
COMP 110 AND 401

CLASS (STATIC) STATE

Instructor: Prasun Dewan

2

PREREQUISITES

 State and Properties

 Interfaces

3

COUNTING INSTANCES OF ACARTESIANPOINT

4

INCREMENTED NUMBER OF INSTANCES

5

CREATING MIDPOINT

6

SPECIFYING TWO END POINTS

7

TYPE OF METHODS

 Difference between method returning number of

instances and other methods seen so far?

 Difference between mid and other methods seen so

far?

8

REAL-WORLD ANALOGY

new ACorvette(silver)

new ACorvette(red)

getMileage() 64000

blend(silverCar, redCar);

numCarsProduced();

101234

9

O-O WORLD

ACartesianPoint

Point1

Point2

new ACartesianPoint(

25, 50)

new ACartesianPoint(

125, 150)

getRadius()

59

mid(25,50,

125,150); mid(point1x,point1y,

point2x,point2y);

numInstances()

3

10

CLASS METHODS

 Methods can be invoked on class itself

 Called class or static methods

 Declared in class on which they are invoked

 Keyword static in header

 Accesses no instance variable

11

PROGRAMMER-DEFINED MID

public getRadius (){

 return Math.sqrt(x*x + y*y);

}

public static Point mid (int x1, int y1, int x2, int y2) {

 return new ACartesianPoint(x1 + (x2 - x1)/2, y1 + (y2 - y1)/2);

}

Instance Method

Class Method

Access

instance

variables

Access no

instance

variable

12

EXTERNAL CALL OF CLASS METHOD

ACartesianPoint.mid(x1, y1, x2, y2)

Math.sqrt(x*x + y*y);

Class as

target

13

NUMINSTANCES ALGORITHM

Declare variable, numInstances

initialized to zero

Increment numInstances each time a

new instance is created

getNumInstances() returns

numInstances

14

RETURNING NUMINSTANCES

public static int getNumInstances() {

 return numInstances;

}

numInstances() returns numInstances

Class

property

15

INCREMENTING NUMINSTANCES

Increment numInstances each time a

new instance is created

16

INCREMENTING NUMINSTANCES (SOLUTION)

public ACartesianPoint(int theX, int theY) {

 x = theX;

 y = theY;

 numInstances++;

}

Increment numInstances each time a

new instance is created

17

DECLARING NUMINSTANCES

static int numInstances = 0;

Declare variable, numInstances

initialized to zero

// class variable

18

TRACING EXECUTION

variables memory

0

0

numInstances;

x

public ACartesianPoint(int theX, int theY) {

 x = theX;

 y = theY;

 numInstances++;

}

0 y

25

50

1

0 x

0 y

125

150

2

19

INSTANCE VS. CLASS MEMBERS

 Class Members

 Class method

 Class variables

 Instance Members

 Instance methods

 Instance variables

20

SCOPE OF CLASS AND INSTANCE MEMBERS

 Class Members

 visible to other class

members

 visible to all instance

members

 class & instance methods

can access class variables

 class and instance

methods can call class

methods

 Instance Members

 visible to other

instance members

 not visible to class

members

 which of (zero to

many) copies of an

instance variable

should a class member

refer to?

21

LEGAL & ILLEGAL ACCESS

public static int getNumInstances() {

 System.out.println(x);

 return numInstances;

}

public ACartesianPoint(int theX, int theY) {

 x = theX; y = theY;

 numInstances = numInstances + 1;

 System.out.println(getNumInstances());

}

static int numInstances = 0;

int x, y;

public double getRadius() {

 return Math.sqrt(x*x + y*y);

}

22

INSTANCE VS. CLASS NAMED CONSTANT

variables memory

2.2 LBS_IN_KGS

public class AnotherBMISpreadsheet implements

BMISpreadsheet{

 double height, weight, bmi;

 ...

 public static final

 double LBS_IN_KG = 2.2;

 public static final

 double CMS_IN_INCH = 2.54;

 double calculateBMI() {

 return (weight/LBS_IN_KG) /

(height*CMS_IN_INCH/100*height*CMS_IN_INCH/10

0);

 }

}

new AnotherBMISpreadsheet()

new AnotherBMISpreadsheet()

AnotherBMISpreadsheet.LBS_IN_KGS;

23

INSTANCE VS. CLASS NAMED CONSTANT

variables memory

2.2 LBS_IN_KGS

public class AnotherBMISpreadsheet implements

BMISpreadsheet{

 double height, weight, bmi;

 ...

 final

 double LBS_IN_KG = 2.2;

 public static final

 double CMS_IN_INCH = 2.54;

 double calculateBMI() {

 return (weight/LBS_IN_KG) /

(height*CMS_IN_INCH/100*height*CMS_IN_INCH/10

0);

 }

}

new AnotherBMISpreadsheet()

new AnotherBMISpreadsheet()

(new AnotherBMISpreadsheet()).LBS_IN_KGS;

public final

2.2 LBS_IN_KGS

24

CLASS VS. INSTANCE CONSTANT

 Should be class constant

 one copy

 easy to refer (require no instance creation)

 Unless some good reason for hiding named constants

from static methods

25

CLASS VS. INSTANCE METHODS

public static Point mid (int x1, int y1, int x2, int y2) {

 return new ACartesianPoint(x1 + (x2 - x1)/2, y1 + (y2 - y1)/2);

}

public Point mid (int x1, int y1, int x2, int y2) {

 return new ACartesianPoint(x1 + (x2 - x1)/2, y1 + (y2 - y1)/2);

}

ACartesianPoint.mid(25, 50, 125, 150)

Math.round(5.7)

(new ACartesianPoint(25, 50)).mid(25, 50, 125, 150)

(new Math()).round(5.7)

Class Method

Instance Method

Accesses no instance

variable

26

CLASS VS. INSTANCE METHOD

 Instance method has all the privileges of a class

method

 Any class method can be made an instance method

 Bad style to have instance method that does not

access any instance variable

 They belong to the class

 Violate least privilege principle

 Require needless instantiation

27

CLASS VS. INSTANCE CONSTANT/METHOD

 Named constants should be static

 Unless some good reason for hiding named constants

from static methods

 Methods not accessing instance variables should be

static

 Unless need to be listed in interface

28

CLASS MEMBER RESTRICTIONS

 Cannot define interfaces for classes

 No conceptual reason why not

 Non object oriented languages supported them

 Class members go against the idea of OO programming

(not instantiated) so treated as second class.

 Cannot use super in class methods

 Can name super class directly

 Non dynamic dispatch (discussed later)

29

STATIC EXAMPLE IN LOAN

 Revisit, through non-graphical objects, concepts

illustrated in previous sections

30

INSTANCE ADD

public Loan add(Loan loan2) {

 return new ALoan(getPrincipal() + loan2.getPrincipal()));

}

public Loan getTotalLoan(){

 return houseLoan.add(carLoan);

}

31

CLASS (STATIC) ADD

public Loan getTotalLoan(){

 return ALoan.add(houseLoan, carLoan);

}

public static Loan add(Loan loan1, Loan loan2) {

 return new ALoan(loan1.getPrincipal() + loan2.getPrincipal()));

}

Instance Method

Class Method

Accesses

instance

variables

Access no

instance

variable

32

NON-POLYMORPHIC METHODS

public static Loan add(ALoan loan1, ALoan loan2) {

 return new ALoan(loan1.getPrincipal() + loan2.getPrincipal()));

}

public static Loan add(AnotherLoan loan1, AnotherLoan loan2) {

 return new ALoan(loan1.getPrincipal() + loan2.getPrincipal()));

}

public static Loan add(ALoan loan1, AnotherLoan loan2) {

 return new ALoan(loan1.getPrincipal() + loan2.getPrincipal()));

}

Code duplication!

33

OVERLOADING VS. POLYMORPHISM

public static Loan add(Loan loan1, Loan loan2) {

 return new ALoan(loan1.getPrincipal() + loan2.getPrincipal()));

}

public static Loan add(ALoan loan1, ALoan loan2) {

 return new ALoan(loan1.getPrincipal() + loan2.getPrincipal()));

}

public static Loan add(ALoan loan1, AnotherLoan loan2) {

 return new ALoan(loan1.getPrincipal() + loan2.getPrincipal()));

}

Polymorphism Overloading

add (new ALoan(10000), new ALoan(5000));

add (new ALoan(10000), new AnotherLoan(5000));

34

PRIMITIVE VS. OBJECT TYPES

types

Primitive types

Object types

double
int

ABMICalculator ABMISpreadsheet

ALoan

BMISpreadsheet

Classes

Interfaces

type = set of operations

AnotherLoan

Loan

35

REAL-WORLD ANALOGY (O-O PROGRAMMING)

new ACorvette(silver)

new ACorvette(red)

getMileage() 64000

blend(silverCar, redCar);

numCarsProduced();

101234

O-O programming with

class methods and

variables

Blueprints as classes

would not have modelled

class state and operations

36

O-O WORLD

ACartesianPoint

Point1

Point2

new ACartesianPoint(

25, 50)

new ACartesianPoint(

125, 150)

getRadius()

59

mid(25,50,

125,150); mid(point1x,point1y,

point2x,point2y);

numInstances()

3

O-O programming with

class methods and

variables

37

GENERAL CLASS STRUCTURE

Class Var 1

Class

Class Method 1

Class Var 2

Instance Var 2

Instance Var 2

Class Method 2

Instance Method 1

Instance Method 2

38

EXAMPLE OF CLASS WITH INSTANCE AND CLASS

METHODS

static int
MAX_VALUE

Integer

static
parseInt(String)

int value int intValue()

Example of Java

Class?

39

CLASS WITH NO INSTANCE MEMBERS?

Class Var 1

Class

Class Method 1

Class Var 2 Class Method 2

Creating

instances

meaningless

Example of Java

class?

40

MATH

public static final
double E

Math

public static double
log(double a)

public static final
double PI

public static double
abs(double a)

41

SYSTEM

public static final
InputStream in

System

public static void
exit(int status)

public static final
PrintStream out

public static long
currentTimeMillis()

Real-world

analogy?

42

REAL LIFE ANALOGY

Warehouse, dealership

43

CLASS WITH ONLY CLASS METHODS?

Class

Class Method 1

Class Method 2

Example?

44

MATH

public static final
double E

Math

public static double
log(double a)

public static final
double PI

public static double
abs(double a)

45

MODIFIED MATH

Math

public static double
abs(double a)

Real-world

analogy?

46

REAL LIFE ANALOGY: PURE SERVICE

Assume nothing stored

47

CLASS WITH ONLY CLASS VARIABLES?

Class Var 1

Class

Class Var 2

Example?

48

SYSTEM

public static final
InputStream in

System

public static void
exit(int status)

public static final
PrintStream out

public static long
currentTimeMillis()

http://download.oracle.com/javase/6/docs/api/java/io/InputStream.html
http://download.oracle.com/javase/6/docs/api/java/io/PrintStream.html

49

MODIFIED SYSTEM

public static final
InputStream in

System

public static final
PrintStream out

Real-world

analogy?

http://download.oracle.com/javase/6/docs/api/java/io/InputStream.html
http://download.oracle.com/javase/6/docs/api/java/io/PrintStream.html

50

UNGUARDED AIR HOSE

51

CLASS VS. INSTANCE OBJECT

Should some state and associated methods be

accessed as a class or instance object

 Multiple independent instances of that state will

not occur

Do not need dynamic dispatch or interfaces to

that state

A class with only one instance, useful when

dynamic dispatch or interface needed

As class object

E.g: System.in

Singleton class

52

CLASS OR INSTANCE?

Franchise: Multiple franchisees exist, so

corresponds to an instance object

53

CLASS OR INSTANCE?

One of, corresponds to a class object

Mom and pop store can later become franchise as

it becomes popular and evolves

Class objects often converted to instance objects

as program becomes popular and evolves

When in doubt make it an instance object

