CoMP 401
STATE

‘ Instructor: Prasun Dewan

PREREQUISITES

o Objects

ABMICALCULATOR

public class ABMICalculator

{
public double calculateBMI(double wejght, double height)
! "g\/
- I Aaeight*height);
} Instance Formal
! Method) Parameters
A variable that
ABMICalculator type holds instances of
ABMI‘Calculator Actoll
public glass BMICalculatorTestar Parameters
{

public static void main (String[}args) {
ABMICalculator bmiCalculator = new ABMICalcu}atoy();
System.out.println (bmiCalculator.calculate BMI(75, 1.77));

ABMICALCULATOR

public class ABMICalculator

{
public double calculateBMI(double weight, double height)

{ 7 A1
return weight/(height*height); ,” ~<
; ’ >
/ ,7 Formal

} / /
; .’ Parameters

7 7
Lol assigned / ’ .
calculateBM S / s

|duuhle .
weight
|duuhle
Calculate BMI{double,double) height

Each time formal parameters are assigned new actual parameters

TTXITIXITITTUTCTTT .

“WHAT IF” BMI CALCULATIONS WITH GENERAL
PURPOSE CALCULATOR

double

77

fdouble

1.77|

Calculate BMI{double,double)

fdouble

1.77

Calculate BMI{double,double)

File Edit View Customize Double Comparahble

24 5778671513401 45| \

File Edit View Customize Double Comparahble

22.562?086?24?598| \

Must re-enter height each time!

“WHAT IF” BMI CALCULATIONS WITH
SPECIALIZED CALCULATOR

4| Parameters of Calculate My BMI
File

Parameter 1: double w |74

Calculate My BEMi(double)

public double calculateMyBMI(double weight) {
final double MY_HEIGHT = 1.77,
return (new ABMICalculator).calculateBMI(weight, MY_HEIGHT);

b

Must only enter the weight

But the height is hardwired! Must create a
separate class for each user!

General purpose solution that does not require
re-entry of height each time?

BMI SPREADSHEET

File Edit View Customize File Edit View Customize

Height: 1.77 Height: 1.77

Weight: 77.0 Weight: 71.0
BMI: 24 577867151840145 BMI: 22.66270367247598

Calculate two BMIs using one State: Data remembered by an
mstance of ABMISpreadsheet object between method
and changing only the weight Invocations

INSTANCE VARIABLES

ABMICalculator Instance ABMISpreadsheet Instance

calculateBMI get BMI

o] o]
accesses /
accesses /

Instance
Y Variables

{ Parameter'
\

p

Belong to all methods of an
Instance

Local variable Global variable

Belong to a single method

STATE-LESS VS. STATE-FULL OBJECTS

File Edit View Customize File Edit View Customize

File Edit View Customize File Edit View Customize

Height: 1.77 Height: 1.77

Weight: 77.0 Weight: 71.0
BMI: 24.577867151540145 BMI: 22.66270867247598

Different Instances ~ car radios with presets

DECLARING INSTANCE VARIABLES

Instance
Variables

my public class ABMISpreadshee
MBI double height:
Code \ ’

double weight;

public double getBMI() {
return Weight/(hm No

} Parameters

O

EXPORTING STATE

File Edit View Customize

Height: 1.77
Weight: [71.0
public class ABMISpreadsheet { ||| em: 22.66270867247598

double height;

double weight;

public d le getBMI() {
ght/(height*height);

}

Variables should not be
public (like hidden thoughts)

ObjectB l But ObjectEditor needs their

values

ACCESSING INSTANCE VARIABLES VIA PUBLIC

METHODS

ABMISpreadsheet Instance

Welght

rea%/ Ywﬂ:es

height l

reads

getWeight() | | setWeight() getHeight() setHeight() get BMI()
A\ A\ A\ A\
calls calls calls calls
new new
, weight . height
weight height

ObjectEditor

O

CODING GETTER AND SETTER METHODS

ABMISpreadsheet Instance

[We1ght

rea%/ Ywﬂ:es

getWeight() | | setWeight()

A A\

calls calls
new

. weight
weight

ObjectEditor

O

CODING GETTER AND SETTER METHODS

ABMISpreadsheet Instance public double getWeight(

{
return weight;
[Welght §

N\

rea%/ Wltes public| void $etWei
{

t(double newWeight)

weight 'L new Weight;
getWeight() | | setWeight() §
A A AN
AN
calls calls procedure — function
returns nothing

new

weight

weight

ObjectEditor

o

FUNCTION VS. PROCEDURE

public class ABMISpreadsheet {

double height; _

public double getHeight() { function
return height;

J}

public void setHeight(double newHeight) {
height = newHeight; N

! .
— procedure —
double weight: returns nothing

public double getWeight() {
return weight;

!

public void setWeight(double newWeight)
welght = newWeight;

;
public double getBMI() {

return weight/(height*height);

b

FUNCTION VS. PROCEDURE

procedure: function:
deposit withdraw

PURE VS. IMPURE FUNCTIONS

ABMICalculator Instance

calculateBMI

Body

ccesses

weight height

ABMISpreadsheet Instance

getWeight

Body

accesses

/

weight

calculateBMI(77,1.77)

calculateBMI(77,1.77)

24.57

24.57

setWeight(77)
getWeight() 77

setWeight(71)

getWeight() 71

FUNCTIONS WITH SIDE EFFECTS

public class ASquareAndCubeSpreadsheetWithSideEffects ({
int number;

int square;
public void setNumber (int theNumber) {

number = theNumber;
}
public int getNumber () ({ SetNumbeI‘(5)
return number;
} getCube() 0
public int getSquare () { getSquareO 25
square = number*number;
return square; getCube() 125
}
public int getCube () ({
int retVal = square*number;
System.out.println ("The Cube is: " + retVal);,

return retVal;

FUNCTIONS WITH SIDE EFFECTS

public class ASquareAndCubeSpreadsheetWithSideEffects ({
int number;

int square;
public void setNumber (int theNumber) { [SGERSIEERIO)ENTabote

number = theNumber; global state or

} printing (non

public int getNumber () { debugging) output in
return number; function

}

public int getSquare () { Unexpected: makes
square = number*number; function behave like
return square; a procedure

}

public int getCube () { Side effects are
int retVal = square*nupber; confusing and should
System.out.println ("The Cube 1s: " + B arvaided o The
return retval; functions you write in

} this course

FUNCTION”NESS” OF METHOD

Pure Function: computes a value

Does not access global variables or produce (non-debug) output

Impure Function without side effects: computes a value

Does not write global variables

Impure Function with side effects: computes a value

Reads/writes global variables or produces (non-debug) out, at

Procedure: returns nothing

Reads/writes global variables/produces output

PROPERTIES

public class ABMISpreadsheet {

double height;

public double getHeight() {
return height;

h

public void setHeight(double newHeight) {
height = newHeight;

j

double weight;

public double getWeight() {
return weight;

j

public void setWeight(double newWeight) {
welght = newWeight;

j

public double getBMI() {
return weight/(height*height);

b

READ-ONLY AND EDITABLE PROPERTIES

Typed, Named Unit of Exported Object State

public class C
{

public T| ge

}

public void setP(T|newValue) {_

}

Bean

)

F

Name P

Type T

[

Read-only l

I
Editable l

Getter method

//

Setter method

Bean
convention:

Violates Bean

newP

For humans
and tools

convention

READ-ONLY AND EDITABLE PROPERTIES (REVIEW)
Typed, Named Unit of Exported Object State
. 4
public class C B Name P
{ ean
Type T
ublic T ge [
P s)t Read-only l
} [
Editable l
public void setP({T|newValue) {\\
\ Getter method
j Setter method
} Bean
convention:
) Violates Bean newP For humans
convention and tools

PROPERTIES

public class ABMISpreadsheet {

double height;

public double getHeight() {
return height;

h
public void setHeight(double newHeight) {

height = newHeight;

j
double weight;

. public double getWeight() {
Weight return weight;
}
public void setWeight(double newWeight) {

welight = newWeight;

j
public double getBMI() {

return weight/(height*height);

b

OBJECTEDITOR PROPERTY MANIPULATION

public class ABMISpreadsheet {
double height;

public double getHeight() { <— |
return height;

J

public void setHeight(double ne
height = newHeight;

§

double weight;

public double getWeight() {
return weight;

§

public void setWeight(double ne
welght = newWeight;

§

public double getBMI() {¥ —— |

return weight/(height*height);
}

b

TRACING METHOD CALLS

public class ABMISpreadsheet {
double height;
public double getHeight() {

System.out.println(“getHeight Called”);

return heighnt,

b

System.out.println(“setHeight Called”);
height =Tnewtieigitt;

J

double weight;

public double getWeight() {
System.out.println(“getWeight Called”);
return weight;

§

public void setWeight(double newWeight) {
System.out.println(“setWeight Called”);

hd 1 Xxr 1
WEIgIIU — IIEW VV EIgIIL,

nithlic doiihla oo+t RNMIN S
t’ ““““““““““ b\/ LLLLLL \/ (

System.out.println(“getBMI Called”);
return weight/(height*height);

b

}

Debug output

ACTUAL TRACE

Ohject: bus.uigen.0ObjectEditor@S5el??a
Ohject: state.ABMICalculatori186c73A

gqetHeight (> Called
getlleight(}» Called —

Load

gqetBMI{>» Called

getlleight(» Called

setlleight (> Called
gqetHeight(» Called —
getlleight(}» Called

Change
welght

gqetBMI{>» Called

Extra getWeight() call made by the undo-redo mechanism in
ObjectEditor

DISPLAYING AND THEN CHANGING OBJECT

public class ABMISpreadsheetManipulatedByMainAndObjectEditor ({
public static void main (String[] args) {
ABMISpreadsheet bmiSpreadsheet = new ABMISpreadsheet();
ObjectEditor.edit (bmiSpreadsheet) ;
bmiSpreadsheet.setHeight (1.77);
bmiSpreadsheet.setWeight (75) ;

Setters not called through

ObjectEditor, so it does not know
1t should refresh

REFRESHING OBJECTEDITOR FROM MAIN

public class ABMISpreadsheetRefreshedByMain ({
public static void main (String[] args) {
ABMISpreadsheet bmiSpreadsheet = new ABMISpreadsheet();
OEFrame oeFrame = ObjectEditor.edit (bmiSpreadsheet);
bmiSpreadsheet.setHeight (1.77);
bmiSpreadsheet.setWeight (75) ;
oeFrame.refresh();

Weight: 5.0
BMI: 23.93948099205209

Better ways to refresh we will

learn later

W*#**Refreshing complete object. If you know them, annonce property and/or list events.

—

DEMOING OBJECT

public class ABMISpreadsheetAnimatingDemoer {
public static void main (String[] args) {

ABMISpreadsheet bmiSpreadsheet = new ABMISpreadsheet();
bmiSpreadsheet.setHeight(1.77);
bmiSpreadsheet.setWeight(75);
OEFrame editor = ObjectEditor.edit(bmiSpreadsheet);
ThreadSupport.sleep(5000) ;
editor.select(bmiSpreadsheet, "Weight");
bmiSpreadsheet.setWeight(70);

editor.refresh(); Common
ThreadSupport.sleep(5000) ; Height: |1.77
editor.select(bmiSpreadsheet, "Height"); Byeight: 750
bmiSpreadsheet.setHeight(0); BMI: 23 93948099205209

editor.refresh();
ThreadSupport.sleep(5000);
editor.select(bmiSpreadsheet, "Weight");
bmiSpreadsheet.setWeight(0):
editor.refresh(); }

ThreadSupport() makes program wait for

specified number of milliseconds

DEMO

https://www.youtube.com/watch?v=dY{fSuP3lo81&feature=plcp

https://www.youtube.com/watch?v=dYfSuP3Io8I&feature=plcp

PROPERTIES CLASSIFICATION

public class ABMISpreadsheet {
double height;
public double getHelghtO { Editable
return height;
} Independent
public void setHeight(double newHeight) { Stored
height = newHeight; ore
j
double weight;
public double getWeight() { Editable
t 1ght;
Weight § retun weishts Independent
public void setWeight(double newWeight) { Stored
welight = newWeight;
j
public double getBMI() { . - Read-only
return weight/(height*height);
y Dependent
Computed

PROPERTIES?

public class ABMISpreadsheet {
double¢ hght;
publicI;ou e getHowTall() {
return hght;

h

public void|setHowTall{double newHeight) {
hght = newHeight;
j

double weight;

public double getWeight() {
return weight;

j

public void setWeight(double newWeight) {
welight = newWeight;
j

public double getBMI() {
return weight/(hght*hght);
)

PROPERTIES?

public class ABMICalculator {
public double calculateBMI (double weight,
double height) {
return weight/ (height * height);

* .| [ABMICalculator] ==

File Edit View Customize

No Properties

NO PATTERN ANNOTATION

import util.annotations.StructurePattern
@StructurePattern (StructurePatternNames.NO PATTERN)
public class ABMICalculator {
public double calculateBMI (double weight,
double height) {
return weight/ (height * height):

Annotation is like a comment except it
1s typed and available at runtime

File Edit View Customize

Structure(<PatternName>) before class
asserts that the class is following the
pattern.

BEAN PATTERN ANNOTATION

import util.annotations.StructurePattern
@StructurePattern (StructurePatternNames.BEAN PATTERN)
public class ABMISpreadsheet {
double height;
public double getHeight() {
return height;

§ . o
public void setHeight(double newHei AR Sad LMY

height = newHeight;
h

double weight;
public double getWeight() {
return weight;

} Efficiency: OE does not

public void setWeight(double newWe] need to look for pattern
welght = newWeight;

Documentation

§
public double getBMI() { Errors/warnings: Can give

return weight/(height*height] error message if pattern
} not followed

ERROR?

public class ABMISpreadsheetNotFollowingBeanConventions {

double height = 1.77;

double weight = 75;

public double getWeight () ({
return weight;

}

public void set (double newWeight, double newHeight) ({
weight = newWeight;
height = newHeight;

}

public double getHeight () ({
return height;

}

public void setHeight (int newHeight) ({
height = newHeight;

}

public double BMI() {
return weight/ (height*height) ;

}

[&Bhﬂﬂpmﬂds setMotFo leanConve... [nem|s= x
Common ABMISpreadsheetNotFollowingBeanConventions

Height: 177
Weight: 75.0

Can system catch these

errors?

(EDITABLE) PROPERTY NAME ANNOTATIONS

import util.annotations.EditablePropertyNames;

import util.annotations.PropertyNames;

@StructurePattern (StructurePatternNames.BEAN PATTERN)

@PropertyNames ({ [|'Height", "Weight", "BMI"}

@EditablePropertyNames ({"Height", "Weight"}

public class ABMISpreadsheetNotFollowingBeanConventions {
double height = 1.77;
double weight = 75;

¥

public double getWeight () ({ | £ [ABMISpreadsheetNotFollowingBeanCo... | = || = |[nis]
return we ight ; Common ABMISpreadsheetNotFollowingBeanConventions
} Height: 1.77

public void set(double newWeight, | W&9" =8
welght = newWeight;

- - 0 7 - —-TT - 1 -

Ex***For property: heighi in editable property names, please define a setter with the header:
public woid setHeight (doukle <parameter name>)

E***For property: weight in editable property names, please define a setter with the header:
public wold setWeight (double <parameter name>)

E*¥**For property: BHI in property names, please define a getter with the header:
public <T> getBMI ()

L7 A e e V et N whdlw e id o | edd o A TWEA de s = L
height = newHeight;

}

public double BMI () ({
return weight/ (height*height) ;

ORDER OF PROPERTIES

@StructurePattern(StructurePatternNames.BEAN PATTERN)
@PropertyNames ({ |"Weight", "Height", "BMI"}|)
@EditablePropertyNames ({"Height", "Weight"})
public class ABMISpreadsheetNotFollowingBeanConventions {

double height = 1.77;

double weight = 75;

public double getWeight () ({

return weight;

}
public void set(double newWeight, ’Iél[ﬂﬁh"ll’iplea dsheetNotFollowingBeanCo.. Ellﬁlﬁ

wel gh t = newWel gh t ’ Common ABMISpreadsheetNotFollowingBeanConventions
height = newHeight; Weight: 75,

} Heightt 177

public double getHeight() ({

return height;

}

public void setHeight (int newHeight) ({
height = newHeight;

}

public double BMI () {
return weight/ (height*height) ;

OVERLOADING

Look at that plane fly.

The fly is bothering me.

Two different

words with the
same name

Operation Context of actual
Definitions parameters

public void println(String val) {...} @ System.out.pri

Two different
operations with
the same name

public void println(double val) {...} System.out.println(newWeight);

eight called”);

O

MORE ON PRINTLN

Jhject: bus.ulgen.
Dhject: state. HBHIEalculatanideehqﬂ
getHeight<> Called
getlleight<> Called

setlWleight<> Called: 165.8
getHeight<> Called
getlleight<> Called
etBMI <) Called

Operator

System.out.println(“setWeight called”); Overloading

System.out.println(newWeight%

System.out.println(“setWeight called%wWeight);

5 +6%

AMBIGUOUS CONTEXT

Time flies like an arrow.

Fruit flies like an orange.

Operation Java cannot use context to
Definitions disambiguate

public void println(String val) {...} @ System.out.println(“setWeight called”);

public void println(String val) {...} @ System.out.println(newWeight);

Defining two versions of a method ? Why 1s overloading useful? @

INCONSISTENT BMI STATE

ObjectEditor.edit(new ABMISpreadsheet());

File Edit View Customize

Height: 0.0]
Weight: 0.0
BMI: [aml

FIXING INCONSISTENT BMI STATE

ABMISpreadsheet aBMISpreadsheet = new ABMISpreadsheet();

aBMISpreadsheet.setHeight(1.77);
aBMISpreadsheet.setWeight(75.0);

File Edit View Customize

Heighit: 1.77
Weight: 75.0

BMI: 23.893948095205209

ALWAYS CONSISTENT BMI STATE

ABMISpreadsheet aBMISpreadsheet = new ABMISpreadsheet(
1.77, 75.0);

File Edit View Customize

Heighit: 1.77
Weight: 75.0

BMI: 23.893948095205209

CONSTRUCTOR

public class ABMISpreadsheet {
double height, weight;
public ABMISpreadsheet(

le thelnitialHeight, double thelnitialWeight) { :
setHeight(theInitialHeight); Calling setter
setWeight(thelnitial Weight); methods instead of

} modifying variable
directly makes

public double getHeight() { debugging easier as

return height;
} you can set
public void setHeight(double newHeight) { breakpoint on setter
height = newHeight; to trap writes to it

}
public double getWeight() {
return weight;

b
public void setWeight(double newWeight) {

welight = newWeight;

}

public double getBMI() {
return weight/(height*height);

}

CONSTRUCTOR

public class ABMISpreadsheet { Constructor name
double height, weight: must be the name of

publicl ABMISpreadsheet(
double thelnitialHeight, double thelnitialWeight) {
setHeight(thelnitialHeight); .
setWeight(thelnitialWeight); Constructor name is

} also the type of

object returned

the class

public double getHeight() {
return height;

}
public void setHeight(double newHeight) {

height = newHeight;

b

public double getWeight() {
return weight;

b
public void setWeight(double newWeight) {

welight = newWeight;

}

public double getBMI() {
return weight/(height*height);

}

EVERY CLASS HAS A CONSTRUCTOR

public class ABMISpreadsheet {
double height, weight;

public double getHeight() {
return height;

§

public void setHeight(double newHeight) {
height = newHeight;

§

public double getWeight() {
return weight;

§

public void setWeight(double newWeight) {
welght = newWeight;

§

public double getBMI() {
return weight/(height*height);

b

EQUIVALENT CLASS CREATED BY JAVA

public class ABMISpreadsheet {

double height, weight;

public ABMISpreadsheet() { } /

public double getHeight() {
return height;

h

public void setHeight(double newHeight) {
height = newHeight;

h

public double getWeight() {
return weight;

h

public void setWeight(double newWeight) {
welght = newWeight;

h

public double getBMI() {
return weight/(height*height);

}

Inserted in Object

Code not 1n Source
Code

If Programmer
Specifies no
Constructor, Java
mserts a null
constructor

A CLASS CAN HAVE MULTIPLE CONSTRUCTORS

public class ABMISpreadsheet {
double height, weight;

public ABMISpreadsheet() €3— Overloaded
public ABMISpreadsheet(<— Constructor

double thelnitialHeight, double thelnitialWeight) {
setHeight(thelnitialHeight);
setWeight(thelnitialWeight);

}
public double getHeight() {

return height;

}

public void setHeight(double newHeight) {
height = newHeight;

}

public double getWeight() {
return weight;

}

public void setWeight(double newWeight) {
weight = newWeight;

}

public double getBMI() {
return weight/(height*height);

}

USING OVERLOADED CONSTRUCTORS

public class BMISpreadsheetUser {

public static void main(String[] args) {
ABMISpreadsheet bmiSpreadsheet = new ABMISpreadsheet()
bmiSpreadsheet.setHeight(1.77);
bmiSpreadsheet.setWeight(75);
System.out.println(bmi.get BMI());
/lequivalent computation
bmiSpreadsheet = new ABMISpreadsheet(1.77, 75);

System.out.println(bmi.getBMI());
h
J

Using
Overloaded
Constructor

ARE (PROGRAMMER-DEFINED) CONSTRUCTORS
EVER ABSOLUTELY NECESSARY?

ABMISpreadsheet aBMISpreadsheet = new ABMISpreadsheet(
1.77, 75.0);

ABMISpreadsheet aBMISpreadsheet = new ABMISpreadsheet();
aBMISpreadsheet.setHeight(1.77);
aBMISpreadsheet.setWeight(75.0);

Programmer can
initialize state after Always possible?
Instantiation (requires
a bit more work but
possible 1n this case)

Some part of the exported
state (e.g. height) may be
readonly

Can use the full
functionality of class
without programmer-

defined constructor

IMMUTABLE OBJECTS

String s = new String("hello");

String i1s immutable.

An immutable object cannot be changed after initialization.

An immutable object with state must have one or more
programmer-defined constructors to initialize the state

ASSIGNING TO STRING VARIABLE

s = s + N world";

Assigns to s a new String object

Does not change the original String

WHY IMMUTABLE STRING?

Easier to implement (do not have to address insertions)

Immutable objects make it 1s easier to implement
correct programs with threads and hashtables

String sl = "hello world";
String s2 = "hello world"; true
System.out.println (sl == s2);

Allows literals (String constants) to share memory
location

StringBuffer supports mutable strings

O

WHY IMMUTABLE STRING?

String sl = new String ("hello world");
String s2 = new String ("hello world");
System.out.println (sl == s2);

false

New String Allocated

StringBuffer supports mutable strings

o

CHANGING VARIABLE VS. OBJECT

String s = "hello";

String hello = s; £a1

s += " world"; alse
System.out.println (s == hello);

Assigns to s a new String object

Does not change the original String

StringBuffer s = new StringBuffer ("hello");
StringBuffer hello = s;

s.append (" world"):; true
System.out.println (s == hello);

Does not reassign sb Reassigning a new
object less efficient

Changes the object to which sb points

O

PROGRAMMATIC PROPERTY MANIPULATION

public class BMISpreadsheetUser {
public static void main(String[] args) {
ABMISpreadsheet bmiSpreadsheet = new ABMISpreadsheet();
bmiSpreadsheet.setHeight(1.77);
bmiSpreadsheet.setWeight(75);
double computedBMI = bmiSpreadsheet.get BMI();
System.out.println(computed BMI);

OBJECTS VS. PRIMITIVES

public class BMISpreadsheetUser {

public static void main(String[] args) {

ABMISpreadsheet bmiSpreadsheet = new ABMISpreadsheet();

bmiSpreadsheet.setHeight(1.77);
bmiSpreadsheet.setWeight(75);

double computedBMI =Db

preatlsheet.get BMI();

System.out.priitln(computedBMI)

Primitive Primitive

Variable Value

Object
Variable

Object Value @

UNINITIALIZED PRIMITIVE VS. OBJECT VARIABLES

public class BMISpreadsheetUser {

public static void main(String[] args) {

ABMISpreadsheet bmiSpreadsheet;
bmiSpreadsheet.setHeight(1.77);

bmiSpreadsheet.setWeight(75);

double computedBMI,;

System.out println(computed BMN);

Uninitialized

Uninitialized
Primitive
Variable

Object
Variable

DEFAULT VALUES FOR VARIABLES

[R)
Primitive Varlab.

double computedBMI,

double weight;

| Object Variables |

ABMISpreadsheet
bmiSpreadsheet;

variables memory
computed BMI 0.0
weight 0.0
bmiSpreadsheet null

Legal
double
values

INVOKING METHODS ON NULL

o bmiSpreadsheet.get BMI()

» null pointer exception

» Exception is an unexpected event (error)

e Guilty method will be terminated and exception reported
» Will see other exceptions later

MEMORY REPRESENTATION

—s| ABMISpreadsheet bmiSpreadsheetl = new ABMISpreadsheet();
ABMISpreadsheet bmiSpreadsheet2 = new ABMISpreadsheet();

Stack: area at bottom of memory where

slots for local variables (formal memory

parameters, internal variables get
allocated, stack grows upwards

deol

Heap: area at top of memory where objects
get allocated, heap grows downwards

bmiSpreasheetl and bmiSpreadsheet2 are
internal variables of some method

bmiSpreadsheet?2 null

Stack

bmiSpreadsheetl null

NEW INSTANCE CREATED

—->s! ABMISpreadsheet bmiSpreadsheetl = new ABMISpreadsheet();
ABMISpreadsheet bmiSpreadsheet2 = new ABMISpreadsheet();
bmiSpreadsheetl.setHeight(1.77);

bmiSpreadsheet2 = bmiSpreadsheetl;

addresses variables | memory
. —]
New instance created 52 height -
from heap . @
weight ®
(s
. 4
bmiSpreadsheet2 null 3
-
n
bmiSpreadsheetl null

OBJECT ASSIGNMENT

ABMISpreadsheet bmiSpreadsheetl = new ABMISpreadsheet();
ABMISpreadsheet bmiSpreadsheet2 = new ABMISpreadsheet();
bmiSpreadsheetl.setHeight(1.77);

bmiSpreadsheet2 = bmiSpreadsheetl;

addresses variables | memory
52 '

24 height E
weight =
bmiSpreadsheet2 | null g

miSpreadshee nu
Address of new instance P %s

assigned bmiSpreadsheetl bmiSpreadsheetl 52

SECOND INSTANCE CREATED

ABMISpreadsheet bmiSpreadsheetl = new ABMISpreadsheet();
—> ABMISpreadsheet bmiSpreadsheet2 = new ABMISpreadsheet();
bmiSpreadsheetl.setHeight(1.77);

bmiSpreadsheet2 = bmiSpreadsheetl;

addresses variables | memory

92 height
weight

deol

New instance created 64 height
from heap

weight

bmiSpreadsheet?2 null

Stack

bmiSpreadsheetl 52

—>s{ bmiSpreadsheetl.setHeight(1.77);

SECOND ASSIGNMENT

ABMISpreadsheet bmiSpreadsheetl = new ABMISpreadsheet();
ABMISpreadsheet bmiSpreadsheet2 = new ABMISpreadsheet();

bmiSpreadsheet2 = bmiSpreadsheetl;

addresses variables | memory
=
52 '
24 height E
weight &
64 height
weight
Address of second instance bmiSpreadsheet?2 64 ”§
assigned bmiSpreadsheet2 &
bmiSpreadsheetl 52

—>s{ bmiSpreadsheetl.setHeight(1.77);

START OF SETHEIGHTCALL

ABMISpreadsheet bmiSpreadsheetl = new ABMISpreadsheet();
ABMISpreadsheet bmiSpreadsheet2 = new ABMISpreadsheet();

bmiSpreadsheet2 = bmiSpreadsheetl;

addresses variables | memory
|
52 '
24 height E
weight =
64 height
weight
Formal parameter of setHeight :
allocated from stack newkHeight 177 v
bmiSpreadsheet2 64 3
-
n
bmiSpreadsheetl 52

AFTER SETHEIGHT ASSIGNMENT

ABMISpreadsheet bmiSpreadsheetl = new ABMISpreadsheet();
ABMISpreadsheet bmiSpreadsheet2 = new ABMISpreadsheet();
—>{ bmiSpreadsheetl.setHeight(1.77);

bmiSpreadsheet2 = bmiSpreadsheetl;

addresses variables | memory
Formal parameter of . =]
setHeight assigned 02 height 1.77 —
to instance variable weight 0 o
(s
64 height
weight
newHeight 1.77
4
bmiSpreadsheet2 64 3
-
n
bmiSpreadsheetl 52

SETHEIGHT RETURNS

ABMISpreadsheet bmiSpreadsheetl = new ABMISpreadsheet();
ABMISpreadsheet bmiSpreadsheet2 = new ABMISpreadsheet();
bmiSpreadsheetl.setHeight(1.77)

—>{ bmiSpreadsheet2 = bmiSpreadsheet1;

addresses variables | memory
|
92 height 1.77 —
weight 0 é
64 height
weight
newHeight popped v
from stack bmiSpreadsheet?2 64 =
-
n
bmiSpreadsheetl 52

AFTER ASSIGNMENT

ABMISpreadsheet bmiSpreadsheetl = new ABMISpreadsheet();
ABMISpreadsheet bmiSpreadsheet2 = new ABMISpreadsheet();
bmiSpreadsheetl.setHeight(1.77)

bmiSpreadsheet2 = bmiSpreadsheetl;

—
addresses variables | memory
|
92 height 1.77 —
weight 0 é
64 height
weight
== does an address v
(pointer) copy bmiSpreadsheet2 52 S
-
n
bmiSpreadsheetl 52

AFTER GARBAGE COLLECTION

ABMISpreadsheet bmiSpreadsheetl = new ABMISpreadsheet();
ABMISpreadsheet bmiSpreadsheet2 = new ABMISpreadsheet();
bmiSpreadsheetl.setHeight(1.77)

bmiSpreadsheet2 = bmiSpreadsheetl;

addresses variables | memory
92 height 1.77 —
weight 0 é
Unreferenced object
garbage collected
later

. 4
bmiSpreadsheet2 52 3
-
n

bmiSpreadsheetl 52

ASSIGNMENT IS NOT A COPY

bmiSpreadsheet2 = bmiSpreadsheetl;

bmiSpreadsheetl.setWeight(75);

bmiSpreadsheetl.getWeight() == S true
bmiSpreadsheetl.getWeight()
addresses variables | memory
92 height 1.77 —
weight 75 E
] 4
bmiSpreadsheet2 52 3
-
n
bmiSpreadsheetl 52

PRIMITIVES VS. OBJECTS AGAIN

ABMISpreadsheet bmiSpreadsheetl = new ABMISpreadsheet();
ABMISpreadsheet bmiSpreadsheet2 = new ABMISpreadsheet();
bmiSpreadsheetl.setHeight(1.77);

bmiSpreadsheet2 = bmiSpreadsheetl;

addresses variables | memory
ariable 22 —> height | 3.77 E
/ weight 0 2
Primitive
Value 64 height 0
ight
Object wele
Variable
Object Value . d
(Address) bmlsprea 64 _§
n
bmiSpreadsheetl 52

FUNCTIONS WITH SIDE EFFECTS

After calling setNumber(), e e e
ObjectEditor calls getCube() — E |
before calling getSquare() to Cube: 0

do automatic refresh Square: 25
pu se

number = theNumber;

[ASguareAndCubeCalculator] |:||E||E|
File Edit | View | Customize Help

}
public int getNumber () {
return number;

Number: | Refresh
Cube: Auto Refresh

Square: Auto Refresh All Frames

} Incremental Refresh
public int getSquare () { P S —
square = number*number; [ASquareAndCubeCalculator] [= B[]
return square; File Edit View Customize Help
} Number: |5| |
public int getCube () { ;i; ;5
int retVal = square*number;
System.out.println ("The Cube
return retVal;
}

Explicit refresh calls getters again, and
square has the correct value now

EXTRA SLIDES

WHY IMMUTABLE STRING

Easier to implement (do not have to move string)

Do not have to create a physical copy of a string

sl = “world";

s2 = sl;

s.setCharAt (1, ‘0");
System.out.println(s2.charAt (1))

Make is easier to implement correct programs with

Make is easier to implement correct programs with
threads and hashtables

©

CLASSIFYING METHODS

o Procedures o Impure functions:
e return nothing o Access global variable or
» write global variables produce output.
and produce output o Impure functions
o Functions without side effects
e Return values. » Read global variables
 Can also write global but do not write global
variables and produce variables or produce
output output
o Pure Functions o Impure functions with
e Do not read or write side effects
global variables or e Impure functions write
produce output global variables and/or

produce output

BEAN PATTERN?

@StructurePattern (StructurePatternNames.BEAN PATTERN)
public class ABMISpreadsheetNotFollowingBeanConventions ({
double height = 1.77;
double weight = 75;
public double getWeight () ({
return weight;

}
public void set (double newWeight, double newHeight) {

Welght = newwelght | £:| [ABMISpreadsheetMotFollowingBeanCo... E'-@
height = newHeight; Common ABMISpreadsheetNotFollowingBeanConventions
} Height: 177
public double getHeight () ({ Weight: 750
return height;

Warning if (editable) properties not declared?

Overhead, chances of mistake low, C# has built in support for properties

£y A3
P S, R S A A PP, Ry Sy 7S, R, R} I

Why warning if no structure annotation?

(PATTERN JANNOTATION

import util.annotations.StructurePattern;
import util.annotations.StructurePatternNames;
@StructurebPattern (StructurePatternNames.BEAN PATTERN)
public class ABMISpreadsheetNotFollowingBeanConventions {

double height = 1.77;

double weight = 75;

public double getWeight () ({

return weight;

}

. e ewWeight, /77777 7 —
Annotation is like a |22 [ABMISpreadshestNotFollowingBeanCo... | = | &[]

o, e Common ABMISpreadsheetNotFollowingBeanComventions
comment except 1t 1s

Height: 1.77
Weight: 75.0

typed and available at
runtime) |

Structure(<PatternName>) before class

asserts that the class is following the
pattern.

OBJECTEDITOR PROPERTY MANIPULATION

Height:

public class ABMISpreadsheet { Weight:

double height; BMI:

public double getHeight() {
return height;

h

public void setHeight(double newHeight) {
height = newHeight;
j

double weight;

public double getWeight() {
return weight;

j

public void setWeight(double newWeight) {
welight = newWeight;
j

public double getBMI() {
return weight/(height*height);
)

