
COMP 110/401

DOCUMENTATION: ASSERTIONS

Instructor: Prasun Dewan

2

PREREQUISITE

 Documentation Annotations

3

INVALID BMI

getBMI() should really not have been asked to
compute with zero height and weight

public double getBMI() {

 return weight/(height*height);

}

4

COMMENTS TO DESCRIBE PRE-REQUISITE

How to locate problem at execution time?

/**

 * height and weight should be >=0

 */

 public double getBMI() {

 return weight/(height*height);

}

5

RUNTIME ERROR CHECKING

public double getBMI() {

 if(weight <= 0 || height <= 0)

 System.out.println(“height and weight should be >0

”);

 return weight/(height*height);

}

Code is always executed even when
the program is correct

Conditional compilation of an “if” that
does not have to return a value ?

Value must be still returned

6

ASSERTIONS

public double getBMI() {

 assert weight > 0 && height > 0:“height and weight

should be >0”;

 return weight/(height*height);

}

assert <Condition>: object
announces assertion error

(object.toString() if !<Condition>

If assertion checking on

By default checking is off

Can enable/disable assertions for
specific classes and packages

java –ea assignment9.MainClass –da bus.uigen

Enable assertions for MainClass

Disable assertions for bus.uigen package

Assertion error is like exception, no
return value needed

7

ENABLING ASSERTIONS IN ECLIPSE

Enable all assertions

8

ASSERTIONS

 State some expected property of the program

before/after some statement

 Before getBMI() is called, height and weight should be

greater than 0

 A la some expected property of an enrollee

 Before 401 you must know loops, arrays, methods

9

COMPILE TIME VS. RUNTIME PROPERTIES

 Some “assertions” are language-supported

 Compile time

 String s = nextElement()

 @Override

 Runtime

 ((String) nextElement())

 @util.annotations.ObserverRegisterer(util.annotations.Observer

Types.VECTOR_LISTENER)

addVectorListener(VectorListener)

 We will consider runtime properties.

 Casting is application-independent.

10

APPLICATION-INDEPENDENT VS. DEPENDENT

 Language can provide us with fixed number of
application-independent assertions.

 Cannot handle

 First character of String is a letter.

 Letter concept not burnt into language.
 Class Character defines it

 Innumerable assertions about letters possible
 Second elements of string is letter.

 Third element of string is letter.

 Need mechanism to express arbitrary assertions.

 Originally Java had no assertions.

 In 1.4, assertions were added

11

JAVA ASSERTIONS

 assert <Boolean Expression>

 assert <Boolean Expression>: <Value>

 Statement can be inserted anywhere to state that

some condition should be true

 If condition is false, Java throws AssertionError,

and (by default):

 depending on which assert used, prints either:

 generic message saying assertion failed, or

 <Value>.toString()

 prints stack trace

 terminates program

 No value needs be returned by the method in which

the assertion fails

12

INDIVIDUAL STATEMENT VS. BLOCK OF

CODE

 Assert statement

 States some expected property of the program

before/after some individual statement

 Preconditions/Postconditions of block of code (e.g.

method)

 States some expected property of the program

before/after some block of code

 Invariant of block of code

 Precondition that is also a postcondition

13

PRECONDITIONS, POSTCONDITIONS, INVARIANTS

 public boolean preGetBMI() {

 return weight > 0 && height > 0;

 }

 public double getBMI() {

 assert preGetBMI();

 return weight/(height*height);

}

Pre (post) condition of block of code: an assertion that is expected to be true before
(after) the block is executed

A la course prerequiste (objectives)

Invariant of a piece of code: a precondition that is also a post condition

GPA > Threshold

14

ASSERTIONS AS DOCUMENTATION

 public boolean preGetBMI() {

 return weight > 0 && height > 0;

 }

 public double getBMI() {

 assert preGetBMI();

 return weight/(height*height);

}

/**

 * height and weight should be >0

 */

 public double getBMI() {

 return weight/(height*height);

}

15

ASSERTION USES

 Potentially useful for

 documentation

 specification

 testing

 formal correctness

 user-interface adaptation

16

PRECONDITION PUBLIC METHOD, UI ADAPTATION,

AND CONVENTIONS, TESTING

 public boolean preGetBMI() {

 return weight > 0 && height > 0;

 }

 public double getBMI() {

 assert preGetBMI();

 return weight/(height*height);

}

Public method allows other classes to
discover preconditions and not violate them

A user-interface class (e.g. OE or controller
class) can disable a widget (e.g. menu
item/text widget) for invoking a write

method if its precondition is false

A user-interface class (e.g. ObjectEditor or
manual View class) can hide or disable a
widget displaying some component of a
model if the precondition of the method

for reading the component is false

OE Convention: Precondition of method
M() is preM(). M could be a read, write or

some other method

A user-interface class (ObjectEditor, manual
controller or view) should not call a method

if its preconditon is false

Convention could also be used by Grading
(Testing) Program

17

PRECONDITION OF BMI IS TRUE (FALSE): DISPLAY

SHOWN (FALSE)

Property display is removed rather
than disabled

Works for graphics and text
properties

18

INPUT UI ITEM DISABLED/ENABLED

The menu item for a method is disabled when its precondition not met

19

public class AnAssertingBMISpreadsheet implements BMISpreadsheet {

 double height;

 double weight;

 double initialHeight, initialWeight;

 public AnAssertingBMISpreadsheet(

 double theInitialHeight, double theInitialWeight) {

 setHeight(theInitialHeight);

 setWeight(theInitialWeight);

 initialHeight = theInitialHeight;

 initialWeight = theInitialWeight;

 }

 public boolean preRestoreHeightAndWeight() {

 return height != initialHeight || weight != initialWeight;

 }

 public void restoreHeightAndWeight() {

 assert preRestoreHeightAndWeight();

 height = initialHeight;

 weight = initialWeight;

 }

 …

RESTORING HEIGHT AND WEIGHT

20

METHOD PRECONDITION STYLE RULE

 If a method M(…) has a precondition that should be

checked by another class, write a precondition

boolean method, preM() for it that takes no

arguments. (For overloaded methods there is a

special rule we will not cover.)

 ObjectEditor will not invoke a method whose

precondition is false and will not give the user a way

to invoke it. If the method is a getter for a property,

OE will not display the property.

 Call the precondition method in an assert statement

before executing the method body.

21

METHOD ASSERTIONS

 Precondition: assertion true before the method is

executed (regardless of parameters)

 Post condition: assertion true after the method is

executed.

 Invariant: a precondition that is also a post

condition

22

CLASS ASSERTIONS

 Class precondition: precondition of all public

methods

 Class post condition: post condition of a all public

methods

 Class invariant: invariant of all public methods

(weight and height >= 0)

23

