
COMP 110/401

DOCUMENTATION: ASSERTIONS

Instructor: Prasun Dewan

2

PREREQUISITE

 Documentation Annotations

3

INVALID BMI

getBMI() should really not have been asked to
compute with zero height and weight

public double getBMI() {

 return weight/(height*height);

}

4

COMMENTS TO DESCRIBE PRE-REQUISITE

How to locate problem at execution time?

/**

 * height and weight should be >=0

 */

 public double getBMI() {

 return weight/(height*height);

}

5

RUNTIME ERROR CHECKING

public double getBMI() {

 if(weight <= 0 || height <= 0)

 System.out.println(“height and weight should be >0

”);

 return weight/(height*height);

}

Code is always executed even when
the program is correct

Conditional compilation of an “if” that
does not have to return a value ?

Value must be still returned

6

ASSERTIONS

public double getBMI() {

 assert weight > 0 && height > 0:“height and weight

should be >0”;

 return weight/(height*height);

}

assert <Condition>: object 
announces assertion error

(object.toString() if !<Condition>

If assertion checking on

By default checking is off

Can enable/disable assertions for
specific classes and packages

java –ea assignment9.MainClass –da bus.uigen

Enable assertions for MainClass

Disable assertions for bus.uigen package

Assertion error is like exception, no
return value needed

7

ENABLING ASSERTIONS IN ECLIPSE

Enable all assertions

8

ASSERTIONS

 State some expected property of the program

before/after some statement

 Before getBMI() is called, height and weight should be

greater than 0

 A la some expected property of an enrollee

 Before 401 you must know loops, arrays, methods

9

COMPILE TIME VS. RUNTIME PROPERTIES

 Some “assertions” are language-supported

 Compile time

 String s = nextElement()

 @Override

 Runtime

 ((String) nextElement())

 @util.annotations.ObserverRegisterer(util.annotations.Observer

Types.VECTOR_LISTENER)

addVectorListener(VectorListener)

 We will consider runtime properties.

 Casting is application-independent.

10

APPLICATION-INDEPENDENT VS. DEPENDENT

 Language can provide us with fixed number of
application-independent assertions.

 Cannot handle

 First character of String is a letter.

 Letter concept not burnt into language.
 Class Character defines it

 Innumerable assertions about letters possible
 Second elements of string is letter.

 Third element of string is letter.

 Need mechanism to express arbitrary assertions.

 Originally Java had no assertions.

 In 1.4, assertions were added

11

JAVA ASSERTIONS

 assert <Boolean Expression>

 assert <Boolean Expression>: <Value>

 Statement can be inserted anywhere to state that

some condition should be true

 If condition is false, Java throws AssertionError,

and (by default):

 depending on which assert used, prints either:

 generic message saying assertion failed, or

 <Value>.toString()

 prints stack trace

 terminates program

 No value needs be returned by the method in which

the assertion fails

12

INDIVIDUAL STATEMENT VS. BLOCK OF

CODE

 Assert statement

 States some expected property of the program

before/after some individual statement

 Preconditions/Postconditions of block of code (e.g.

method)

 States some expected property of the program

before/after some block of code

 Invariant of block of code

 Precondition that is also a postcondition

13

PRECONDITIONS, POSTCONDITIONS, INVARIANTS

 public boolean preGetBMI() {

 return weight > 0 && height > 0;

 }

 public double getBMI() {

 assert preGetBMI();

 return weight/(height*height);

}

Pre (post) condition of block of code: an assertion that is expected to be true before
(after) the block is executed

A la course prerequiste (objectives)

Invariant of a piece of code: a precondition that is also a post condition

GPA > Threshold

14

ASSERTIONS AS DOCUMENTATION

 public boolean preGetBMI() {

 return weight > 0 && height > 0;

 }

 public double getBMI() {

 assert preGetBMI();

 return weight/(height*height);

}

/**

 * height and weight should be >0

 */

 public double getBMI() {

 return weight/(height*height);

}

15

ASSERTION USES

 Potentially useful for

 documentation

 specification

 testing

 formal correctness

 user-interface adaptation

16

PRECONDITION PUBLIC METHOD, UI ADAPTATION,

AND CONVENTIONS, TESTING

 public boolean preGetBMI() {

 return weight > 0 && height > 0;

 }

 public double getBMI() {

 assert preGetBMI();

 return weight/(height*height);

}

Public method allows other classes to
discover preconditions and not violate them

A user-interface class (e.g. OE or controller
class) can disable a widget (e.g. menu
item/text widget) for invoking a write

method if its precondition is false

A user-interface class (e.g. ObjectEditor or
manual View class) can hide or disable a
widget displaying some component of a
model if the precondition of the method

for reading the component is false

OE Convention: Precondition of method
M() is preM(). M could be a read, write or

some other method

A user-interface class (ObjectEditor, manual
controller or view) should not call a method

if its preconditon is false

Convention could also be used by Grading
(Testing) Program

17

PRECONDITION OF BMI IS TRUE (FALSE): DISPLAY

SHOWN (FALSE)

Property display is removed rather
than disabled

Works for graphics and text
properties

18

INPUT UI ITEM DISABLED/ENABLED

The menu item for a method is disabled when its precondition not met

19

public class AnAssertingBMISpreadsheet implements BMISpreadsheet {

 double height;

 double weight;

 double initialHeight, initialWeight;

 public AnAssertingBMISpreadsheet(

 double theInitialHeight, double theInitialWeight) {

 setHeight(theInitialHeight);

 setWeight(theInitialWeight);

 initialHeight = theInitialHeight;

 initialWeight = theInitialWeight;

 }

 public boolean preRestoreHeightAndWeight() {

 return height != initialHeight || weight != initialWeight;

 }

 public void restoreHeightAndWeight() {

 assert preRestoreHeightAndWeight();

 height = initialHeight;

 weight = initialWeight;

 }

 …

RESTORING HEIGHT AND WEIGHT

20

METHOD PRECONDITION STYLE RULE

 If a method M(…) has a precondition that should be

checked by another class, write a precondition

boolean method, preM() for it that takes no

arguments. (For overloaded methods there is a

special rule we will not cover.)

 ObjectEditor will not invoke a method whose

precondition is false and will not give the user a way

to invoke it. If the method is a getter for a property,

OE will not display the property.

 Call the precondition method in an assert statement

before executing the method body.

21

METHOD ASSERTIONS

 Precondition: assertion true before the method is

executed (regardless of parameters)

 Post condition: assertion true after the method is

executed.

 Invariant: a precondition that is also a post

condition

22

CLASS ASSERTIONS

 Class precondition: precondition of all public

methods

 Class post condition: post condition of a all public

methods

 Class invariant: invariant of all public methods

(weight and height >= 0)

23

