
COMP 401

INTERFACES

Instructor: Prasun Dewan

2

PREREQUISITE

 State Properties

3

INTERFACES

 Define contracts between our users and

implementers

 Optional – they may not be used

 Good style to use them

4

MOTIVATION: TWO WAYS OF DOING THE BMI

SPREADSHEET

 ABMISpreadsheet is one way to implement the

spreadsheet user-interface

 Let us create AnotherBMISpreadsheet to illustrate

another way

 Difference is in number of variables used

5

ALTERNATIVE IMPLEMENTATION

public class ABMISpreadsheet {

 double height;

 public double getHeight() {

 return height;

 }

 public void setHeight(double newHeight) {

 height = newHeight;

 }

 double weight;

 public double getWeight() {

 return weight;

 }

 public void setWeight(double newWeight) {

 weight = newWeight;

 }

 public double getBMI() {

 return weight/(height*height);

 }

}

Height

Weight

BMI

Editable

Independent

Editable

Independent

Read-only

Dependent

Stored

Stored

Computed

6

ABMISPREADSHEET

ABMISpreadsheet Instance

weight height

getWeight() setWeight() getHeight() setHeight() getBMI()

ObjectEditor

calls

writes

weight

calls

reads

height

calls

reads writes

calls

new

weight

new

height

reads

7

ANOTHERBMISPREADSHEET

AnotherBMISpreadsheet Instance

weight height

getWeight() setWeight() getHeight() setHeight() getBMI()

ObjectEditor

calls

writes

weight

calls

reads

height

calls

reads

writes

calls

new

weight

new

height

reads

bmi

8

SETWEIGHT()

ABMISpreadsheet Instance

weight

setWeight()

ObjectEditor

writes

calls

new

weight

bmi

public void setWeight(double newWeight) {

 weight = newWeight;

 bmi = weight / (height*height);

}

9

SETHEIGHT()

ABMISpreadsheet Instance

height

setHeight()

ObjectEditor

writes

calls

new

height

bmi

public void setHeight(double newHeight) {

 height = newHeight;

 bmi = weight / (height*height);

}

10

METHODS THAT CHANGE

ABMISpreadsheet Instance

weight height

setWeight() setHeight() getBMI()

ObjectEditor

writes

calls

writes

calls

new

weight

new

height

reads

bmi

11

GETBMI()

ABMISpreadsheet Instance

getBMI()

ObjectEditor

reads

bmi

public double getBMI() {

 return bmi;

}

12

ANOTHERBMISPPREADSHEET

public class AnotherBMISpreadsheet {

 double height, weight, bmi;

 public double getHeight() {

 return height;

 }

 public void setHeight(double newHeight) {

 height = newHeight;

 bmi = weight/(height*height);

 }

 public double getWeight() {

 return weight;

 }

 public void setWeight(double newWeight) {

 weight = newWeight;

 bmi = weight/(height*height);

 }

 public double getBMI() {

 return bmi;

 }

}

13

GRAPHICAL ALGORITHM

ABMISpreadsheet Instance

weight height

getWeight() setWeight() getHeight() setHeight() getBMI()

ObjectEditor

calls

writes

weight

calls

reads

height

calls

reads

writes

calls

new

weight

new

height

reads

bmi

14

OBJECTEDITOR USER INTERFACE?

public class AnotherBMISpreadsheet {

 double height, weight, bmi;

 public double getHeight() {

 return height;

 }

 public void setHeight(double newHeight) {

 height = newHeight;

 bmi = weight/(height*height);

 }

 public double getWeight() {

 return weight;

 }

 public void setWeight(double newWeight) {

 weight = newWeight;

 bmi = weight/(height*height);

 }

 public double getBMI() {

 return bmi;

 }

}

15

OBJECTEDITOR USER INTERFACES

16

SIMILARITIES IN THE TWO CLASSES
public class AnotherBMISpreadsheet {

 double height, weight, bmi;

 public double getHeight() {

 return height;

 }

 public void setHeight(double

 newHeight) {

 height = newHeight;

 bmi = weight/(height*height);

 }

 public double getWeight() {

 return weight;

 }

 public void setWeight(double

 newWeight) {

 weight = newWeight;

 bmi = weight/(height*height);

 }

 public double getBMI() {

 return bmi;

 }

}

public class ABMISpreadsheet {

 double height;

 public double getHeight() {

 return height;

 }

 public void setHeight(double

 newHeight) {

 height = newHeight;

 }

 double weight;

 public double getWeight() {

 return weight;

 }

 public void setWeight(double

 newWeight) {

 weight = newWeight;

 }

 public double getBMI() {

 return weight/(height*height);

 }

}

Same headers, signatures

Signature = Header – parameter names

public void setHeight(double)

OE Beautified Signature

17

REAL-WORLD ANALOGY

Corvette

Specification

18

INTERFACE

19

public class AnotherBMISpreadsheet implements BMISpreadsheet {

 double height, weight, bmi;

 public double getHeight() {

 return height;

 }

 public void setHeight (double newHeight) {

 height = newHeight;

 bmi = weight/(height*height);

 }

 …

IMPLEMENTING AN INTERFACE Contract

Parameter

names never

matter to Java

20

implements

implements

INTERFACE

ABMISpreadsheet

BMISpreadsheet

ABMISpreadsheet

instance

ABMISpreadsheet

instance

instance of

AnotherBMISpreadsheet

AnotherBMISpreadsheet

instance

AnotherBMISpreadsheet

instance

instance of

21

implements

implements

USING INTERFACES TO CLASSIFY

ABMISpreadsheet

BMISpreadsheet

BMISpreadsheet

instance

BMISpreadsheet

instance

instance of

AnotherBMISpreadsheet

BMISpreadsheet

instance

BMISpreadsheet

instance

instance of

22

USING CAR SPECIFICATIONS TO CLASSIFY

Corvette

Specification

Corvette

Corvette

Corvette

Corvette

23

USING INTERFACES TO TYPE

public class BMISpreadsheetUser {

 public static void main(String[] args) {

 BMISpreadsheet bmiSpreadsheet = new

ABMISpreadsheet(1.77, 75);

 System.out.println(bmiSpreadsheet.getBMI());

 bmiSpreadsheet = new AnotherBMISpreadsheet();

 bmiSpreadsheet.setHeight(1.77);

 bmiSpreadsheet.setWeight(75);

 System.out.println(bmiSpreadsheet.getBMI());

 }

}

Same variable assigned

instances of two different classes
Interface as type

24

TYPE CHECKING

public class BMISpreadsheetUser {

 public static void main(String[] args) {

 BMISpreadsheet bmiSpreadsheet = new

ABMISpreadsheet(1.77, 75);

 System.out.println(bmiSpreadsheet.obtainBMI());

 bmiSpreadsheet = new AnotherBMISpreadsheet();

 bmiSpreadsheet.setHeight(1.77);

 bmiSpreadsheet.setWeight(75);

 System.out.println(bmiSpreadsheet.getBMI());

 }

}

Not defined in interface (or class)

25

INTERFACE METHODS CONSIDERED IN TYPE

CHECKING

public class BMISpreadsheetUser {

 public static void main(String[] args) {

 BMISpreadsheet bmiSpreadsheet = new

ABMISpreadsheet(1.77, 75);

 System.out.println(bmiSpreadsheet.getBMI());

 bmiSpreadsheet = new AnotherBMISpreadsheet();

 bmiSpreadsheet.setHeight(1.77);

 bmiSpreadsheet.setWeight(75);

 System.out.println(bmiSpreadsheet.getBMI());

 }

}

Not defined in interface

Not defined in interface so

illegal, even though defined in

class

26

YET ANOTHER SPRADSHEET CLASS

public class ABMISpreadsheetAndCalculator implements ??? {
 double height, weight, bmi;
 public double getHeight() {
 return height;
 }
 public void setHeight(double newHeight) {
 height = newHeight;
 bmi = calculateBMI(height, weight);
 }
 public double getWeight() {
 return weight;
 }
 public void setWeight(double newWeight) {
 weight = newWeight;
 bmi = calculateBMI(height, weight);
 }
 public double getBMI() {
 return bmi;
 }
 public double calculateBMI(double height, double weight) {
 return weight/(height*height);
}

27

IMPLEMENTING MULTIPLE INTERFACES

public class ABMISpreadsheetAndCalculator implements BMISpreadsheet, BMICalculator{
 double height, weight, bmi;
 public double getHeight() {
 return height;
 }
 public void setHeight(double newHeight) {
 height = newHeight;
 bmi = calculateBMI(height, weight);
 }
 public double getWeight() {
 return weight;
 }
 public void setWeight(double newWeight) {
 weight = newWeight;
 bmi = calculateBMI(height, weight);
 }
 public double getBMI() {
 return bmi;
 }
 public double calculateBMI(double height, double weight) {
 return weight/(height*height);
}

28

BMICALCULATOR INTERFACE

public interface BMICalculator {
 public double calculateBMI(double height, double weight);
}

29

ABMICALCULATORWITHINTERFACE

public class ABMICalculatorWithInterface implements BMICalculator {
 public double calculateBMI(double height, double weight) {
 return weight/(height*height);
 }
}

30

TYPING

 public static void main (String[] args) {
 BMICalculator bmiCalculator = new ABMISpreadsheetAndCalculator();
 BMISpreadsheet bmiSpreadsheet = new ABMISpreadsheetAndCalculator();
 double bmi = bmiCalculator.calculateBMI(1.77, 75);
 bmi = bmiSpreadsheet.getBMI();
// bmi = bmiCalculator.getBMI();
// bmi = bmiSpreadsheet.calculateBMI(1.77, 75);

 }

public static void main (String[] args) {
 BMICalculator[] bmiCalculators = {new ABMISpreadsheetAndCalculator(),
 new ABMICalculatorWithInterface()};
 }

31

CAR ANALOGY

 A car is characterized by

 Its make

 License plate

 Registration

 Licensing authority groups car by the registration or

license plate

32

CANNOT INSTANTIATE SPECIFICATION

 Cannot order a car from a specification

 Must order from factory

 A car defined by Corvette specification ordered from

factory implementing the specification

 Cannot instantiate interface

 Must instantiate class

 BMISpreadsheet instance created by instantiating class

implementing interface

33

INTERFACE AS A SYNTACTIC SPECIFICATION

public class ABMISpreadsheet implements BMISpreadsheet{

 double height;

 public double getHeight() {

 return height;

 }

 public void setHeight(double newHeight) {

 height = newHeight;

 }

 double weight;

 public double getWeight() {

 return weight;

 }

 public void setWeight(double newWeight) {

 weight = newWeight;

 }

 public double getBMI() {

 return weight/(height*height);

 }

}

34

INTERFACE AS A SYNTACTIC SPECIFICATION

public class ABMISpreadsheet implements BMISpreadsheet{

 double height;

 public double getHeight() {

 return height;

 }

 public void setHeight(double newHeight) {

 height = newHeight;

 }

 double weight;

 public double getWeight() {

 return weight;

 }

 public void setWeight(double newWeight) {

 weight = newWeight;

 }

 public double getBMI() {

 return 13450;

 }

}

Syntactic

Contract

Bombay

Market Index

35

INTERFACE REQUIRED

 Define interfaces for

 All classes (that are instantiated)

 Some are not

 Each public method of a class should be in some interface it
implements

36

IMPACT OF DIFFERENCES IN THE TWO CLASSES

public class AnotherBMISpreadsheet

implements BMISpreadsheet {

 double height, weight, bmi;

 public double getHeight() {

 return height;

 }

 public void setHeight(double

 newHeight) {

 height = newHeight;

 bmi = weight/(height*height);

 }

 public double getWeight() {

 return weight;

 }

 public void setWeight(double

 newWeight) {

 weight = newWeight;

 bmi = weight/(height*height);

 }

 public double getBMI() {

 return bmi;

 }

}

public class ABMISpreadsheet

implements BMISpreadsheet {

 double height;

 public double getHeight() {

 return height;

 }

 public void setHeight(double

 newHeight) {

 height = newHeight;

 }

 double weight;

 public double getWeight() {

 return weight;

 }

 public void setWeight(double

 newWeight) {

 weight = newWeight;

 }

 public double getBMI() {

 return weight/(height*height);

 }

}

37

ABMISPREADSHEET VS.

ANOTHERBMISPREADSHEET

 AnotherBMISpreadsheet harder to program

 Computation of bmi done in multiple setters.

 These setters have “side effects”

 AnotherBMISpreadsheet does eager evaluation

 Value computed may never be used.

 ABMISpreadsheet uses less space (variables)

 Getter methods of AnotherBMISpreadhseet are faster

 Setter methods of ABMISpreadsheet are faster

 Usually getter methods are called more often that setter

methods

 e.g. when ObjectEditor refresh command is executed

 Typically AnotherBMISpreadsheet will be faster, overall

38

TIME-SPACE TRADEOFF

Time Miser Space Miser

Space

Time

39

TIME-SPACE TRADEOFF

Space

Time

Time Miser Space Miser

40

VARIABLE POINTING TO

ANOTHERBMISPREADHSEET INSTANCE

variables memory addresses

1.77 height

weight 75

0 height

weight 0

bmiSpreadsheet 64

52

64

S
ta

ck

H
e
a
p

BMISpreadsheet bmiSpreadsheet = new ABMISpreadsheet(1.77, 75);

System.out.println(bmiSpreadsheet.getBMI());

bmiSpreadsheet = new AnotherBMISpreadsheet();

bmi NaN

Because object variable stores a

pointer, it can point to variable

size chunks of memory

41

RELATING INTERFACE AND CLASS NAMES

Class Name:

<Qualifier><Interface>

 - ABMISpreadsheet

 - ASpaceEfficientBMISpreadsheet

 - SpaceEfficientBMISpreadsheet

<Interface><Qualifier> Impl

 - BMISpreadsheetImpl

 - BMISpreadsheetSpaceEfficientImpl

Interface Name:

<ClassName>Interface

 - ABMISpreadsheetInterface

Assumes only one implementation of interface will be created

