
COMP 110

FUNCTIONS

Instructor: Prasun Dewan

2

PREREQUISITE

 Objects

3

OUTLINE

 Programmatic instantiation of objects

 Functions calling other functions

 Algorithm and stepwise refinement

 Code Reuse

 Programming Style

 Variables, Named Constants, Literals

 Comments and Identifier Names

4

GENERAL PURPOSE BMI CALCULATOR

Does not assume height or

weight

Specialized could know my

height

5

BMI CALCULATOR SPECIALIZED FOR AN

INDIVIDUAL’S HEIGHT

Need to enter only weight

Height is hard-coded into the

program

weight

6

A SOLUTION

public class AMyBMICalculator {

 public double calculateMyBMI(double weight) {

 }

}

7

A SOLUTION (EDIT)

public class AMyBMICalculator {

 public double calculateMyBMI(double weight) {

 }

}

8

A SOLUTION

public class AMyBMICalculator {

 public double calculateMyBMI(double weight) {

 return weight/ (1.94 * 1.94);

 }

}

Relationship with

ABMICalculator?

9

CUSTOMIZED VS. GENERAL PURPOSE

public class AMyBMICalculator {

 public double calculateMyBMI(double weight) {

 return weight/ (1.94 * 1.94);

 }

}

public class ABMICalculator {

 public double calculateBMI (double weight,

 double height) {

 return weight/ (height * height);

 }

}

One vs. two

parameters

Basic formula is the

same (can cut and

paste)

10

SHOULD REUSE!

public class AMyBMICalculator {

 public double calculateMyBMI(double weight) {

 return weight/ (1.94 * 1.94);

 }

}

public class ABMICalculator {

 public double calculateBMI (double weight,

 double height) {

 return weight/ (height * height);

 }

}

Should reuse code to

avoid duplication of

effort and errors such

as: (weight)/1.94

Particularly important
for complex code

11

HOW TO REUSE ABMICALCULATOR

 Create an instance of ABMICalculator

 Invoke the method calculateBMI() on this instance

passing it my weight and my height as actual

parameters

 The value returned by the method is my BMI

12

INTERACTIVE EXECUTION OF THE STEPS

 Create an instance of
ABMICalculator

 Invoke the method
calculateBMI() on this
instance passing it my weight
and my height as actual
parameters

 The value returned by the
method is my BMI

13

PROGRAMMING THE STEPS

 Create an instance of ABMICalculator

 Invoke the method calculateBMI() on this instance

passing it my weight and my height as actual

parameters

 The value returned by the method is my BMI

public class AMyBMICalculator {

 public double calculateMyBMI(double weight) {

 }

}

return (new ABMICalculator()) .calculateBMI(); weight, 1.94

14

METHOD INVOCATION SYNTAX

(new ABMICalculator()).calculateBMI(weight, 1.94);

Target Object Method Name Actual Parameters

15

FUNCTION COMPOSITION

public class AMyBMICalculator {

 public double calculateMyBMI(double weight) {

 return (new ABMICalculator()).calculateBMI(weight,1.94);

 }

}

 The body of the calling function calls (invokes)

other functions to do its job

 Passes the “buck” to the callee or called functions

 calculateMyBMI() calls calculateBMI()

 Supports reuse

16

CALL GRAPHS

calculateMyBMI(74.98)

calculateBMI(74.98,1.94)

19.92

19.92

17

GRAPHICAL ILLUSTRATION OF THE

CALCULATEMYBMI CALL

Class

AMyBMICalculator

Class

ABMICalculator

AMyBMICalculator

ABMICalculator
return (new ABMICalculator())

public double calculateBMI(double weight,

 double height) {

 return weight/(height*height);

}



 .calculateBMI(weight, 1.94);



 instance of

instance of





public double calculateMyBMI(double weight) {

}

18

MATHEMATICAL INTUITION BEHIND FUNCTION

INVOCATION

tan(x) = sin(x) / cos(x)

tan(90)

sin(90) cos(90)

1 0

19

AVERAGEBMICALCULATOR

Weight 1

Weight 2

20

A SOLUTION

public class AMyAverageBMICalculator {

 public double calculateMyAverageBMI(double weight1,

 double weight2) {

 }

}

21

A SOLUTION (EDIT)

public class AMyAverageBMICalculator {

 public double calculateMyAverageBMI(double weight1,

 double weight2) {

 <edit here>

 }

}

22

A SOLUTION

public class AMyAverageBMICalculator {

 public double calculateMyAverageBMI(double weight1,

 double weight2) {

 return ((new ABMICalculator()).calculateBMI(weight1, 1.94) +

 (new ABMICalculator()).calculateBMI(weight2, 1.94))/2;

 }

}

Creating a new instance of AMyAverageBMICalculator each

time calculateBMI is to be called!

23

INTERACTIVE EQUIVALENT

Instance 1 Instance 2

24

A BETTER INTERACTIVE APPROACH

Instance 1

ObjectEditor window identifies the appropriate instance. Need

way to name objects in a program.

25

NAMING MEMORY LOCATIONS

 Can name values in a program by using variables

 Each program value stored in a memory location

 Variable declarations name memory locations

 Have already seen variable declarations!

26

FORMAL PARAMETERS AS VARIABLES

 Formal parameters are special kinds of variables.

 weight is name of memory location that stores the

actual parameter passed by caller

public class AMyBMICalculator {

 public double calculateMyBMI(double weight) {

 return weight/ (1.94 * 1.94);

 }

}

27

INTERNAL METHOD VARIABLES

 Like formal parameters are declared with type and
name

 Name in subsequent code refers to value stored in
memory location

 Declared in a method body rather than header
 Can be explicitly given initial values
 Which can be changed later
 Make program more efficient as an extra object is

not instantiated

 public class AMyAverageBMICalculator {

 public double calculateMyAverageBMI(double weight1,

 double weight2) {

 ABMICalculator aBMICalculator = new ABMICalculator();

 return (aBMICalculator .calculateBMI(weight1, 1.94) +

 aBMICalculator.calculateBMI(weight2, 1.94))/2;

 }

}

28

MORE USE OF VARIABLES

 bmi1 and bmi2 name memory locations that store

the two intermediate results

 Not really needed to make programs efficient

public class AMyAverageBMICalculator {

 public double calculateMyAverageBMI(double weight1,

 double weight2) {

 ABMICalculator aBMICalculator = new ABMICalculator();

 double bmi1 = aBMICalculator.calculateBMI(weight1, 1.94);

 double bmi2 = aBMICalculator.calculateBMI(weight2, 1.94);

 return (bmi1 + bmi2)/2;

 }

}

29

WHICH IS BETTER?
public class AMyAverageBMICalculator {

 public double calculateMyAverageBMI(double weight1,

 double weight2) {

 AMyBMICalculator aMyBMICalculator = new AMyBMICalculator();

 return (aMyBMICalculator.calculateMyBMI(weight1) +

 aMyBMICalculator.calculateMyBMI(weight2)) / 2;

}

public class AMyAverageBMICalculator {

 public double calculateMyAverageBMI(double weight1,

 double weight2) {

 AMyBMICalculator aMyBMICalculator = new AMyBMICalculator();

 double bmi1 = aMyBMICalculator.calculateMyBMI(weight1);

 double bmi2 = aMyBMICalculator.calculateMyBMI(weight2);

 return (bmi1 + bmi2) / 2;

 }

}

 First solution is more concise

 Second solution separates various steps, giving names
to each intermediate calculated value

 Hard to argue between them
 Second solution makes it easier to single-step through code

30

PROGRAMMING STYLE

 More than one solution to a problem

 Some solutions arguably “better” than others

 E.g. one solution allows reuse other does not.

 Programming style determines which solution is
chosen

 Style as important as correctness

 Good style often promotes correctness

31

STYLE RULES

 Elements of Style

 Support code reuse

 Other style rules?

32

IMPROVING THE STYLE

public class AMyBMICalculatorWithReuse {

 public double calculateMyBMI(double weight) {

 return (new ABMICalculator()).calculateBMI(weight,1.94);

 }

}

A Magic Number

A mysterious (at least

to some) number in

code

33

NAMED CONSTANTS

public class AMyBMICalculator {

 public double calculateMyBMI(double weight) {

 final double MY_HEIGHT = 1.94;

 return (new ABMICalculator()).calculateBMI(weight, MY_HEIGHT);

 }

}

 Like variables have type, name and value

 They must have an initial value

 Initial value of a variable is optional

 The final keyword says value cannot be changed later

 The name is all caps by convention

34

NAMED CONSTANTS, LITERALS, CONSTANTS &

VARIABLES

public class AMyBMICalculator {

 public double calculateMyBMI(double weight) {

 final double MY_HEIGHT = 1.94;

 return (new ABMICalculator()).calculateBMI(weight, MY_HEIGHT);

 }

}

 Literal
 A value directly specified in the program

 Constant
 A fixed value

 Can be literal or named constant

 Variable
 A potentially variable value

Literal Variable Constant
Named

Constant

35

POUND INCH BMI CALCULATOR

36

POUND INCH BMI CALCULATOR

Weight in pounds

Height in inches

37

STEPS FOR REUSING ABMICALCULATOR

38

STEPS FOR REUSING ABMICALCULATOR

39

STEPS FOR REUSING ABMICALCULATOR

 Calculate weight in Kgs from weight in Pounds

 Calculate height in Metres from height in inches

 Call calculateBMI() of ABMICalculator with these

values

 Return the value returned by this call

40

A SOLUTION

public class APoundInchBMICalculator {

 public double calculateBMI(

 double weightInLbs, double heightInInches)

 {

 }

}

41

A SOLUTION (EDIT)

public class APoundInchBMICalculator {

 public double calculateBMI(

 double weightInLbs, double heightInInches)

 {

 }

}

42

A SOLUTION (EDIT)

public class APoundInchBMICalculator {

 public double calculateBMI(

 double weightInLbs, double heightInInches)

 {

 return (new ABMICalculator()).calculateBMI(

 weightInLbs/2.2, heightInInches*2.54/100);

 }

}

43

ALGORITHM

 Description of solution to a problem.

 Can be in any “language”

 graphical

 natural or programming language

 natural + programming language (pseudo code)

 Can describe solution to various levels of detail

44

REAL-WORLD ALGORITHM

 Enter Class

 Distribute handouts

 Set up laptop projection.

 Revise topics learnt in the last class.

 Teach today’s topics.

 Leave Class

45

ALGORITHM FOR REUSING ABMICALCULATOR

 Calculate weight in Kgs from weight in Pounds

 Calculate height in Metres from height in inches

 Call calculateBMI() of ABMICalculator with these

values

 Return the value returned by this call

46

2ND LEVEL ALGORITHM

 Calculate weight in kgs from weight in Pounds

 Divide weight in Pounds by 2.2

 Calculate height in Meters from height in inches

 Calculate height in centimeters from height in inches

and divide it by 100 to get height in meters

 Call calcuateBMI() of ABMICalculator with these

values

 Return the value returned by this call

47

3RD LEVEL ALGORITHM

 Calculate weight in kgs from weight in Pounds

 Divide weight in Pounds by 2.2

 Calculate height in Metres from height in inches

 Calculate height in centimetres from height in inches

and divide it by 100 to get height in metres

Multiply height in Inches by 2.54 to get height in

centimetres

 Call calcuateBMI() of ABMICalculator with these

values

 Return the value returned by this call

48

STEPWISE REFINEMENT

Natural Language Algorithm

•Calculate weight in Kgs from weight in Pounds

•Calculate height in Meters from height in inches

•Call calculateBMI() of ABMICalculator with these values

•Return the value returned by this call

Programming Language Algorithm

public class APoundInchBMICalculator () {

 public double calculateBMI(

 double weightInLbs, double heightInInches) {

 return (new ABMICalculator()).calculateBMI(

 weightInLbs/2.2, heightInInches*2.54/100);

 }

}

49

STYLE PROBLEMS

public class APoundInchBMICalculator {

 public double calculateBMI(

 double weightInLbs, double heightInInches)

 {

 return (new ABMICalculator()).calculateBMI(

 weightInLbs/2.2, heightInInches*2.54/100);

 }

}

 Unlike algorithm, code is single-level

 By defining functions for each algorithm level we
can create multi-level code

 Multi-level code would be more reusable as there
are more parts that can be used independently

50

MULTI-LEVEL CODE
public class APoundInchBMICalculator {

 public double calculateBMI(

 double weightInLbs, double heightInInches) {

 return (new ABMICalculator()).calculateBMI(

 toKgs(weightInLbs), toMetres(heightInInches));

 }

 public double toMetres(double heightInInches) {

 ???

 }

 public double toKgs(double weightInLbs) {

 ???

 }

}

 Can be reused in contexts other than BMI (designing

for reuse).

 Design for Reuse vs. Reusing available code

51

MULTI-LEVEL CODE (EDIT)

public class APoundInchBMICalculator {

 public double calculateBMI(

 double weightInLbs, double heightInInches) {

 return (new ABMICalculator()).calculateBMI(

 toKgs(weightInLbs), toMetres(heightInInches));

 }

 public double toMetres(double heightInInches) {

 ???

 }

 public double toKgs(double weightInLbs) {

 ???

 }

}

52

MULTI-LEVEL CODE
public class APoundInchBMICalculator {

 public double calculateBMI(

 double weightInLbs, double heightInInches) {

 return (new ABMICalculator()).calculateBMI(

 toKgs(weightInLbs), toMetres(heightInInches));

 }

 public double toMetres(double heightInInches) {

 return toCentiMetres(heightInInches)/100;

 }

 public double toCentiMetres(double heightInInches) {

 return heightInInches*2.54;

 }

 public double toKgs(double weightInLbs) {

 return weightInLbs/2.2;

 }

}

53

MULTI-LEVEL CALL GRAPH

calculateBMI(165,70)

toKgs (165)

75

toMetres (70)

toCentiMetres (70)

177.8

1.778

(new ABMICalculator).

calculateBMI(75,1.77)

23.72

23.72

54

EXTERNAL VS. INTERNAL METHOD INVOCATION

SYNTAX

(new ABMICalculator()).calculateBMI(75,1.77));

Actual

Parameters
Method

Name
Target Object

toKgs(165);

55

EXTERNAL VS. INTERNAL METHOD INVOCATION

SYNTAX

 External Method Call

 Caller (calling method) and callee (called method) belong

to different objects

 calculateBMI() of APoundInchBMICalculator instance

calls calculateBMI() of ABMICalculator instance

 Internal Method Call

 Caller and callee methods belong to same object

 calculateBMI() of APoundInchBMICalculator instance

calls toKgs() of APoundInchBMICalculator instance

 Target object optional in internal method call

 Target object needed because multiple objects may

have the same method

 When target object omitted caller’s object is target

object

56

REUSABILITY
public class APoundInchBMICalculator {

 public double calculateBMI(

 double weightInLbs, double heightInInches) {

 return (new ABMICalculator()).calculateBMI(

 toKgs(weightInLbs), toMetres(heightInInches));

 }

 public double toMetres(double heightInInches) {

 return toCentiMetres(heightInInches)/100;

 }

 public double toCentiMetres(double heightInInches) {

 return heightInInches*2.54;

 }

 public double toKgs(double weightInLbs) {

 return weightInLbs/2.2;

 }

}

Can be reused in other

classes

(new APoundInchBMICalculator()).toKgs(165)

(new APoundInchBMICalculator()).toMetres(70)

(new APoundInchBMICalculator()).toCentiMetres(70)

57

LACK OF REUSABILITY

public class APoundInchBMICalculator {

 public double calculateBMI(

 double weightInLbs, double heightInInches)

 {

 return (new ABMICalculator()).calculateBMI(

 weightInLbs/2.2, heightInInches*2.54/100);

 }

}

 A single method implements all three conversions

 Cannot reuse each conversion independent of BMI

calculation

58

MAGIC NUMBERS REVISITED
public class APoundInchBMICalculator {

 public double calculateBMI(

 double weightInLbs, double heightInInches) {

 return (new ABMICalculator()).calculateBMI(

 toKgs(weightInLbs), toMetres(heightInInches));

 }

 public double toMetres(double heightInInches) {

 return toCentiMetres(heightInInches)/100;

 }

 public double toCentiMetres(double heightInInches) {

 return heightInInches*2.54;

 }

 public double toKgs(double weightInLbs) {

 return weightInLbs/2.2;

 }

}

 magic numbers?

59

“WELL-KNOWN” VS. “OBSCURE” NUMBER

weightInLbs/2.2

Well-Known Number

(Natural constant)

(new ABMICalculator). calculateBMI(74, 1.77);

Obscure Number

60

WHAT IS A MAGIC NUMBER?

 Obscure number is a magic number

 Well-known number is not

 A number defined by law of nature

 e.g number of centimeters in an inch

 Π

 What is well-known depends on the audience

 e.g. number of centimeters in an inch

 Numbers defined by law of nature may not be

considered magic numbers

 All other numbers should be considered magic

numbers

61

REMOVING ALL POTENTIALLY MAGIC NUMBERS
public class APoundInchBMICalculator {

 public double calculateBMI(

 double weightInLbs, double heightInInches) {

 return (new ABMICalculator()).calculateBMI(

 toKgs(weightInLbs), toMetres(heightInInches));

 }

 public double toMetres(double heightInInches) {

 final double CMS_IN_METRES = 100;

 return toCentiMetres(heightInInches)/ CMS_IN_METRES;

 }

 public double toCentiMetres(double heightInInches) {

 final double CMS_IN_INCH = 2.54;

 return heightInInches* CMS_IN_INCH;

 }

 public double toKgs(double weightInLbs) {

 final double LBS_IN_KG = 2.2;

 return weightInLbs/LBS_IN_KG;

 }

}

