
COMP 110

MORE TYPES

Instructor: Sasa Junuzovic

2

PREREQUISITES

 Types Math

3

PRIMITIVE TYPES

 int, double, boolean, long, short, float, byte

 char

4

PRIMITIVE TYPES

 Constants (Literals & Named Constants)

 Operations with Invocation Syntax

5

CHAR CONSTANTS

char {letters, digits, operations, … }
16 bits

‘a’

‘A’

‘1’

‘<’

‘ ’

‘ ’

‘’’

‘ \’’

‘\n’

‘
‘\’

‘\\’

Escape Sequence newline character

6

USEFUL ESCAPE SEQUENCES

Escape Sequence Character Denoted

\’ ’

\n new line

\b back space

\\ \

\t tab

\” ”

7

ORDERING CHARACTERS

‘’ … ‘a’ …

Ordinal number(integer code)

Position in ordered character list

8

ORDERING CHARACTERS

‘’ … ‘a’ …

‘’ … ‘A’ …

‘’ … ‘0’ …

‘b’

‘B’

‘1’

‘c’

‘C’

‘2’

‘a’ > ‘b’

‘B’ > ‘A’

‘4’ > ‘0’

false

true

true

‘a’ > ‘A’ ???

‘a’ > ‘0’ ???

9

CONVERTING BETWEEN CHARACTERS AND THEIR

ORDINAL NUMBERS

(int) ‘a’ Ordinal number of ‘a’

(char) 55
Character whose

ordinal number is 55

(int) ‘’ 0

(char) 0 ‘’

(int) ‘d’ ???

(char) 1 ???

(char) -1

(int) ‘c’ – (int) ‘a’ 2

‘c’ – ‘a’ 2

Implicit conversion to

wider type

(char) (‘c’ - 2) ‘a’

(char) (‘A’ + 2) ‘C’

(char) (‘C’ - ‘A’ + ‘a’) ‘c’

10

A USEFUL CHARACTER OPERATION

Character.isLetter(c) true if c is a letter

Character.isLetter(‘c’) true

Character.isLetter(‘A’) true

Character.isLetter(‘1’) false

Character.isLetter(‘ ’) false

11

STRING CONSTANTS

String {sequences of characters}
Variable size

“hello”

“123”

“hello 123”

“a”

‘a’

“”

“hello\n\n123”

“\\”

Object Type

“\”

12

ACCESSING STRING COMPONENTS

String s = “hello world”;

s.getFirstChar()

s.getSecondChar()

s.charAt(0) ‘h’

s.charAt(1) ‘e’

s.charAt(-1)

s.charAt(11)

StringIndexBounds

Excepion

s.length() 11

“ ”.length() 1

“”.length() 0

Index

13

ACCESSING SUBSTRING

public String substring (int beginIndex, int endIndex)

s.substring(beginIndex, endIndex)

 s.charAt(beginIndex) .. s.charAt(endIndex-1)

“hello world”.substring(4,7) “o w”

“hello world”.substring(4,4) “”

“hello world”.substring(7,4)

StringIndexBounds

Exception

14

CHANGING STRINGS?

Stings are read-only (immutable)

“hello” + “world” “hello world”

Three different instances

15

USEFUL STRING OPERATIONS

s.toLowerCase() copy of s with letters converted to lower case

s.toUpperCase() copy of s with letters converted to upper case

“Hello World”.toLowerCase() “hello world”

“Hello World”.toUpperCase() “HELLO WORLD”

16

CLASSIFICATION

 Underweight

 Normal

 Overweight

 Obese

 Extremely Obese

Data type to store

a value capturing

the BMI

classification?

 African Indian

 American Indian

 Asian

 Native Hawaiian

 White

 Some Other Race

Data type to store

a value capturing

the Race?

17

INT CONSTANTS IN SEPARATE INTERFACES

public interface IntBMIClassification {
 public static int UNDER_WEIGHT = 0;
 public static int NORMAL = 1;
 public static int OVER_WEIGHT = 2;
 public static int OBESE = 3;
 public static int EXTREMELY_OBESE = 4;
}

public interface IntRace {
 public static int AFRICAN_AMERICAN = 0;
 public static int AMERICAN_INDIAN = 1;
 public static int ASIAN = 2;
 public static int NATIVE_HAWAIIAN = 4;
 public static int WHITE = 4;
 public static int SOME_OTHER_RACE = 5;
}

18

IMPLEMENTATION WITH INT CONSTANTS
int race = IntRace.AFRICAN_AMERICAN;
public int getRace() {
 return race;
}
public void setRace (int newVal) {
 race = newVal;
}
public int getBMIClassification() {
 double bmi = getBMI();
 if (bmi <= MAX_UNDERWEIGHT_BMI)
 return BMIIntClassification.UNDER_WEIGHT;
 else if (bmi <= MAX_NORMAL_BMI)
 return BMIIntClassification.NORMAL;
 else if (bmi <= MAX_OVERWEIGHT_BMI)
 return BMIIntClassification.OVER_WEIGHT;
 else if (bmi <= MAX_OBESE_BMI)
 return BMIIntClassification.OBESE;
 else
 return BMIIntClassification.EXTREMELY_OBESE;
}

19

public interface BMIIntClassification {
 public static int UNDER_WEIGHT = 0;
 public static int NORMAL = 1;
 public static int OVER_WEIGHT = 2;
 public static int OBESE = 3;
 public static int EXTREMELY_OBESE = 3;
}

PROGRAMMER ERRORS POSSIBLE

Programming language does not

know the relationship among

constants!

20

UNINFORMATIVE OUTPUT AND USER ERRORS

User can make mistake

in assigning a value

21

STRING CONSTANTS

public interface StringBMIClassification {
 public static String UNDER_WEIGHT = "Under Weight";
 public static String NORMAL = "Normal";
 public static String OVER_WEIGHT = "Over Weight";
 public static String OBESE = "Obese";
 public static String EXTREMELY_OBESE = "Extremely Obese";
}

public interface StringRace {
 public static String AFRICAN_AMERICAN = "African American";
 public static String AMERICAN_INDIAN = "American Indian";
 public static String ASIAN = "Asian";
 public static String NATIVE_HAWAIIAN = "Native Hawaiian";
 public static String WHITE = "White";
 public static String SOME_OTHER_RACE = "Some Other Race";
}

22

IMPLEMENTATION WITH STRING CONSTANTS
String race = StringRace.AFRICAN_AMERICAN;
public String getRace() {
 return race;
}
public void setRace (String newVal) {
 race = newVal;
}
public String getBMIClassification() {
 double bmi = getBMI();
 if (bmi <= MAX_UNDERWEIGHT_BMI)
 return StringBMIClassification.UNDER_WEIGHT;
 else if (bmi <= MAX_NORMAL_BMI)
 return StringBMIClassification.NORMAL;
 else if (bmi <= MAX_OVERWEIGHT_BMI)
 return StringBMIClassification.OVER_WEIGHT;
 else if (bmi <= MAX_OBESE_BMI)
 return StringBMIClassification.OBESE;
 else
 return StringBMIClassification.EXTREMELY_OBESE;
}

23

ERRORS POSSIBLE

User or programmer can

make mistake in

assigning a value

String type is space

inefficient

24

STRING ISSUES

User or programmer can

make mistake in

assigning a value

String type is space

inefficient

25

ENUM

 Like a string set, a set of named choices

 Like an int set, each choice is a number

26

DECLARING AN ENUM

Like class or an interface, an enum is declared in its

own file

27

IMPLEMENTATION WITH STRING CONSTANTS

EnumRace race = EnumRace.AFRICAN_AMERICAN;
public EnumRace getRace() {
 return race;
}
public void setRace (EnumRace newVal) {
 race = newVal;
}
public EnumBMIClassification getBMIClassification() {
 double bmi = getBMI();
 if (bmi <= MAX_UNDERWEIGHT_BMI)
 return EnumBMIClassification.UNDER_WEIGHT;
 else if (bmi <= MAX_NORMAL_BMI)
 return EnumBMIClassification.NORMAL;
 else if (bmi <= MAX_OVERWEIGHT_BMI)
 return EnumBMIClassification.OVER_WEIGHT;
 else if (bmi <= MAX_OBESE_BMI)
 return EnumBMIClassification.OBESE;
 else
 return EnumBMIClassification.EXTREMELY_OBESE;
}

28

DISPLAYING AND EDITING ENUM

