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PREREQUISITE 

 State Properties 
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INTERFACES 

 Define contracts between our users and 

implementers 

 Optional – they may not be used 

 Good style to use them 
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MOTIVATION: TWO WAYS OF DOING THE BMI 

SPREADSHEET 

 ABMISpreadsheet is one way to implement the 

spreadsheet user-interface 

 Let us create AnotherBMISpreadsheet to illustrate 

another way 

 Difference is in number of variables used 
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ALTERNATIVE IMPLEMENTATION 

public class ABMISpreadsheet { 

 double height; 

 public double getHeight() { 

  return height; 

 } 

 public void setHeight(double newHeight) { 

  height = newHeight; 

 } 

 double weight; 

 public double getWeight() { 

  return weight; 

 } 

 public void setWeight(double newWeight) { 

  weight = newWeight; 

 } 

 public double getBMI() { 

  return weight/(height*height); 

 } 

} 
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ANOTHERBMISPREADSHEET 
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SETWEIGHT() 

ABMISpreadsheet Instance 

weight 
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writes 
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new 
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bmi 

public void setWeight(double newWeight) { 

 weight = newWeight; 

 bmi = weight / (height*height); 

} 
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SETHEIGHT() 

ABMISpreadsheet Instance 
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public void setHeight(double newHeight) { 

 height = newHeight; 

 bmi = weight / (height*height); 

} 
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METHODS THAT CHANGE 
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GETBMI() 
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reads 
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public double getBMI() { 

 return bmi; 

} 
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ANOTHERBMISPPREADSHEET 

public class AnotherBMISpreadsheet { 

    double height, weight, bmi; 

    public double getHeight() { 

        return height; 

    } 

    public void setHeight(double newHeight) { 

        height = newHeight; 

        bmi = weight/(height*height); 

    } 

    public double getWeight() { 

        return weight; 

    } 

    public void setWeight(double newWeight) { 

        weight = newWeight; 

        bmi = weight/(height*height); 

    } 

    public double getBMI() { 

        return bmi; 

    } 

} 
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GRAPHICAL ALGORITHM 
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OBJECTEDITOR USER INTERFACE? 

public class AnotherBMISpreadsheet { 

    double height, weight, bmi; 

    public double getHeight() { 

        return height; 

    } 

    public void setHeight(double newHeight) { 

        height = newHeight; 

        bmi = weight/(height*height); 

    } 

    public double getWeight() { 

        return weight; 

    } 

    public void setWeight(double newWeight) { 

        weight = newWeight; 

        bmi = weight/(height*height); 

    } 

    public double getBMI() { 

        return bmi; 

    } 

} 



15 

OBJECTEDITOR USER INTERFACES 
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SIMILARITIES IN THE TWO CLASSES 
public class AnotherBMISpreadsheet { 

    double height, weight, bmi; 

    public double getHeight() { 

        return height; 

    } 

    public void setHeight(double  

                newHeight) { 

        height = newHeight; 

        bmi = weight/(height*height); 

    } 

    public double getWeight() { 

        return weight; 

    } 

    public void setWeight(double  

                newWeight) { 

        weight = newWeight; 

        bmi = weight/(height*height); 

    } 

    public double getBMI() { 

        return bmi; 

    } 

} 

public class ABMISpreadsheet { 

    double height; 

    public double getHeight() { 

        return height; 

    } 

    public void setHeight(double    

                newHeight) { 

        height = newHeight; 

    } 

    double weight; 

    public double getWeight() { 

        return weight; 

    } 

    public void setWeight(double  

                newWeight) { 

        weight = newWeight; 

    } 

    public double getBMI() { 

        return weight/(height*height); 

    } 

} 

Same headers, signatures 

Signature = Header – parameter names  

public void setHeight(double) 

OE Beautified Signature 
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REAL-WORLD ANALOGY 

Corvette 

Specification 
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INTERFACE 
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public class AnotherBMISpreadsheet implements BMISpreadsheet { 

    double height, weight, bmi; 

    public double getHeight() { 

        return height; 

    } 

    public  void setHeight (double newHeight) { 

        height = newHeight; 

        bmi = weight/(height*height); 

    } 

    … 

IMPLEMENTING AN INTERFACE Contract 

Parameter 

names never 

matter to Java 
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USING INTERFACES TO CLASSIFY 
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USING CAR SPECIFICATIONS TO CLASSIFY 

Corvette 
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USING INTERFACES TO TYPE 

public class BMISpreadsheetUser { 

      public static void main(String[] args) { 

 BMISpreadsheet bmiSpreadsheet = new 

ABMISpreadsheet(1.77, 75); 

 System.out.println(bmiSpreadsheet.getBMI()); 

 bmiSpreadsheet = new AnotherBMISpreadsheet(); 

 bmiSpreadsheet.setHeight(1.77); 

 bmiSpreadsheet.setWeight(75); 

 System.out.println(bmiSpreadsheet.getBMI()); 

      } 

} 

Same variable assigned 

instances of two different classes 
Interface as type 
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TYPE CHECKING 

public class BMISpreadsheetUser { 

      public static void main(String[] args) { 

 BMISpreadsheet bmiSpreadsheet = new 

ABMISpreadsheet(1.77, 75); 

 System.out.println(bmiSpreadsheet.obtainBMI()); 

 bmiSpreadsheet = new AnotherBMISpreadsheet(); 

 bmiSpreadsheet.setHeight(1.77); 

 bmiSpreadsheet.setWeight(75); 

 System.out.println(bmiSpreadsheet.getBMI()); 

      } 

} 

Not defined in interface (or class) 
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INTERFACE METHODS CONSIDERED IN TYPE 

CHECKING 

public class BMISpreadsheetUser { 

      public static void main(String[] args) { 

 BMISpreadsheet bmiSpreadsheet = new 

ABMISpreadsheet(1.77, 75); 

 System.out.println(bmiSpreadsheet.getBMI()); 

 bmiSpreadsheet = new AnotherBMISpreadsheet(); 

 bmiSpreadsheet.setHeight(1.77); 

 bmiSpreadsheet.setWeight(75); 

 System.out.println(bmiSpreadsheet.getBMI()); 

      } 

} 

Not defined in interface 

Not defined in interface so 

illegal, even though defined in 

class 
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YET ANOTHER SPRADSHEET CLASS 

public class ABMISpreadsheetAndCalculator implements ??? {     
    double height, weight, bmi;     
    public double getHeight() { 
        return height; 
    } 
    public void setHeight(double newHeight) { 
        height = newHeight; 
        bmi = calculateBMI(height, weight); 
    }     
    public double getWeight() { 
        return weight; 
    } 
    public void setWeight(double newWeight) { 
        weight = newWeight; 
        bmi = calculateBMI(height, weight); 
    }     
    public double getBMI() { 
        return bmi; 
    } 
    public double calculateBMI(double height, double weight) { 
        return weight/(height*height); 
} 
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IMPLEMENTING MULTIPLE INTERFACES 

public class ABMISpreadsheetAndCalculator implements BMISpreadsheet, BMICalculator{     
    double height, weight, bmi;     
    public double getHeight() { 
        return height; 
    } 
    public void setHeight(double newHeight) { 
        height = newHeight; 
        bmi = calculateBMI(height, weight); 
    }     
    public double getWeight() { 
        return weight; 
    } 
    public void setWeight(double newWeight) { 
        weight = newWeight; 
        bmi = calculateBMI(height, weight); 
    }     
    public double getBMI() { 
        return bmi; 
    } 
    public double calculateBMI(double height, double weight) { 
        return weight/(height*height); 
} 
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BMICALCULATOR INTERFACE 

public interface BMICalculator {     
   public double calculateBMI(double height, double weight); 
} 
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ABMICALCULATORWITHINTERFACE 

public class ABMICalculatorWithInterface implements BMICalculator { 
  public double calculateBMI(double height, double weight) { 
    return weight/(height*height); 
  } 
} 
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TYPING 

 public static void main (String[] args) { 
    BMICalculator bmiCalculator = new ABMISpreadsheetAndCalculator(); 
    BMISpreadsheet bmiSpreadsheet = new ABMISpreadsheetAndCalculator(); 
    double bmi = bmiCalculator.calculateBMI(1.77, 75); 
    bmi = bmiSpreadsheet.getBMI(); 
//    bmi = bmiCalculator.getBMI(); 
//    bmi = bmiSpreadsheet.calculateBMI(1.77, 75); 
 
    } 

public static void main (String[] args) { 
  BMICalculator[] bmiCalculators = {new ABMISpreadsheetAndCalculator(), 
                              new ABMICalculatorWithInterface()}; 
  } 
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CAR ANALOGY 

 A car is characterized by 

 Its make 

 License plate 

 Registration 

 Licensing authority groups car by the registration or 

license plate 
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CANNOT INSTANTIATE SPECIFICATION 

 Cannot order a car from a specification 

 Must order from factory 

 A car defined by Corvette specification ordered from 

factory implementing the specification 

 

 

 Cannot instantiate interface 

 Must instantiate class 

 BMISpreadsheet instance created by instantiating class 

implementing interface 
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INTERFACE AS A SYNTACTIC SPECIFICATION 

public class ABMISpreadsheet implements BMISpreadsheet{ 

    double height; 

    public double getHeight() { 

        return height; 

    } 

    public void setHeight(double newHeight) { 

        height = newHeight; 

    } 

    double weight; 

    public double getWeight() { 

        return weight; 

    } 

    public void setWeight(double newWeight) { 

        weight = newWeight; 

    } 

    public double getBMI() { 

        return weight/(height*height); 

    } 

} 
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INTERFACE AS A SYNTACTIC SPECIFICATION 

public class ABMISpreadsheet implements BMISpreadsheet{ 

    double height; 

    public double getHeight() { 

        return height; 

    } 

    public void setHeight(double newHeight) { 

        height = newHeight; 

    } 

    double weight; 

    public double getWeight() { 

        return weight; 

    } 

    public void setWeight(double newWeight) { 

        weight = newWeight; 

    } 

    public double getBMI() { 

        return 13450; 

    } 

} 

Syntactic 

Contract 

Bombay 

Market Index 
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INTERFACE REQUIRED 

 Define interfaces for 

 All classes (that are instantiated) 

 Some are not 

 Each public method of a class should be in some interface it 
implements 
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IMPACT OF DIFFERENCES IN THE TWO CLASSES 

public class AnotherBMISpreadsheet 

implements BMISpreadsheet { 

    double height, weight, bmi; 

    public double getHeight() { 

        return height; 

    } 

    public void setHeight(double  

                newHeight) { 

        height = newHeight; 

        bmi = weight/(height*height); 

    } 

    public double getWeight() { 

        return weight; 

    } 

    public void setWeight(double  

                newWeight) { 

        weight = newWeight; 

        bmi = weight/(height*height); 

    } 

    public double getBMI() { 

        return bmi; 

    } 

} 

public class ABMISpreadsheet 

implements BMISpreadsheet { 

    double height; 

    public double getHeight() { 

        return height; 

    } 

    public void setHeight(double    

                newHeight) { 

        height = newHeight; 

    } 

    double weight; 

    public double getWeight() { 

        return weight; 

    } 

    public void setWeight(double  

                newWeight) { 

        weight = newWeight; 

    } 

    public double getBMI() { 

        return weight/(height*height); 

    } 

} 
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ABMISPREADSHEET VS. 

ANOTHERBMISPREADSHEET 

 AnotherBMISpreadsheet harder to program 

 Computation of bmi done in multiple setters. 

 These setters have “side effects” 

 AnotherBMISpreadsheet does eager evaluation 

 Value computed may never be used. 

 ABMISpreadsheet uses less space (variables) 

 Getter methods of AnotherBMISpreadhseet are faster 

 Setter methods of ABMISpreadsheet are faster 

 Usually getter methods are called more often that setter 

methods 

 e.g. when ObjectEditor refresh command is executed 

 Typically AnotherBMISpreadsheet will be faster, overall 
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TIME-SPACE TRADEOFF 

Time Miser Space Miser 

Space 

Time 
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TIME-SPACE TRADEOFF 

Space 

Time 

Time Miser Space Miser 
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VARIABLE POINTING TO 

ANOTHERBMISPREADHSEET INSTANCE 

variables memory addresses 

1.77 height 

weight 75 

0 height 

weight 0 

bmiSpreadsheet 64 

52 

64 

S
ta

ck
 

H
e
a
p

 

BMISpreadsheet bmiSpreadsheet = new ABMISpreadsheet(1.77, 75); 

System.out.println(bmiSpreadsheet.getBMI()); 

bmiSpreadsheet = new AnotherBMISpreadsheet(); 

bmi NaN 

Because object variable stores a 

pointer, it can point to  variable 

size chunks of memory 
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RELATING INTERFACE AND CLASS NAMES 

Class Name: 

<Qualifier><Interface>  

 - ABMISpreadsheet 

 - ASpaceEfficientBMISpreadsheet 

 - SpaceEfficientBMISpreadsheet 

<Interface><Qualifier> Impl 

 - BMISpreadsheetImpl 

 - BMISpreadsheetSpaceEfficientImpl 

Interface Name: 

<ClassName>Interface 

 - ABMISpreadsheetInterface 

Assumes only one implementation of interface will be created 


