
COMP 110/401

LEAST PRIVILEGE

Instructor: Prasun Dewan

2

PREREQUISITE

 Interfaces

3

NON-PUBLIC INSTANCE VARIABLES

public class ABMISpreadsheet implements BMISpreadsheet {

 double height, weight, bmi;

 …

}

4

MAKING INSTANCE VARIABLES PUBLIC

public class ABMISpreadsheet implements BMISpreadsheet {

 public double height, weight, bmi;

 …

}

Other classes can access

5

HARD TO CHANGE

public class ABMISpreadsheet implements BMISpreadsheet {

 public double height, weight;

 …

}

Other classes can access

6

CONSISTENCY CONSTRAINTS VIOLATED

public class ABMISpreadsheetWithPublicVariables {

 public double height, weight, bmi;

 …

}

 bmiSpreadsheet = new ABMISpreadsheetWithPublicVariables ();

 bmiSpreadsheet.weight = 75;

 bmiSpreadsheet.height = 1.77;

 bmiSpreadsheet.bmi = 1.2;

7

PRECONDITIONS VIOLATED

public class ABMISpreadsheet implements BMISpreadsheet {

 public double height, weight, bmi;

 …

}

More on this later

8

ENCAPSULATION PRINCIPLE

 Do not make instance variables public

 Expose them through public methods

9

CONSTANTS TYPICALLY SHOULD BE PUBLIC

public interface BMISpreadsheet {

 public final double CMS_IN_INCH = 2.54;

 public final double LBS_IN_KG = 2.2;

 …

}

Inconsistent value cannot

be stored

Implementation

independent
Accessible to all

implementing classes

10

PRINCIPLE

 Declare implementation-independent named

constants in interfaces

 implementing classes can access them

11

IMPROVING THE STYLE

public class AnotherBMISpreadsheet implements BMISpreadsheet{

 double height, weight, bmi;

 public double getHeight() {

 return height;

 }

 public void setHeight(double newHeight) {

 height = newHeight;

 bmi = weight/(height*height);

 }

 public double getWeight() {

 return weight;

 }

 public void setWeight(double newWeight) {

 weight = newWeight;

 bmi = weight/(height*height);

 }

 public double getBMI() {

 return bmi;

 }

}

Code repetition

Assuming ABMICalculator does not exist

12

RE-USING CODE
public class AnotherBMISpreadsheet implements BMISpreadsheet{

 double height, weight, bmi;

 public double getHeight() {

 return height;

 }

 public void setHeight(double newHeight) {

 height = newHeight;

 bmi = calculateBMI();

 }

 public double getWeight() {

 return weight;

 }

 public void setWeight(double newWeight) {

 weight = newWeight;

 bmi = calculateBMI();

 }

 double calculateBMI() {

 return weight/(height*height);

 }

 ….

}

13

CHANGING RE-USED CODE ONCE FOR LB, INCH

SPREADSHEET
public class AnotherBMISpreadsheet implements BMISpreadsheet{

 double height, weight, bmi;

 …

 public void setHeight(double newHeight) {

 height = newHeight;

 bmi = calculateBMI();

 }

 public double getWeight() {

 return weight;

 }

 public void setWeight(double newWeight) {

 weight = newWeight;

 bmi = calculateBMI();

 }

 double calculateBMI() {

 return (weight/2.2)/(height * 2.54/100*height*2.54/100);

 }

 …

}
Should calculateBMI() be in interface?

Changed units to lb and inches

Have to change a single method

14

CHANGING RE-USED CODE ONCE FOR LB, INCH

SPREADSHEET (REVIEW)
public class AnotherBMISpreadsheet implements BMISpreadsheet{

 double height, weight, bmi;

 …

 public void setHeight(double newHeight) {

 height = newHeight;

 bmi = calculateBMI();

 }

 public double getWeight() {

 return weight;

 }

 public void setWeight(double newWeight) {

 weight = newWeight;

 bmi = calculateBMI();

 }

 double calculateBMI() {

 return (weight/2.2)/(height * 2.54/100*height*2.54/100);

 }

 …

}
Should calculateBMI() be in interface?

Changed units to lb and inches

Have to change a single method

15

ONLY PUBLIC METHODS IN INTERFACE

public class AnotherBMISpreadsheet implements BMISpreadsheet{

 double height, weight, bmi;

 public double getHeight() {

 return height;

 }

 public void setHeight(double newHeight) {

 height = newHeight;

 bmi = calculateBMI();

 }

 …

 double calculateBMI() () {

 return (weight/2.2)/(height * 2.54/100*height*2.54/100);

 }

 …

}

Not in interface

16

PRINCIPLE OF LEAST PRIVILEGE

 Do not give a user of some code more rights than it

needs

 Code is easier to change

 Need to learn less to use code

 Less likelihood of accidental or malicious damage to

program

 Like hiding engine details from car driver

ObjectEditor

ABMICalculator

User
ABMICalculator

getWeight() setWeight()

getHeight() setHeight()

getBMI() computeBMI()

17

MORE CODE REPETITION

public class AnotherBMISpreadsheet implements BMISpreadsheet{

 double height, weight, bmi;

 ...

 final double LBS_IN_KG = 2.2;

 final double CMS_IN_INCH = 2.54;

 …

 double calculateBMI() {

 return (weight/LBS_IN_KG) /

 (height*CMS_IN_INCH/100*height*CMS_IN_INCH/100);

 }

 …

}

Within same method and has the same value

18

REMOVING CODE REPETITION

public class AnotherBMISpreadsheet implements BMISpreadsheet{

 double height, weight, bmi;

 ...

 final double LBS_IN_KG = 2.2;

 final double CMS_IN_INCH = 2.54;

 …

 double calculateBMI() {

 double heightInMeters = height*CMS_IN_INCH/100;

 return (weight/LBS_IN_KG) /

 (heightInMeters*heightInMeters);

 }

 …

}

19

LOCAL VS. GLOBAL VARIABLE

public class AnotherBMISpreadsheet implements BMISpreadsheet{

 double height, weight, bmi;

 double heightInMeters;

 ...

 final double LBS_IN_KG = 2.2;

 final double CMS_IN_INCH = 2.54;

 …

 double calculateBMI() {

 heightInMeters = height*CMS_IN_INCH/100;

 return (weight/LBS_IN_KG) /

 (heightInMeters*heightInMeters);

 }

 …

}

20

LOCAL VS. GLOBAL VARIABLE

public class AnotherBMISpreadsheet implements BMISpreadsheet{

 double height, weight, bmi;

 double heightInMeters = height*CMS_IN_INCH/100;

 ...

 final double LBS_IN_KG = 2.2;

 final double CMS_IN_INCH = 2.54;

 …

 public void setHeight(double newHeight) {

 heightInMeters = newHeight;

 bmi = calculateBMI();

 }

 …

 double calculateBMI() {

 return (weight/LBS_IN_KG) /

 (heightInMeters*heightInMeters);

 }

 …

}

Violating least privilege

21

public class AnotherBMISpreadsheet implements BMISpreadsheet{

 double height, weight, bmi;

 …

 public void setHeight(double newHeight) {

 height = newHeight;

 bmi = calculateBMI();

 }

 public double getWeight() {

 return weight;

 }

 public void setWeight(double newWeight) {

 weight = newWeight;

 bmi = weight/(height*height);

 }

 …

 double calculateBMI () {

 double heightInMetres = height*CMS_IN_INCH/100;

 return (weight/LBS_IN_KG) / (heightInMetres*heightInMetres);

 }

 …

}

SCOPE

heightInMeters

scope

Not a scope

height scope

22

SCOPE OF PUBLIC ITEMS

public class AnotherBMISpreadsheet implements BMISpreadsheet{

 double height, weight, bmi;

 …

 public double getWeight() {

 return weight;

 }

 …

}

ObjectEditor

ABMISpreadsheet

getWeight() scope

includes all classes

23

SCOPE MODIFIERS

 public: accessible in all classes.

 protected: accessible in all subclasses of its class

and all classes in its package.

 Will see this later.

 Many of the variables/methods in lecture code have

protected access even though PPT slides do not show it

 default: accessible in all classes in its package.

 private: accessible only in its class.

Will use default access for non public variables as we do not

know the full context for the code right now

Some purists of least privilege insist on private access

24

IDENTIFIER SCOPE

 Region of code where the identifier is visible

 Arbitrary scopes not possible

 Least Privilege => Make scope as small as possible

25

FOLLOWING LEAST PRIVILEGE
public class AnotherBMISpreadsheet implements BMISpreadsheet{

 double height, weight, bmi;

 …

 public void setHeight(double newHeight) {

 height = newHeight;

 bmi = calculateBMI();

 }

 public double getWeight() {

 return weight;

 }

 public void setWeight(double newWeight) {

 weight = newWeight;

 bmi = weight/(height*height);

 }

 …

 double calculateBMI() () {

 double heightInMetres = height*CMS_IN_INCH/100;

 return (weight/LBS_IN_KG) / (heightInMetres*heightInMetres);

 }

 …

}

heightInMeters

scope

26

NAMING OF VARIABLES IN DIFFERENT SCOPES

public class ABMISpreadsheet {
 double height;
 double weight;
 public ABMISpreadsheet(
 double theInitialHeight, double theInitialWeight) {
 setHeight(theInitialHeight);
 setWeight(theInitialWeight);
 }
 public void setWeight(double newWeight) {
 weight = newWeight;
 }
 public void setHeight(double newHeight) {
 height = newHeight;
 }
 …

}

27

public class ABMISpreadsheet {
 double height;
 double weight;
 public ABMISpreadsheet(
 double height, double weight) {
 setHeight(height);
 setWeight(weight);
 }
 public void setWeight(double weight) {
 weight = weight;
 }
 public void setHeight(double height) {
 height = height;
 }
 …

}

SAME VARIABLE NAME IN NESTED SCOPES

Local, not global
instance variable

Eclipse uses fonts
and colors to

indicate scope

28

public class ABMISpreadsheet {
 double height;
 double weight;
 public ABMISpreadsheet(
 double height, double weight) {
 setHeight(height);
 setWeight(weight);
 }
 public void setWeight(double weight) {
 this.weight = weight;
 }
 public void setHeight(double height) {
 this.height = height;
 }
 …

}

DISAMBIGUATION WITH THIS (STANDARD

CONVENTION)

Local, not global
instance variable

Eclipse features
based on this
convention

Can forget to put
this

29

public class ABMISpreadsheet {
 double height;
 double weight;
 public ABMISpreadsheet(
 double theHeight, double theInitialWeight) {
 setHeight(theHeight);
 setWeight(theInitialWeight);
 }
 public void setWeight(double aWeight) {
 weight = weight;
 }
 public void setHeight(double newVal) {
 height = newVal;
 }
 …

}

USING DIFFERENT NAMES

Must sometimes
fight with Eclipse

Examples use
multiple

conventions for
local variables

