
COMP 110/401

APPENDIX: INSTALLING AND

USING ECLIPSE

Instructor: Prasun Dewan (FB 150, dewan@unc.edu)

2

SHORTCUTS (MSFT)/COMMANDS

 Block quote/unquote (CTRL-/)

 Run project (CTRL-F11)

 Search project for strings
(Select project, SearchFile)

 Step into, over, return (F5, F6,
F7)

 Copy a project (CTRL-C, CTRL-
V)

 Copy a package, class file to
another project (CTRL_C,
CTRL-V)’

 Show variable, class, interface
(identifier) definition (click, F3
or Right Menu Open
Declaration) and return back
(ALT )

 Find identifier (variable, class,
interface) use (Click, CTRL-
SHIFT-G, Right
MenuReferences)

 Refactor (Click, CTRL-SHIFT-R
or Right MenuRefactor)

 Complete identifier name
(CTRL-Space)

 Automatic imports (CTRL-
SHIFT-O)

 JUnit

 Change Method Signature
(Click ALT_SHIFT-C, Right
MenuRefactor)

 Extract interface (Click
ALT_SHIFT-C, Right
MenuRefactor)

3

CONTENTS

 Install JDK

 Install Eclipse

 Connect JDK to Eclipse

 Create project

 Edit project run project

 Restore window

 Search project for strings

 Debugging

 Adding a library

 Add an existing project

 Copy a project

 Copy a package, class file
to another project

 Delete a project

 Show variable, class,
interface (identifier)
definition and return back

 Find identifier (variable,
class, interface) use

 Refactor

 Complete identifier name

 Understand, fix errors

 Automatic imports

 JUnit

 Change Method Signature

 Extract interface

 Supply main argument

 Create project from
existing code

4

CONTENTS

 Install JDK

 Install Eclipse

 Connect JDK to Eclipse

 Create project

 Edit project run project

 Restore window

 Search project for strings

 Debugging

 Adding a library

 Add an existing project

 Copy a project

 Copy a package, class file
to another project

 Delete a project

 Show variable, class,
interface (identifier)
definition and return back

 Find identifier (variable,
class, interface) use

 Refactor

 Complete identifier name

 Understand, fix errors

 Automatic imports

 JUnit

 Change Method Signature

 Extract interface

 Supply main argument

 Create project from
existing code

5

FIND JDK

http://www.oracle.com/technetwork/java/javase/downloads/index.html

Check with instructor which JDK version to get

http://www.oracle.com/technetwork/java/javase/downloads/index.html

6

FOLLOW DOWNLOAD LINK: ACCEPT LICENSE

AGREEMENT, FIND JDK FOR APPROPRIATE

PLATFORM, AND CLICK ON EXE LINK TO DOWNLOAD

EXE IN SOME TEMPORARY FOLDER

7

RUN EXE AND CHOOSE JDK FOLDER

8

CONTENTS

 Install JDK

 Install Eclipse

 Connect JDK to Eclipse

 Create project

 Edit project run project

 Restore window

 Search project for strings

 Debugging

 Adding a library

 Add an existing project

 Copy a project

 Copy a package, class file
to another project

 Delete a project

 Show variable, class,
interface (identifier)
definition and return back

 Find identifier (variable,
class, interface) use

 Refactor

 Complete identifier name

 Understand, fix errors

 Automatic imports

 JUnit

 Change Method Signature

 Extract interface

9

DOWNLOAD FROM WWW.ECLIPSE.ORG (WINDOWS)

Get the latest IDE for Java
Developers, not Indigo

http://www.eclipse.org/

10

DOWNLOAD FROM WWW.ECLIPSE.ORG (WINDOWS)

Get the latest IDE for Java
Developers, not Indigo

http://www.eclipse.org/

11

EXTRACT ALL

12

SELECT DESTINATION FOLDER

13

CREATE SOME KIND OF SHORTCUT FOR

ECLIPSE.EXE

14

RUN ECLIPSE.EXE

15

SPECIFY PROJECTS DIRECTORY

16

REMOVE WELCOME TAB IF IT APPEARS

17

CONTENTS

 Install JDK

 Install Eclipse

 Connect JDK to Eclipse

 Create project

 Edit project run project

 Restore window

 Search project for strings

 Debugging

 Adding a library

 Add an existing project

 Copy a project

 Copy a package, class file
to another project

 Delete a project

 Show variable, class,
interface (identifier)
definition and return back

 Find identifier (variable,
class, interface) use

 Refactor

 Complete identifier name

 Understand, fix errors

 Automatic imports

 JUnit

 Change Method Signature

 Extract interface

18

CHANGE THE JAVA VERSION:

WINDOWPREFERENCES

19

PRESS SEARCH BROWSE BUTTON

20

PRESS SEARCH BROWSE BUTTON TO INSTALLED

JDK

21

JRE ADDED TO ECLIPSE, SELECT IT AND CAN

EXECUTE WITHOUT ERRORS

22

SOME EXPLICIT INSTRUCTIONS – FOR MAC

(ASSUME JAVA 7)

You can get that for mac here:

 https://www.oracle.com/technetwork/java/javase/downloads/jdk10-downloads-4416644.html. Pick the Mac
option and from there it should just be like installing any other application.

 Or you can go here:
http://download.oracle.com/otn-pub/java/jdk/7u40-b43/jdk-7u40-macosx-x64.dmg

 The problem is Eclipse won't change the compiler to use 1.7 so you will have to specify that under:
Eclipse -> Preferences -> Java -> Installed JREs

 Click "Add..." then choose "MacOS X VM"

 Next, then under directory copy/paste this:

 /Library/Java/JavaVirtualMachines/jdk1.7.0_40.jdk/Contents/Home

 Make sure it recognizes this as Java SE 7. Then name doesn't really matter.

Now go to:
Eclipse -> Preferences -> Java -> Compiler
Change the compliance level to: "1.7"

Now it probably still won't work (at least it didn't on mine)
This is because your project is still set on 1.6

So, go to:

 Project -> Properties -> Java Build Path -> Libraries
Add Library...

 JRE System Library

 "Workspace default" should be automatically there as the 1.7, but if not find the 1.7 library.
Then remove the 1.6 library

 Also you need to change the compiler being used by the project:
Project -> Properties -> Java Compiler
and make sure everything is on 1.7

Now, if you're getting an error about the main class not being found or working.

 You may just want to create a new project and when you select the 1.7 JRE.

https://www.oracle.com/technetwork/java/javase/downloads/jdk10-downloads-4416644.html
http://download.oracle.com/otn-pub/java/jdk/7u40-b43/jdk-7u40-macosx-x64.dmg

23

CONTENTS

 Install JDK

 Install Eclipse

 Connect JDK to Eclipse

 Create project

 Edit project run project

 Restore window

 Search project for strings

 Debugging

 Adding a library

 Add an existing project

 Copy a project

 Copy a package, class file
to another project

 Delete a project

 Show variable, class,
interface (identifier)
definition and return back

 Find identifier (variable,
class, interface) use

 Refactor

 Complete identifier name

 Understand, fix errors

 Automatic imports

 JUnit

 Change Method Signature

 Extract interface

24

ADD A NEW JAVA PROJECT

25

PROJECT NAME AND SEPARATE FOLDERS

The separate folder
option puts .java source

files in src folder and
.class files in bin folder –

required for the auto
grader

26

SWITCH TO JAVA PERSPECTIVE (MAY GET THIS

MESSAGE)

27

EMPTY PROJECT CREATED

28

CONTENTS

 Install JDK

 Install Eclipse

 Connect JDK to Eclipse

 Create project

 Edit run project

 Restore window

 Search project for strings

 Debugging

 Adding a library

 Add an existing project

 Copy a project

 Copy a package, class file
to another project

 Delete a project

 Show variable, class,
interface (identifier)
definition and return back

 Find identifier (variable,
class, interface) use

 Refactor

 Complete identifier name

 Understand, fix errors

 Automatic imports

 JUnit

 Change Method Signature

 Extract interface

29

ADD A PACKAGE TO SELECTED PROJECT

Select project and
File Package

30

ENTER PACKAGE NAME

31

EMPTY PACKAGE IN NON EMPTY PROJECT

32

ADD A CLASS

Select project and
File Class

33

NAME THE CLASS

34

EMPTY CLASS IN NON EMPTY PACKAGE

35

EDIT THE FILE (COPY AND PASTE CODE)

package warmup;
import java.io.BufferedReader;
import java.io.InputStreamReader;
public class AGreeter {

static BufferedReader inputStream = new BufferedReader(new InputStreamReader(System.in));
public static void main(String[] args) {
System.out.println("Hello World");
if (args.length > 0) {

System.out.println(args[0]);
}
try {

System.out.println (inputStream.readLine());
} catch (Exception e) {

System.out.println("Could not read line");
e.printStackTrace();

}
}
}

Copy and paste code from:

36

SAVE (AND COMPILE) THE FILE

FileSave or CTRL+S

37

WORKSPACE, PROJECT, SOURCE PACKAGE 

FOLDER

Source
Package

ProjectWorkspace

Class Source

38

WORKSPACE, PROJECT, BINARY PACKAGE 

FOLDER

Binary
Package

ProjectWorkspace

Class Object
(Binary) Code

39

EXECUTE THE MAIN METHOD ON SELECTED

CLASS

Right MenuDebug As Java
Application

Can also select Run but Debug is more
defensive

40

FIND OR SWITCH WORKSPACE FOLDER:

FILESWITCH WORKSPACE

41

FIND PROJECT FOLDER: SELECT PROJECT, RIGHT

CLICKPROPERTIESRESOURCE

42

VIEW OUTPUT IN CONSOLE WINDOW

43

PROVIDE INPUT IN CONSOLE WINDOW

44

THE OUTPUT AFTER ENTER

45

CONTENTS

 Install JDK

 Install Eclipse

 Connect JDK to Eclipse

 Create project

 Edit project run project

 Restore window

 Search project for strings

 Debugging

 Adding a library

 Add an existing project

 Copy a project

 Copy a package, class file
to another project

 Delete a project

 Show variable, class,
interface (identifier)
definition and return back

 Find identifier (variable,
class, interface) use

 Refactor

 Complete identifier name

 Understand, fix errors

 Automatic imports

 JUnit

 Change Method Signature

 Extract interface

46

CLOSING A WINDOW PERHAPS ACCIDENTALLY

47

VANISHED CONSOLE

48

WINDOWRESET PERSPECTIVE

49

WINDOWSHOW VIEW

Can selectively remove and

add sub-windows/views

50

CONTENTS

 Install JDK

 Install Eclipse

 Connect JDK to Eclipse

 Create project

 Edit project run project

 Restore window

 Search project for
strings

 Debugging

 Adding a library

 Add an existing project

 Copy a project

 Copy a package, class file to
another project

 Delete a project

 Show variable, class,
interface (identifier)
definition and return back

 Find identifier (variable,
class, interface) use

 Refactor

 Complete identifier name

 Understand, fix errors

 Automatic imports

 JUnit

 Change Method Signature

 Extract interface

51

FILE SEARCH IN A PROJECT (USEFUL IN JAVA

TEACHING AND YOUR PROJECTS)

Suppose you want to search the entire project for

some string such as some text in a Sakai

question: such as “println(c) displays”

52

SELECT PROJECT

Select project (not the src

folder)

Suppose you want to search the entire project for

some string such as some text in a Sakai

question: such as “println(c) displays”

53

FILESEARCH

54

SEARCH DIALOG

Search string

Scope of search

Command

55

SEARCH RESULTS

Search view shown,

console in another tab

56

SEARCH RESULTS ZOOMED

Look at all the tabs

availalale here

57

MULTI FILE TEXT SEARCH FOR PRINTLN

58

SEARCH RESULTS

Use CTR+SHIFT+G (shown earlier) to find

active uses of the method

59

CONTENTS

 Install JDK

 Install Eclipse

 Connect JDK to Eclipse

 Create project

 Edit project run project

 Restore window

 Search project for strings

 Debugging

 Adding a library

 Add an existing project

 Copy a project

 Copy a package, class file
to another project

 Delete a project

 Show variable, class,
interface (identifier)
definition and return back

 Find identifier (variable,
class, interface) use

 Refactor

 Complete identifier name

 Understand, fix errors

 Automatic imports

 JUnit

 Change Method Signature

 Extract interface

60

SETTING A BREAK POINT

Double click where you

want program to stop

61

DEBUG-RUN

62

STARTING THE DEBUGGER

63

STOPPING AT BREAKPOINT

Debug Perspective

Next

statemen

t to be

executed

64

EXAMINING MAIN PARAMETERS

Main

Parameters

65

STEPPING TO NEXT STATEMENT

66

NEXT STATEMENT

67

NEW OUTPUT AND LOCAL VARIABLE

Index gets

initialized

println()

executed

68

STEP OVER

69

STEP INTO

Call stack

Called method

parameters

70

STEP RETURN

71

RESUME

72

RETURNING TO JAVA PERSPECTIVE

73

DEBUG LAST MAIN LAUNCHED: F11

No need to select a

main class

74

CONTENTS

 Install JDK

 Install Eclipse

 Connect JDK to Eclipse

 Create project

 Edit project run project

 Restore window

 Search project for strings

 Debugging

 Adding a library

 Add an existing project

 Copy a project

 Copy a package, class file
to another project

 Delete a project

 Show variable, class,
interface (identifier)
definition and return back

 Find identifier (variable,
class, interface) use

 Refactor

 Complete identifier name

 Understand, fix errors

 Automatic imports

 JUnit

 Change Method Signature

 Extract interface

75

LIBRARY LOCATION ON THE WEB

Downloads

Click on the latest version (on my web page,

not this page) to download the jar (same as

zip) and do not unzip/unjar it

76

DOWNLOAD LIBRARY TO LOCAL COMPUTER

Do not unzip/unjar it

77

SELECT PROJECT, AND PROJECTPROPERTIES

Must do this for each project!

78

SELECT BUILD PATH, ADD EXTERNAL JAR

79

SELECT SAVED JAR

80

SELECT BUILD PATH, PROJECTS

81

REMOVE SPURIOUS PROJECTS (IF ANY)

82

PRESS OK TO COMMIT

83

CONTENTS

 Install JDK

 Install Eclipse

 Connect JDK to Eclipse

 Create project

 Edit project run project

 Restore window

 Search project for strings

 Debugging

 Adding a library

 Add an existing project

 Copy a project

 Copy a package, class file
to another project

 Delete a project

 Show variable, class,
interface (identifier)
definition and return back

 Find identifier (variable,
class, interface) use

 Refactor

 Complete identifier name

 Understand, fix errors

 Automatic imports

 JUnit

 Change Method Signature

 Extract interface

84

CREATE A PROJECT OUT OF EXISTING CODE:

FILENEWJAVA PROJECT

85

UNCHECK DEFAULT LOCATION BOX

86

ENTER LOCATION AND NAME

87

NEW PROJECT CREATED

But it will have errors because of missing

ObjectEditor library

88

CONTENTS

 Install JDK

 Install Eclipse

 Connect JDK to Eclipse

 Create project

 Edit project run project

 Restore window

 Search project for strings

 Debugging

 Adding a library

 Add an existing project

 Copy a project

 Copy a package, class file
to another project

 Delete a project

 Show variable, class,
interface (identifier)
definition and return back

 Find identifier (variable,
class, interface) use

 Refactor

 Complete identifier name

 Understand, fix errors

 Automatic imports

 JUnit

 Change Method Signature

 Extract interface

89

COPYING A PROJECT

Select project, CTRL CTRL-V

90

CONTENTS

 Install JDK

 Install Eclipse

 Connect JDK to Eclipse

 Create project

 Edit project run project

 Restore window

 Search project for strings

 Debugging

 Adding a library

 Add an existing project

 Copy a project

 Copy a package, class
file to another project

 Delete a project

 Show variable, class,
interface (identifier)
definition and return back

 Find identifier (variable,
class, interface) use

 Refactor

 Complete identifier name

 Understand, fix errors

 Automatic imports

 JUnit

 Change Method Signature

 Extract interface

91

COPY TYPES (CLASSES, INTERFACES, ENUMS)

FROM PACKAGE TO ANOTHER: COPY

Select type(s) in source project
and package and press CTRL-C

(or FileCopy right menu
item)

92

COPY TYPES FROM ONE PACKAGE TO ANOTHER:

PASTE

Select package in destination
project and package and press

CTRL-V (or FilePaste right
menu item)

93

COPYING CLASSES FROM ONE PACKAGE TO

ANOTHER: NEW CLASS IN NEW PACKAGE AND

PROJECT

Repackaged type added (and its
imports are changed to other copied
types if multiple types are copied and

pasted together)

94

CONTENTS

 Install JDK

 Install Eclipse

 Connect JDK to Eclipse

 Create project

 Edit project run project

 Restore window

 Search project for strings

 Debugging

 Adding a library

 Add an existing project

 Copy a project

 Copy a package, class file
to another project

 Delete a project

 Show variable, class,
interface (identifier)
definition and return back

 Find identifier (variable,
class, interface) use

 Refactor

 Complete identifier name

 Understand, fix errors

 Automatic imports

 JUnit

 Change Method Signature

 Extract interface

95

DELETING A PROJECT

Right click project and delete.
Usually not a good idea to delete

project on disk, can always use the
OS to do so, which will put it in the

recycling bin

96

CONTENTS

 Install JDK

 Install Eclipse

 Connect JDK to Eclipse

 Create project

 Edit project run project

 Restore window

 Search project for strings

 Debugging

 Adding a library

 Add an existing project

 Copy a project

 Copy a package, class file
to another project

 Delete a project

 Show variable, class,
interface (identifier)
definition and return back

 Find identifier (variable,
class, interface) use

 Refactor

 Complete identifier name

 Understand, fix errors

 Automatic imports

 JUnit

 Change Method Signature

 Extract interface

97

JUMPING TO IDENTIFIER DEFINITION AND

NAVIGATION STACK

F3 when cursor is a start
of an identifier

Makes Eclipse take you to
the definition of the

identifier in an edit window

ALT + Back Arrow takes
you back where you

came from, a la
Browser back button,
can execute multiple

times to back in in the
stack of visited points

ALT + Forward Arrow
goes forwards in the
navigation stack a la

browser forward
button

98

CONTENTS

 Install JDK

 Install Eclipse

 Connect JDK to Eclipse

 Create project

 Edit project run project

 Restore window

 Search project for strings

 Debugging

 Adding a library

 Add an existing project

 Copy a project

 Copy a package, class file
to another project

 Delete a project

 Show variable, class,
interface (identifier)
definition and return back

 Find identifier
(variable, class,
interface) use

 Refactor

 Complete identifier name

 Understand, fix errors

 Automatic imports

 JUnit

 Change Method Signature

 Extract interface

99

FIND THE USES

CTRL-SHIFT-G when cursor is a
start of an identifier

Makes Eclipse show the
methods that reference the
identifier in the search tab

Double clicking a method
reference

Makes Eclipse show the method
and highlight all references of

the identifier

10

0

CONTENTS

 Install JDK

 Install Eclipse

 Connect JDK to Eclipse

 Create project

 Edit project run project

 Restore window

 Search project for strings

 Debugging

 Adding a library

 Add an existing project

 Copy a project

 Copy a package, class file
to another project

 Delete a project

 Show variable, class,
interface (identifier)
definition and return back

 Find identifier (variable,
class, interface) use

 Refactor

 Complete identifier name

 Understand, fix errors

 Automatic imports

 JUnit

 Change Method Signature

 Extract interface

10

1

MENUREFACTORRENAME IDENTIFIER: ALT +

SHIFT + R

Select type, right
menuRefactorRename

All references will be updated!

10

2

CONTENTS

 Install JDK

 Install Eclipse

 Connect JDK to Eclipse

 Create project

 Edit project run project

 Restore window

 Search project for strings

 Debugging

 Adding a library

 Add an existing project

 Copy a project

 Copy a package, class file
to another project

 Delete a project

 Show variable, class,
interface (identifier)
definition and return back

 Find identifier (variable,
class, interface) use

 Refactor

 Complete identifier
name

 Understand, fix errors

 Automatic imports

 JUnit

 Change Method Signature

 Extract interface

10

3

COMPLETE IDENTIFIER: CTRL + SPACE AFTER

PREFIX

public static final long NUMBER_OF_LARGE_FACTORIAL_COMPUTATIONS
= 1000000;

Give file name

10

4

CONTENTS

 Install JDK

 Install Eclipse

 Connect JDK to Eclipse

 Create project

 Edit project run project

 Restore window

 Search project for strings

 Debugging

 Adding a library

 Add an existing project

 Copy a project

 Copy a package, class file
to another project

 Delete a project

 Show variable, class,
interface (identifier)
definition and return back

 Find identifier (variable,
class, interface) use

 Refactor

 Complete identifier name

 Understand, fix errors

 Automatic imports

 JUnit

 Change Method Signature

 Extract interface

10

5

UNDERSTAND AND CORRECT ERRORS

10

6

CONTENTS

 Install JDK

 Install Eclipse

 Connect JDK to Eclipse

 Create project

 Edit project run project

 Restore window

 Search project for strings

 Debugging

 Adding a library

 Add an existing project

 Copy a project

 Copy a package, class file
to another project

 Delete a project

 Show variable, class,
interface (identifier)
definition and return back

 Find identifier (variable,
class, interface) use

 Refactor

 Complete identifier name

 Understand, fix errors

 Automatic imports

 JUnit

 Change Method Signature

 Extract interface

10

7

CORRECT ALL IMPORT ERRORS IN FILE: CTRL +

SHIFT + O

In Eclipse press CTRL-SHIFT-O to

automatically import all used types that

need to be imported but have not been

imported

If class is in more than one package,

Eclipse gives a choice

All unused imports are also removed

Can select multiple types or a project to

refresh all imports in the selected

types/project

10

8

CONTENTS

 Install JDK

 Install Eclipse

 Connect JDK to Eclipse

 Create project

 Edit project run project

 Restore window

 Search project for strings

 Debugging

 Adding a library

 Add an existing project

 Copy a project

 Copy a package, class file
to another project

 Delete a project

 Show variable, class,
interface (identifier)
definition and return back

 Find identifier (variable,
class, interface) use

 Refactor

 Complete identifier name

 Understand, fix errors

 Automatic imports

 JUnit Testing

 Change Method Signature

 Extract interface

10

9

JUNIT: NEW CLASS WITHOUT MAIN

11

0

JUNIT: INSTALL JUNIT

11

1

JUNIT ADDED AND IMPORTED

11

2

RUN JUNIT

11

3

JUNIT RESULT

11

4

RETURNING TO JAVA PERSPECTIVE

11

5

CONTENTS

 Install JDK

 Install Eclipse

 Connect JDK to Eclipse

 Create project

 Edit project run project

 Restore window

 Search project for strings

 Debugging

 Adding a library

 Add an existing project

 Copy a project

 Copy a package, class file
to another project

 Delete a project

 Show variable, class,
interface (identifier)
definition and return back

 Find identifier (variable,
class, interface) use

 Refactor

 Complete identifier name

 Understand, fix errors

 Automatic imports

 JUnit

 Change Method
Signature

 Extract interface

11

6

TWO OTHER USEFUL BUT COMPLICATED

REFACTOR OPTIONS

Change method signature

Will try to update references to match the signature,
which can be erroneous

Maybe better to get all references and update them
individually for both purposes

Extract interface of class C

Will create interface of selected public methods and
will make the interface the type of all variables

declared to be of class type

Adds potentially unwanted comments to method
headers and sometimes updates to references have

not worked in the past for me

11

7

CONTENTS

 Install JDK

 Install Eclipse

 Connect JDK to Eclipse

 Create project

 Edit project run project

 Restore window

 Search project for strings

 Debugging

 Adding a library

 Add an existing project

 Copy a project

 Copy a package, class file
to another project

 Delete a project

 Show variable, class,
interface (identifier)
definition and return back

 Find identifier (variable,
class, interface) use

 Refactor

 Complete identifier name

 Understand, fix errors

 Automatic imports

 JUnit

 Change Method Signature

 Extract interface

 Supply main argument

11

8

SUPPLY USER ARGUMENT:

Right MenuDebug As Debug Configuration

11

9

SELECT MAIN CLASS IN CONFIGURATION

12

0

CONTENTS

 Install JDK

 Install Eclipse

 Connect JDK to Eclipse

 Create project

 Edit project run project

 Restore window

 Search project for strings

 Debugging

 Adding a library

 Add an existing project

 Copy a project

 Copy a package, class file
to another project

 Delete a project

 Show variable, class,
interface (identifier)
definition and return back

 Find identifier (variable,
class, interface) use

 Refactor

 Complete identifier name

 Understand, fix errors

 Automatic imports

 JUnit

 Change Method Signature

 Extract interface

 Supply main argument

 Create project from
existing code

12

1

CREATE A PROJECT OUT OF EXISTING CODE:

FILENEWJAVA PROJECT

12

2

UNCHECK DEFAULT LOCATION BOX

12

3

ENTER LOCATION AND NAME

12

4

NEW PROJECT CREATED

But it will have errors because of missing

ObjectEditor library

12

5

SPECIFY AND APPLY ARGUMENT IN ARGUMENT

TAB AND PRESS DEBUG

Argument must be in

quotes. Args[0] = “Ca

Va”

Without quotes Java

will make each word a

separate argument

(args[0] = “Ca”, args[1]

= “Va”

12

6

EXECUTE WITH SUPPLIED ARG

12

7

ARG PRINTED, PROGRAM, STILL RUNNING,

WAITING FOR INPUT

Button available in

both Debug and Java

Perspective, only of

them is active

12

8

TERMINATED PROGRAM

