
COMP 110

LOOPS

Instructor: Prasun Dewan

2

PREREQUISITE

 Conditionals

.

3

LOOPING

printHello(2); printHello(3);

hello

hello

hello

hello

hello

4

public static void printHellos(int n) {

}

LOOPS

 int counter = 0;

 if (counter < n) {

 counter = counter + 1;

 System.out.println (“hello”);

 }

5

public static void printHellos(int n) {

}

LOOPS

 int counter = 0;

 while (counter < n) {

 counter = counter + 1;

 System.out.println (“hello”);

 }

6

IF VS. WHILE STATEMENT

while (<bool expr>)

 <statement>;

if (<bool expr>)

 <statement>;

7

IF STATEMENT

<boolean

expression>

<statement>

true

false

8

WHILE STATEMENT

<boolean

expression>

<statement>

true

false

9

WHILE LOOP

<boolean

expression>

<statement>

true

false

10

SENTINEL-BASED FOLDING

11

ADDING FIXED NUMBER OF LOANS

 Loan loan1 = readLoan();

 Loan loan2 = readLoan();

 Loan loan3 = readLoan();

 Loan loan4 = readLoan();

 Loan sumLoan = ALoan.add(loan1,

 ALoan.add(loan2,

 ALoan.add(loan3, loan4))

);
 print(sumLoan);

12

GENERALIZING TO VARIABLE NUMBER OF LOANS

 Loan loan1 = readLoan();

 Loan loan2 = readLoan();

 Loan loan3 = readLoan();

 Loan loan4 = readLoan();

 …

 Loan loanN = readLoan();

 Loan sumLoan = ALoan.add(loan1,

 ALoan.add(loan2,

 ALoan.add(loan3,

 ALoan.add(loan4, ……(

 ALoan.add(loanN-1, loanN)*;

 print (sumLoan);

Variable Number of

Statements

Variable Number of

Subexpressions (function calls)

Recursion

Loops and Arrays

13

SPACE-EFFICIENT ADDING OF FIXED NUMBER OF

LOANS

 Loan loan1 = readLoan();

 Loan loan2 = readLoan();

 Loan sumLoan = ALoan.add(loan1, loan2);

 loan1 = readLoan(); // 3rd loan

 sumLoan = ALoan.add(sumLoan, loan1);

 loan1 = readLoan(); // 4th loan

 sumLoan = ALoan.add(sumLoan, loan1);
 print (sumLoan);

14

MORE SPACE-EFFICIENT ADDING OF FIXED

NUMBER OF LOANS

 Loan sumLoan = readLoan(); //first loan

 Loan nextLoan = readLoan(); //second loan

 sumLoan = ALoan.add(nextLoan, sumLoan);

 nextLoan = readLoan(); // 3rd loan

 sumLoan = ALoan.add(sumLoan, nextLoan);

 nextLoan = readLoan(); // 4th loan

 sumLoan = ALoan.add(sumLoan, nextLoan);
 print (sumLoan);

15

MORE SPACE-EFFICIENT ADDING OF VARIABLE

NUMBER OF LOANS

 Loan sumLoan = readLoan(); //first loan

 Loan nextLoan = readLoan(); //second loan

 sumLoan = ALoan.add(nextLoan, sumLoan);

 nextLoan = readLoan(); // 3rd loan

 sumLoan = ALoan.add(sumLoan, nextLoan);

 nextLoan = readLoan(); // 4th loan

 sumLoan = ALoan.add(sumLoan, nextLoan);

 nextLoan = readLoan(); //Nth loan

 sumLoan = ALoan.add(sumLoan, nextLoan);

 nextLoan = readLoan(); //sentinel
 print (sumLoan);

N-1

Repetitions

16

WHILE LOOP

 Loan sumLoan = readLoan(); //first loan

 Loan nextLoan = readLoan(); //second loan

 while (nextLoan().getPrincipal() >= 0) {

 sumLoan = ALoan.add(nextLoan, sumLoan);

 nextLoan = readLoan(); // next loan or sentinel

 }

 print (sumLoan);

Input

-1

Result

Program waits forever for second loan

Boundary Condition

17

CORRECT SOLUTION

 Loan sumLoan = new ALoan(0); //initial value

 Loan nextLoan = readLoan(); //second loan

 while (nextLoan().getPrincipal() >= 0) {

 sumLoan = ALoan.add(nextLoan, sumLoan);

 nextLoan = readLoan(); // next loan or sentinel

 }

 print (sumLoan);

ALoan.add(new ALoan(0), add(loan1, add (…., loanN)

Identity

18

A SINGLE SENTINEL VALUE

 Loan sumLoan = new ALoan(0); //initial value

 Loan nextLoan = readLoan(); //second loan

 while (nextLoan().getPrincipal() >= 0) {

 sumLoan = ALoan.add(nextLoan, sumLoan);

 nextLoan = readLoan(); // next loan or sentinel

 }

 print (sumLoan);

19

A SINGLE LOAN

 Loan sumLoan = new ALoan(0); //initial value

 Loan nextLoan = readLoan(); //second loan

 while (nextLoan().getPrincipal() >= 0) {

 sumLoan = ALoan.add(nextLoan, sumLoan);

 nextLoan = readLoan(); // next loan or sentinel

 }

 print (sumLoan);

20

TWO LOANS

 Loan sumLoan = new ALoan(0); //initial value

 Loan nextLoan = readLoan(); //second loan

 while (nextLoan().getPrincipal() >= 0) {

 sumLoan = ALoan.add(nextLoan, sumLoan);

 nextLoan = readLoan(); // next loan or sentinel

 }

 print (sumLoan);

21

MULTIPLYING NUMBERS (EDIT)
public class ANumberMultiplier {

 public static void main(String[] args) {

 int product = 1;

 int nextInt = Console.readInt();

 while (nextInt >= 0) {

 product = product * nextInt;

 nextInt = Console.readInt();

 }

 System.out.println(product);

 }

}

22

MULTIPLYING NUMBERS

int product = 1;

int num = Console.readInt();

while (num >= 0) {

 product = product*num;

 num = Console.readInt();

}
print (product);

1 * 20 * 2 * 3

Identify

23

COMPARING TWO SOLUTIONS

int product = 1;

int num = Console.readInt();

while (num >= 0) {

 product = product*num;

 num = Console.readInt();

}
print (product);

 Loan sumLoan = new ALoan(0); //initial value

 Loan nextLoan = readLoan(); //second loan

 while (nextLoan().getPrincipal() >= 0) {

 sumLoan = ALoan.add(nextLoan, sumLoan);

 nextLoan = readLoan(); // next loan or sentinel

 }

 print (sumLoan);

result

nextVal

Read first value

Read other value

Identity
Binary folding

function !isSentinel(nextVal)

24

GENERALIZED FOLDING OF A SENTINEL-

TERMINATED LIST

a1 a2 a3 an

a1

a1

a1

f: T, T  T

F(x, I)  x

25

GENERALIZED FOLDING FUNCTION

T result = I;

T nextValue = getNextValue()

while (!isSentinel(nextValue)) {

 result = f(result, nextValue);

 nextValue = getNextValue(..);

}

≥ 0 ALoan.add(), *

Loan, int new ALoan(0), 1

26

COMPARING TWO SOLUTIONS (COMMENTS)

int product = 1; //identity

int num = Console.readInt(); // read next list value

while (num >= 0) { // sentinel checking

 product = product*num; // binary folding function

 num = Console.readInt(); // read next value

}
 print (product);// print value

Loan sumLoan = new ALoan(0); //identity

Loan nextLoan = readLoan(); // read next list value

while (nextLoan().getPrincipal() >= 0) {// sentinel checking

 sumLoan = Aloan.add(nextLoan, sumLoan); // binary folding function

 nextLoan = readLoan(); // read next list value

}

print (sumLoan); // print value

