
COMP 401

STATE

Instructor: Prasun Dewan

2

PREREQUISITES

 Objects

3

ABMICALCULATOR

public class ABMICalculator

{

public double calculateBMI(double weight, double height)

{

 return weight/(height*height);

}

}

public class BMICalculatorTester

{

 public static void main (String[] args) {

 ABMICalculator bmiCalculator = new ABMICalculator();

 System.out.println (bmiCalculator.calculateBMI(75, 1.77));

 }

}

Formal

Parameters

Actual

Parameters

Instance

Method)

ABMICalculator type
A variable that

holds instances of

ABMICalculator

4

ABMICALCULATOR

public class ABMICalculator

{

public double calculateBMI(double weight, double height)

{

 return weight/(height*height);

}

}

weight 0

height 0

variables memory

Parameters

Parameters

Invoke

calculateBMI

Actual

Parameters

Formal

Parameters

74.98

1.94

assigned

Each time formal parameters are assigned new actual parameters

5

“WHAT IF” BMI CALCULATIONS WITH GENERAL

PURPOSE CALCULATOR

Must re-enter height each time!

6

“WHAT IF” BMI CALCULATIONS WITH

SPECIALIZED CALCULATOR

public double calculateMyBMI(double weight) {

 final double MY_HEIGHT = 1.77;

 return (new ABMICalculator).calculateBMI(weight, MY_HEIGHT);

}

Must only enter the weight

But the height is hardwired! Must create a

separate class for each user!

General purpose solution that does not require

re-entry of height each time?

7

Calculate two BMIs using one

instance of ABMISpreadsheet

and changing only the weight

BMI SPREADSHEET

State: Data remembered by an

object between method

invocations

8

INSTANCE VARIABLES

ABMICalculator Instance

calculateBMI

Parameters

 Body

 accesses

ABMISpreadsheet Instance

getBMI

 Instance

Variables

 Body

 accesses

Belong to a single method

Local variable

Belong to all methods of an

instance

Global variable

9

STATE-LESS VS. STATE-FULL OBJECTS

Identical Instances ~ car radios with no presets

Different Instances ~ car radios with presets

10

DECLARING INSTANCE VARIABLES

public class ABMISpreadsheet {

 double height;

 ...

 double weight;

 ...

 public double getBMI() {

 return weight/(height*height);

 }

 …

}

Missing

Code

No

Parameters

Instance

Variables

11

EXPORTING STATE

public class ABMISpreadsheet {

 double height;

 ...

 double weight;

 ...

 public double getBMI() {

 return weight/(height*height);

 }

 …

}

ObjectEditor Outside Access:

Variables should not be

public (like hidden thoughts)

But ObjectEditor needs their

values

12

ACCESSING INSTANCE VARIABLES VIA PUBLIC

METHODS

ABMISpreadsheet Instance

weight height

getWeight() setWeight() getHeight() setHeight() getBMI()

ObjectEditor

calls

writes

weight

calls

reads

height

calls

reads writes

calls

new

weight

new

height

reads

13

CODING GETTER AND SETTER METHODS

ABMISpreadsheet Instance

weight

getWeight() setWeight()

ObjectEditor

calls

writes

weight

calls

reads

new

weight

14

CODING GETTER AND SETTER METHODS

ABMISpreadsheet Instance

weight

getWeight() setWeight()

ObjectEditor

calls

writes

weight

calls

reads

new

weight

public double getWeight()

{

 return weight;

}

public void setWeight(double newWeight)

{

 weight = newWeight;

}

procedure –

returns nothing
function

15

FUNCTION VS. PROCEDURE

public class ABMISpreadsheet {

 double height;

 public double getHeight() {

 return height;

 }

 public void setHeight(double newHeight) {

 height = newHeight;

 }

 double weight;

 public double getWeight() {

 return weight;

 }

 public void setWeight(double newWeight) {

 weight = newWeight;

 }

 public double getBMI() {

 return weight/(height*height);

 }

}

procedure –

returns nothing

function

16

FUNCTION VS. PROCEDURE

procedure:

deposit

function:

withdraw

17

PURE VS. IMPURE FUNCTIONS

ABMICalculator Instance

weight

 Body

 accesses

ABMISpreadsheet Instance

getWeight

 weight

 Body accesses

height

 calculateBMI

calculateBMI(77,1.77)

calculateBMI(77,1.77) 24.57

24.57

...

getWeight()

getWeight()

setWeight(77)

77

71

... setWeight(71)

18

FUNCTIONS WITH SIDE EFFECTS

public class ASquareAndCubeSpreadsheetWithSideEffects {

 int number;

 int square;

 public void setNumber(int theNumber) {

 number = theNumber;

 }

 public int getNumber() {

 return number;

 }

 public int getSquare() {

 square = number*number;

 return square;

 }

 public int getCube() {

 int retVal = square*number;

 System.out.println("The Cube is: " + retVal);

 return retVal;

 }

}

getCube()

setNumber(5)

0

getSquare() 25

getCube() 125

19

FUNCTIONS WITH SIDE EFFECTS

public class ASquareAndCubeSpreadsheetWithSideEffects {

 int number;

 int square;

 public void setNumber(int theNumber) {

 number = theNumber;

 }

 public int getNumber() {

 return number;

 }

 public int getSquare() {

 square = number*number;

 return square;

 }

 public int getCube() {

 int retVal = square*number;

 System.out.println("The Cube is: " + retVal);

 return retVal;

 }

}

Side effect: Changing

global state or

printing (non

debugging) output in

function

Unexpected: makes

function behave like

a procedure

Side effects are

confusing and should

be avoided in the

functions you write in

this course

20

FUNCTION”NESS” OF METHOD

Procedure: returns nothing

Reads/writes global variables/produces output

Pure Function: computes a value

Does not access global variables or produce (non-debug) output

Impure Function without side effects: computes a value

Does not write global variables

Impure Function with side effects: computes a value

Reads/writes global variables or produces (non-debug) output

21

PROPERTIES

public class ABMISpreadsheet {

 double height;

 public double getHeight() {

 return height;

 }

 public void setHeight(double newHeight) {

 height = newHeight;

 }

 double weight;

 public double getWeight() {

 return weight;

 }

 public void setWeight(double newWeight) {

 weight = newWeight;

 }

 public double getBMI() {

 return weight/(height*height);

 }

}

22

READ-ONLY AND EDITABLE PROPERTIES

public class C

{

}

public T getP() {

 ...

}

public void setP(T newValue) {

 ...

}

Typed, Named Unit of Exported Object State

Name P

Type T

Read-only

Editable

Getter method

Setter method

newP obtainP
Violates Bean

convention

Bean

Bean

convention:

For humans

and tools

23

READ-ONLY AND EDITABLE PROPERTIES (REVIEW)

public class C

{

}

public T getP() {

 ...

}

public void setP(T newValue) {

 ...

}

Typed, Named Unit of Exported Object State

Name P

Type T

Read-only

Editable

Getter method

Setter method

newP obtainP
Violates Bean

convention

Bean

Bean

convention:

For humans

and tools

24

PROPERTIES

public class ABMISpreadsheet {

 double height;

 public double getHeight() {

 return height;

 }

 public void setHeight(double newHeight) {

 height = newHeight;

 }

 double weight;

 public double getWeight() {

 return weight;

 }

 public void setWeight(double newWeight) {

 weight = newWeight;

 }

 public double getBMI() {

 return weight/(height*height);

 }

}

Height

Weight

BMI

25

OBJECTEDITOR PROPERTY MANIPULATION

public class ABMISpreadsheet {

 double height;

 public double getHeight() {

 return height;

 }

 public void setHeight(double newHeight) {

 height = newHeight;

 }

 double weight;

 public double getWeight() {

 return weight;

 }

 public void setWeight(double newWeight) {

 weight = newWeight;

 }

 public double getBMI() {

 return weight/(height*height);

 }

}

26

TRACING METHOD CALLS
public class ABMISpreadsheet {

 double height;

 public double getHeight() {

 System.out.println(“getHeight Called”);

 return height;

 }

 public void setHeight(double newHeight) {

 System.out.println(“setHeight Called”);

 height = newHeight;

 }

 double weight;

 public double getWeight() {

 System.out.println(“getWeight Called”);

 return weight;

 }

 public void setWeight(double newWeight) {

 System.out.println(“setWeight Called”);

 weight = newWeight;

 }

 public double getBMI() {

 System.out.println(“getBMI Called”);

 return weight/(height*height);

 }

}

Debug output

27

ACTUAL TRACE

Extra getWeight() call made by the undo-redo mechanism in

ObjectEditor

Load

Change

weight

28

DISPLAYING AND THEN CHANGING OBJECT

public class ABMISpreadsheetManipulatedByMainAndObjectEditor {

 public static void main (String[] args) {

 ABMISpreadsheet bmiSpreadsheet = new ABMISpreadsheet();

 ObjectEditor.edit(bmiSpreadsheet);

 bmiSpreadsheet.setHeight(1.77);

 bmiSpreadsheet.setWeight(75);

 }

}

Setters not called through

ObjectEditor, so it does not know

it should refresh

29

REFRESHING OBJECTEDITOR FROM MAIN

public class ABMISpreadsheetRefreshedByMain {

 public static void main (String[] args) {

 ABMISpreadsheet bmiSpreadsheet = new ABMISpreadsheet();

 OEFrame oeFrame = ObjectEditor.edit(bmiSpreadsheet);

 bmiSpreadsheet.setHeight(1.77);

 bmiSpreadsheet.setWeight(75);

 oeFrame.refresh();

 }

}

Better ways to refresh we will

learn later

30

DEMOING OBJECT

public class ABMISpreadsheetAnimatingDemoer {
 public static void main (String[] args) {
 ABMISpreadsheet bmiSpreadsheet = new ABMISpreadsheet();
 bmiSpreadsheet.setHeight(1.77);
 bmiSpreadsheet.setWeight(75);
 OEFrame editor = ObjectEditor.edit(bmiSpreadsheet);
 ThreadSupport.sleep(5000);
 editor.select(bmiSpreadsheet, "Weight");
 bmiSpreadsheet.setWeight(70);
 editor.refresh();
 ThreadSupport.sleep(5000);
 editor.select(bmiSpreadsheet, "Height");
 bmiSpreadsheet.setHeight(0);
 editor.refresh();
 ThreadSupport.sleep(5000);
 editor.select(bmiSpreadsheet, "Weight");
 bmiSpreadsheet.setWeight(0);
 editor.refresh(); }
}

ThreadSupport() makes program wait for

specified number of milliseconds

31

DEMO

https://www.youtube.com/watch?v=dYfSuP3Io8I&feature=plcp

https://www.youtube.com/watch?v=dYfSuP3Io8I&feature=plcp

32

PROPERTIES CLASSIFICATION

public class ABMISpreadsheet {

 double height;

 public double getHeight() {

 return height;

 }

 public void setHeight(double newHeight) {

 height = newHeight;

 }

 double weight;

 public double getWeight() {

 return weight;

 }

 public void setWeight(double newWeight) {

 weight = newWeight;

 }

 public double getBMI() {

 return weight/(height*height);

 }

}

Height

Weight

BMI

Editable

Independent

Editable

Independent

Read-only

Dependent

Stored

Stored

Computed

33

PROPERTIES?

public class ABMISpreadsheet {

 double hght;

 public double getHowTall() {

 return hght;

 }

 public void setHowTall(double newHeight) {

 hght = newHeight;

 }

 double weight;

 public double getWeight() {

 return weight;

 }

 public void setWeight(double newWeight) {

 weight = newWeight;

 }

 public double getBMI() {

 return weight/(hght*hght);

 }

}

HowTall

Weight

BMI

34

PROPERTIES?

public class ABMICalculator {

 public double calculateBMI (double weight,

 double height) {

 return weight/ (height * height);

 }

}

No Properties

35

NO_PATTERN ANNOTATION

import util.annotations.StructurePattern

@StructurePattern(StructurePatternNames.NO_PATTERN)

public class ABMICalculator {

 public double calculateBMI (double weight,

 double height) {

 return weight/ (height * height);

 }

}

Available to ObjectEditor

Structure(<PatternName>) before class

asserts that the class is following the

pattern.

Annotation is like a comment except it

is typed and available at runtime

36

BEAN PATTERN ANNOTATION

import util.annotations.StructurePattern

@StructurePattern(StructurePatternNames.BEAN_PATTERN)

public class ABMISpreadsheet {

 double height;

 public double getHeight() {

 return height;

 }

 public void setHeight(double newHeight) {

 height = newHeight;

 }

 double weight;

 public double getWeight() {

 return weight;

 }

 public void setWeight(double newWeight) {

 weight = newWeight;

 }

 public double getBMI() {

 return weight/(height*height);

 }

}

Why pattern annotation?

Documentation

Efficiency: OE does not

need to look for pattern

Errors/warnings: Can give

error message if pattern

not followed

37

ERROR?

public class ABMISpreadsheetNotFollowingBeanConventions {

 double height = 1.77;

 double weight = 75;

 public double getWeight() {

 return weight;

 }

 public void set(double newWeight, double newHeight) {

 weight = newWeight;

 height = newHeight;

 }

 public double getHeight() {

 return height;

 }

 public void setHeight(int newHeight) {

 height = newHeight;

 }

 public double BMI() {

 return weight/(height*height);

 }

}

Can system catch these

errors?

38

(EDITABLE) PROPERTY NAME ANNOTATIONS

import util.annotations.EditablePropertyNames;
import util.annotations.PropertyNames;
@StructurePattern(StructurePatternNames.BEAN_PATTERN)

@PropertyNames({ "Height", "Weight", "BMI"})

@EditablePropertyNames({"Height", "Weight"})

public class ABMISpreadsheetNotFollowingBeanConventions {

 double height = 1.77;

 double weight = 75;

 public double getWeight() {

 return weight;

 }

 public void set(double newWeight, double newHeight) {

 weight = newWeight;

 height = newHeight;

 }

 public double getHeight() {

 return height;

 }

 public void setHeight(int newHeight) {

 height = newHeight;

 }

 public double BMI() {

 return weight/(height*height);

 }

}

39

ORDER OF PROPERTIES
@StructurePattern(StructurePatternNames.BEAN_PATTERN)

@PropertyNames({ "Weight", "Height", "BMI"})

@EditablePropertyNames({"Height", "Weight"})

public class ABMISpreadsheetNotFollowingBeanConventions {

 double height = 1.77;

 double weight = 75;

 public double getWeight() {

 return weight;

 }

 public void set(double newWeight, double newHeight) {

 weight = newWeight;

 height = newHeight;

 }

 public double getHeight() {

 return height;

 }

 public void setHeight(int newHeight) {

 height = newHeight;

 }

 public double BMI() {

 return weight/(height*height);

 }

}

40

OVERLOADING

System.out.println(“setWeight called”);

System.out.println(newWeight);

public void println(String val) {…}

public void println(double val) {…}

Operation

Definitions

Context of actual

parameters
Two different

operations with

the same name

String

double

Two different

words with the

same name
Look at that plane fly.

The fly is bothering me.

41

MORE ON PRINTLN

System.out.println(“setWeight called”);

System.out.println(newWeight);

System.out.println(“setWeight called” + newWeight);

5 + 6

Operator

Overloading

42

AMBIGUOUS CONTEXT

System.out.println(“setWeight called”);

System.out.println(newWeight);

public void println(String val) {…}

public void println(String val) {…}

Time flies like an arrow.

Fruit flies like an orange.

Operation

Definitions

Java cannot use context to

disambiguate

Defining two versions of a method ? Why is overloading useful?

43

INCONSISTENT BMI STATE

ObjectEditor.edit(new ABMISpreadsheet());

44

FIXING INCONSISTENT BMI STATE

ABMISpreadsheet aBMISpreadsheet = new ABMISpreadsheet();

aBMISpreadsheet.setHeight(1.77);

aBMISpreadsheet.setWeight(75.0);

45

ALWAYS CONSISTENT BMI STATE

ABMISpreadsheet aBMISpreadsheet = new ABMISpreadsheet(

 1.77, 75.0);

46

CONSTRUCTOR

public class ABMISpreadsheet {

 double height, weight;

 public ABMISpreadsheet(

 double theInitialHeight, double theInitialWeight) {

 setHeight(theInitialHeight);

 setWeight(theInitialWeight);
 }

 public double getHeight() {

 return height;

 }

 public void setHeight(double newHeight) {

 height = newHeight;

 }

 public double getWeight() {

 return weight;

 }

 public void setWeight(double newWeight) {

 weight = newWeight;

 }

 public double getBMI() {

 return weight/(height*height);

 }

}

Calling setter

methods instead of

modifying variable

directly makes

debugging easier as

you can set

breakpoint on setter

to trap writes to it

47

CONSTRUCTOR

public class ABMISpreadsheet {

 double height, weight;

 public ABMISpreadsheet(

 double theInitialHeight, double theInitialWeight) {

 setHeight(theInitialHeight);

 setWeight(theInitialWeight);
 }

 public double getHeight() {

 return height;

 }

 public void setHeight(double newHeight) {

 height = newHeight;

 }

 public double getWeight() {

 return weight;

 }

 public void setWeight(double newWeight) {

 weight = newWeight;

 }

 public double getBMI() {

 return weight/(height*height);

 }

}

Constructor name

must be the name of

the class

Constructor name is

also the type of

object returned

48

EVERY CLASS HAS A CONSTRUCTOR

public class ABMISpreadsheet {

 double height, weight;

 public double getHeight() {

 return height;

 }

 public void setHeight(double newHeight) {

 height = newHeight;

 }

 public double getWeight() {

 return weight;

 }

 public void setWeight(double newWeight) {

 weight = newWeight;

 }

 public double getBMI() {

 return weight/(height*height);

 }

}

49

EQUIVALENT CLASS CREATED BY JAVA

public class ABMISpreadsheet {

 double height, weight;

 public ABMISpreadsheet() { }

 public double getHeight() {

 return height;

 }

 public void setHeight(double newHeight) {

 height = newHeight;

 }

 public double getWeight() {

 return weight;

 }

 public void setWeight(double newWeight) {

 weight = newWeight;

 }

 public double getBMI() {

 return weight/(height*height);

 }

}

If Programmer

Specifies no

Constructor, Java

inserts a null

constructor

Inserted in Object

Code not in Source

Code

50

A CLASS CAN HAVE MULTIPLE CONSTRUCTORS

public class ABMISpreadsheet {

 double height, weight;

 public ABMISpreadsheet() { }

 public ABMISpreadsheet(

 double theInitialHeight, double theInitialWeight) {

 setHeight(theInitialHeight);

 setWeight(theInitialWeight);
 }

 public double getHeight() {

 return height;

 }

 public void setHeight(double newHeight) {

 height = newHeight;

 }

 public double getWeight() {

 return weight;

 }

 public void setWeight(double newWeight) {

 weight = newWeight;

 }

 public double getBMI() {

 return weight/(height*height);

 }

}

Overloaded

Constructor

51

public class BMISpreadsheetUser {

 public static void main(String[] args) {

 ABMISpreadsheet bmiSpreadsheet = new ABMISpreadsheet();

 bmiSpreadsheet.setHeight(1.77);

 bmiSpreadsheet.setWeight(75);

 System.out.println(bmi.getBMI());

 //equivalent computation

 bmiSpreadsheet = new ABMISpreadsheet(1.77, 75);

 System.out.println(bmi.getBMI());

 }

}

USING OVERLOADED CONSTRUCTORS

Using

Overloaded

Constructor

52

ARE (PROGRAMMER-DEFINED) CONSTRUCTORS

EVER ABSOLUTELY NECESSARY?

ABMISpreadsheet aBMISpreadsheet = new ABMISpreadsheet();

aBMISpreadsheet.setHeight(1.77);

aBMISpreadsheet.setWeight(75.0);

Programmer can

initialize state after

instantiation (requires

a bit more work but

possible in this case)

ABMISpreadsheet aBMISpreadsheet = new ABMISpreadsheet(

 1.77, 75.0);

Always possible?

Can use the full

functionality of class

without programmer-

defined constructor

Some part of the exported

state (e.g. height) may be

readonly

53

IMMUTABLE OBJECTS

String s = new String("hello");

String is immutable.

An immutable object cannot be changed after initialization.

An immutable object with state must have one or more

programmer-defined constructors to initialize the state

54

ASSIGNING TO STRING VARIABLE

s = s + “ world";

Assigns to s a new String object

Does not change the original String

55

WHY IMMUTABLE STRING?

Easier to implement (do not have to address insertions)

Immutable objects make it is easier to implement

correct programs with threads and hashtables

StringBuffer supports mutable strings

String s1 = "hello world";

String s2 = "hello world";

System.out.println(s1 == s2);

true

Allows literals (String constants) to share memory

location

56

WHY IMMUTABLE STRING?

StringBuffer supports mutable strings

String s1 = new String ("hello world");

String s2 = new String ("hello world");

System.out.println(s1 == s2);

false

New String Allocated

57

CHANGING VARIABLE VS. OBJECT
String s = "hello";

String hello = s;

s += " world";

System.out.println(s == hello);

Assigns to s a new String object

Does not change the original String

StringBuffer s = new StringBuffer("hello");

StringBuffer hello = s;

s.append(" world");

System.out.println(s == hello);

Does not reassign sb

Changes the object to which sb points

Reassigning a new

object less efficient

false

true

58

public class BMISpreadsheetUser {

 public static void main(String[] args) {

 ABMISpreadsheet bmiSpreadsheet = new ABMISpreadsheet();

 bmiSpreadsheet.setHeight(1.77);

 bmiSpreadsheet.setWeight(75);

 double computedBMI = bmiSpreadsheet.getBMI();

 System.out.println(computedBMI);

 }

}

PROGRAMMATIC PROPERTY MANIPULATION

59

public class BMISpreadsheetUser {

 public static void main(String[] args) {

 ABMISpreadsheet bmiSpreadsheet = new ABMISpreadsheet();

 bmiSpreadsheet.setHeight(1.77);

 bmiSpreadsheet.setWeight(75);

 double computedBMI = bmiSpreadsheet.getBMI();

 System.out.println(computedBMI);

 }

}

OBJECTS VS. PRIMITIVES

Primitive

Variable

Object

Variable
Object Value

Primitive

Value

60

public class BMISpreadsheetUser {

 public static void main(String[] args) {

 ABMISpreadsheet bmiSpreadsheet;

 bmiSpreadsheet.setHeight(1.77);

 bmiSpreadsheet.setWeight(75);

 double computedBMI;

 System.out.println(computedBMI);

 }

}

UNINITIALIZED PRIMITIVE VS. OBJECT VARIABLES

Uninitialized

Primitive

Variable

Uninitialized

Object

Variable

61

DEFAULT VALUES FOR VARIABLES

Primitive Variables

double computedBMI;

double weight;

Object Variables

ABMISpreadsheet

bmiSpreadsheet;

variables memory

0.0

0.0

null

computedBMI

weight

bmiSpreadsheet

Legal

double

values

Illegal ABMISpreadsheet

value

62

INVOKING METHODS ON NULL

 bmiSpreadsheet.getBMI()

 null pointer exception

 Exception is an unexpected event (error)

 Guilty method will be terminated and exception reported

 Will see other exceptions later

63

ABMISpreadsheet bmiSpreadsheet1 = new ABMISpreadsheet();

ABMISpreadsheet bmiSpreadsheet2 = new ABMISpreadsheet();

bmiSpreadsheet1.setHeight(1.77)

bmiSpreadsheet2 = bmiSpreadsheet1;

MEMORY REPRESENTATION

memory

bmiSpreadsheet2 null

bmiSpreadsheet1 null

Stack: area at bottom of memory where

slots for local variables (formal

parameters, internal variables get

allocated, stack grows upwards

S
ta

ck

H
e
a
p

Heap: area at top of memory where objects

get allocated, heap grows downwards

bmiSpreasheet1 and bmiSpreadsheet2 are

internal variables of some method

64

ABMISpreadsheet bmiSpreadsheet1 = new ABMISpreadsheet();

ABMISpreadsheet bmiSpreadsheet2 = new ABMISpreadsheet();

bmiSpreadsheet1.setHeight(1.77);

bmiSpreadsheet2 = bmiSpreadsheet1;

NEW INSTANCE CREATED

variables memory

New instance created

from heap

addresses

0 height

weight 0

bmiSpreadsheet2 null

bmiSpreadsheet1 null

52

S
ta

ck

H
e
a
p

65

ABMISpreadsheet bmiSpreadsheet1 = new ABMISpreadsheet();

ABMISpreadsheet bmiSpreadsheet2 = new ABMISpreadsheet();

bmiSpreadsheet1.setHeight(1.77);

bmiSpreadsheet2 = bmiSpreadsheet1;

OBJECT ASSIGNMENT

variables memory

Address of new instance

assigned bmiSpreadsheet1

addresses

0 height

weight 0

bmiSpreadsheet2 null

bmiSpreadsheet1 52

52

S
ta

ck

H
e
a
p

66

ABMISpreadsheet bmiSpreadsheet1 = new ABMISpreadsheet();

ABMISpreadsheet bmiSpreadsheet2 = new ABMISpreadsheet();

bmiSpreadsheet1.setHeight(1.77);

bmiSpreadsheet2 = bmiSpreadsheet1;

SECOND INSTANCE CREATED

New instance created

from heap

variables memory addresses

0 height

weight 0

0 height

weight 0

bmiSpreadsheet2 null

bmiSpreadsheet1 52

52

64

S
ta

ck

H
e
a
p

67

ABMISpreadsheet bmiSpreadsheet1 = new ABMISpreadsheet();

ABMISpreadsheet bmiSpreadsheet2 = new ABMISpreadsheet();

bmiSpreadsheet1.setHeight(1.77);

bmiSpreadsheet2 = bmiSpreadsheet1;

SECOND ASSIGNMENT

variables memory addresses

0 height

weight 0

0 height

weight 0

bmiSpreadsheet2 64

bmiSpreadsheet1 52

52

64

S
ta

ck

H
e
a
p

Address of second instance

assigned bmiSpreadsheet2

68

START OF SETHEIGHTCALL

Formal parameter of setHeight

allocated from stack

variables memory addresses

0 height

weight 0

0 height

weight 0

bmiSpreadsheet2 64

bmiSpreadsheet1 52

newHeight 1.77

52

64

S
ta

ck

H
e
a
p

ABMISpreadsheet bmiSpreadsheet1 = new ABMISpreadsheet();

ABMISpreadsheet bmiSpreadsheet2 = new ABMISpreadsheet();

bmiSpreadsheet1.setHeight(1.77);

bmiSpreadsheet2 = bmiSpreadsheet1;

69

AFTER SETHEIGHT ASSIGNMENT

variables memory addresses

1.77 height

weight 0

0 height

weight 0

bmiSpreadsheet2 64

bmiSpreadsheet1 52

newHeight 1.77

52

64

S
ta

ck

H
e
a
p

Formal parameter of

setHeight assigned

to instance variable

ABMISpreadsheet bmiSpreadsheet1 = new ABMISpreadsheet();

ABMISpreadsheet bmiSpreadsheet2 = new ABMISpreadsheet();

bmiSpreadsheet1.setHeight(1.77);

bmiSpreadsheet2 = bmiSpreadsheet1;

70

SETHEIGHT RETURNS

variables memory addresses

1.77 height

weight 0

0 height

weight 0

bmiSpreadsheet2 64

bmiSpreadsheet1 52

52

64

S
ta

ck

H
e
a
p

newHeight popped

from stack

ABMISpreadsheet bmiSpreadsheet1 = new ABMISpreadsheet();

ABMISpreadsheet bmiSpreadsheet2 = new ABMISpreadsheet();

bmiSpreadsheet1.setHeight(1.77)

bmiSpreadsheet2 = bmiSpreadsheet1;

71

AFTER ASSIGNMENT

ABMISpreadsheet bmiSpreadsheet1 = new ABMISpreadsheet();

ABMISpreadsheet bmiSpreadsheet2 = new ABMISpreadsheet();

bmiSpreadsheet1.setHeight(1.77)

bmiSpreadsheet2 = bmiSpreadsheet1;

variables memory addresses

1.77 height

weight 0

0 height

weight 0

bmiSpreadsheet2 52

bmiSpreadsheet1 52

52

64

S
ta

ck

H
e
a
p

== does an address

(pointer) copy

72

AFTER GARBAGE COLLECTION

ABMISpreadsheet bmiSpreadsheet1 = new ABMISpreadsheet();

ABMISpreadsheet bmiSpreadsheet2 = new ABMISpreadsheet();

bmiSpreadsheet1.setHeight(1.77)

bmiSpreadsheet2 = bmiSpreadsheet1;

variables memory addresses

1.77 height

weight 0

bmiSpreadsheet2 52

bmiSpreadsheet1 52

52

S
ta

ck

H
e
a
p

 Unreferenced object

garbage collected

later

73

ASSIGNMENT IS NOT A COPY

bmiSpreadsheet2 = bmiSpreadsheet1;

bmiSpreadsheet1.setWeight(75);

variables memory addresses

1.77 height

weight 75

bmiSpreadsheet2 52

bmiSpreadsheet1 52

52

S
ta

ck

H
e
a
p

bmiSpreadsheet1.getWeight() ==

bmiSpreadsheet1.getWeight()
 true

74

PRIMITIVES VS. OBJECTS AGAIN

variables memory addresses

1.77 height

weight 0

0 height

weight 0

bmiSpreadsheet2 64

bmiSpreadsheet1 52

52

64

S
ta

ck

H
e
a
p

Primitive

Variable

Object

Variable

Primitive

Value

Object Value

(Address)

ABMISpreadsheet bmiSpreadsheet1 = new ABMISpreadsheet();

ABMISpreadsheet bmiSpreadsheet2 = new ABMISpreadsheet();

bmiSpreadsheet1.setHeight(1.77);

bmiSpreadsheet2 = bmiSpreadsheet1;

75

public class ASquareAndCubeSpreadsheetWithSideEffects {

 int number;

 int square;

 public void setNumber(int theNumber) {

 number = theNumber;

 }

 public int getNumber() {

 return number;

 }

 public int getSquare() {

 square = number*number;

 return square;

 }

 public int getCube() {

 int retVal = square*number;

 System.out.println("The Cube is: " + retVal);

 return retVal;

 }

}

FUNCTIONS WITH SIDE EFFECTS
After calling setNumber(),

ObjectEditor calls getCube()

before calling getSquare() to

do automatic refresh

Explicit refresh calls getters again, and

square has the correct value now

76

EXTRA SLIDES

77

WHY IMMUTABLE STRING

Easier to implement (do not have to move string)

Make is easier to implement correct programs with

threads

Do not have to create a physical copy of a string

s1 = “world";

s2 = s1;

s.setCharAt(1,‘0’);

System.out.println(s2.charAt(1));

Make is easier to implement correct programs with

threads and hashtables

78

CLASSIFYING METHODS

 Procedures

 return nothing

 write global variables
and produce output

 Functions

 Return values.

 Can also write global
variables and produce
output

 Pure Functions

 Do not read or write
global variables or
produce output

 Impure functions:

 Access global variable or
produce output.

 Impure functions
without side effects

 Read global variables
but do not write global
variables or produce
output

 Impure functions with
side effects

 Impure functions write
global variables and/or
produce output

79

BEAN PATTERN?

@StructurePattern(StructurePatternNames.BEAN_PATTERN)

public class ABMISpreadsheetNotFollowingBeanConventions {

 double height = 1.77;

 double weight = 75;

 public double getWeight() {

 return weight;

 }

 public void set(double newWeight, double newHeight) {

 weight = newWeight;

 height = newHeight;

 }

 public double getHeight() {

 return height;

 }

 public void setHeight(int newHeight) {

 height = newHeight;

 }

 public double BMI() {

 return weight/(height*height);

 }

}

Warning if (editable) properties not declared?

Overhead, chances of mistake low, C# has built in support for properties

Why warning if no structure annotation?

80

(PATTERN)ANNOTATION
import util.annotations.StructurePattern;
import util.annotations.StructurePatternNames;
@StructurePattern(StructurePatternNames.BEAN_PATTERN)

public class ABMISpreadsheetNotFollowingBeanConventions {

 double height = 1.77;

 double weight = 75;

 public double getWeight() {

 return weight;

 }

 public void set(double newWeight, double newHeight) {

 weight = newWeight;

 height = newHeight;

 }

 public double getHeight() {

 return height;

 }

 public void setHeight(int newHeight) {

 height = newHeight;

 }

 public double BMI() {

 return weight/(height*height);

 }

}

Annotation is like a

comment except it is

typed and available at

runtime

Structure(<PatternName>) before class

asserts that the class is following the

pattern.

81

OBJECTEDITOR PROPERTY MANIPULATION

public class ABMISpreadsheet {

 double height;

 public double getHeight() {

 return height;

 }

 public void setHeight(double newHeight) {

 height = newHeight;

 }

 double weight;

 public double getWeight() {

 return weight;

 }

 public void setWeight(double newWeight) {

 weight = newWeight;

 }

 public double getBMI() {

 return weight/(height*height);

 }

}

Height

Weight

BMI

