AUTOMATIC REFRESHES

ABoundedPoint@48

AMutablePoint@?24

200

Suppose some operation on ABoundedPoint@48 changes Y coordinate of

AMutablePoint@24

How does OE know that the value changed?

All components of ABoundedPoint@48 have the same value

OBJECT EDITOR AUTOMATIC REFRESHES

ABoundedPoint@48

|—N ABoundedPoint@84

/ \
AMutablePoint@24 ﬁs/ 75 AMutablePoint@48

200 100 200

Creates an isomorphic copy when it first encounters an object

Suppose an operation is executed on an object

Calls equals() on new object to compare it with copy

If equals returns false, efficiently updates display of changed object and creates new
copy of changed object R

COMPLETE BRUTE FORCE REFRESH

ABoundedPoint@48

AMutablePoint@24

If object and all of its descendants not Serializable then no deep copy of efficient refresh

COMPLETE BRUTE FORCE REFRESH

ABoundedPoint@48

|—> ABoundedPoint@84

/ \
AMutablePoint@24 ﬁs/ 75 AMutablePoint@48

100] poo 100] oo

If object and all of its descendants Serializable, but no overridden equals(), then
complete brute force refresh

Can override equals() and set break point in it to verify it is called with copy

WHY SIMPLISTIC ARRAY PRINT?

[Ljava.lang.Object;@27391d

Object[] recursive = new Object[1l];
recursive[0] = recursive;
System.out.println(recursive) ;

|—> [Ljava.lang.Object;@27391d

“Infinite recursion if printIn() recursively printed each elemer.

©

OTHER OBJECT OPERATIONS

o hashCode()

e Relevant to hashtables — will learn about in data structures.
o Think of it as the internal address of object.

o Various versions of wait() and notify()

» Relevant to threads — will study them in depth in operating
systems course

e See section on synchronization and wait and notify.

o Useful for animations.

o getClass()

o Returns the class, on which one can invoke “reflection”
methods

o Used by ObjectEditor to edit arbitrary object.

o finalize()
o (Called when object 1s garbage collected.

GARBAGE COLLECTION
Point pl = new address variables memory
AMutablePoint(100,100); —
8 AMutablePoint@8 100
100
Poi 2 =
oint p new 52 Point pl 8
AMutablePoint(150,75);
P2p=
56 Point p2 76
Covered
elsewhere 76 AMutablePoint@76 150
75
pl p2
/

AMutablePoint@8 AMutablePoint@76 Garbage bollect

.

