ComP 110
MORE TYPES

‘ Instructor: Sasa Junuzovic

PREREQUISITES

o Types Math

PRIMITIVE TYPES

o int, double, boolean, long, short, float, byte
o char

PRIMITIVE TYPES

o Constants (Literals & Named Constants)
o Operations with Invocation Syntax

CHAR CONSTANTS

char {letters, digits, operations, ... }

‘\7

%

newline character

Escape Sequence

USEFUL ESCAPE SEQUENCES

Escape Sequence Character Denoted

\V ,
\n new line
\b back space
\\ \

\t tab

\7? b

ORDERING CHARACTERS

Ordinal number(integer code) >

Position 1n ordered character list

(%

(%

(%

ORDERING CHARACTERS

4a? 4b9 ‘C,

4A’ 4B’ 4C’

40’ 41? 42?
caa > cAa — ???
@0

‘a’> ‘b’ —> false
‘B > ‘A’ —> true
‘4° >0 —> true

CONVERTING BETWEEN CHARACTERS AND THEIR
ORDINAL NUMBERS

(int) ‘a’ > Ordinal number of ‘a’
Character whose Implicit conversion to
—

(char) 55 ordinal number is 55 wider type

(int) © —> 0 —> 2
(char) 0 — © —> 2
(int) ‘d > 27? (char) (¢’ - 2) —> ‘a’
(char)1 —> 77? (char) (A’ + 2) —> ‘C
(char) -1 (char) (C -‘A+%9°) > ‘c

A USEFUL CHARACTER OPERATION

Character.isLetter(c) —> true if cis a letter
Character.isLetter(‘'c) —> true
Character.isLetter(‘A’) —> true
Character.isLetter(‘1’) —> false
Character.isLetter(‘’) —> false

{ Object Typ

STRING CONSTANTS

String {sequences of characters}

Variable siz'

“hello”

“128”

“hello 123”

¢« 7

“hello\n\n123”

cc\n | “\\”

ACCESSING STRING COMPONENTS

String s = “hello world”; s.charAt(0) / —> ‘h’
%
s.charAt(1l) ‘e’

s.charAt(-1)

s.charAt(11)

StringIndexBounds s.length() —> 11
Excepion
“” length() —> 1
“ length() > 0

ACCESSING SUBSTRING

Hpublic String substring (int beginlndex, int

s.substring(beginlndex, endIndex)

- s.charAt(beginlndex) .. s.charAt(endIndex-1)

(13

|

“hello world”.substring(4,7)

ow

by

|

“hello world”.substring(4,4)

(152

“hello world”.substring(7,4)

StringIndexBounds

Exception

CHANGING STRINGS?

“hello” + “world” —> “hello world”

Three different instances

USEFUL STRING OPERATIONS

s.toLowerCase() —> copy of s with letters converted to lower case

s.toUpperCase() —>| copy of s with letters converted to upper case

“Hello World”.toLowerCase()

—

“hello world”

“Hello World”.toUpperCase()

—

“HELLO WORLD”

CLASSIFICATION

o Underweight o African Indian

o Normal o American Indian
o Overweight o Aslan

o Obese o Native Hawaian
o Extremely Obese o White

o Some Other Race

Data type to store

a value capturing Data type to store

the BMI a value capturing
the Race?

classification?

INT CONSTANTS IN SEPARATE INTERFACES

public
public
public
public
public

static
static
static
static
static

public interface IntBMIClassification {

int UNDER_WEIGHT = ©;
int NORMAL = 1;

int OVER WEIGHT = 2;

int OBESE = 3;

int EXTREMELY OBESE = 4;

public
public
public
public
public
public

static
static
static
static
static
static

public interface IntRace {

int AFRICAN_AMERICAN = 0;

int AMERICAN_INDIAN = 1;
int ASIAN = 2;
int NATIVE HAWAIIAN = 4;
int WHITE = 4;
int SOME_OTHER RACE = 5;

IMPLEMENTATION WITH INT CONSTANTS

int race = IntRace.AFRICAN_AMERICAN;
public int getRace() {
return race;
}
public void setRace (int newVal) {
race = newVal;
}
public int getBMIClassification() {
double bmi = getBMI();
if (bmi <= MAX_UNDERWEIGHT BMI)
return BMIIntClassification.UNDER _WEIGHT;
else if (bmi <= MAX_NORMAL_BMI)
return BMIIntClassification.NORMAL;
else if (bmi <= MAX_OVERWEIGHT BMI)
return BMIIntClassification.OVER _WEIGHT;
else if (bmi <= MAX_OBESE_BMI)
return BMIIntClassification.OBESE;
else

return BMIIntClassification.EXTREMELY_ OBESE;

PROGRAMMER ERRORS POSSIBLE

public interface BMIIntClassification {

public
public
public
public
public

static
static
static
static
static

int UNDER_WEIGHT = ©;
int NORMAL = 1;

int OVER WEEGHT = 2;
int OBESE
int EXTREMELY OBESE = 3;

Programming language does not

know the relationship among
constants!

UNINFORMATIVE OUTPUT AND USER ERRORS

Common

| eight: 177\
Race:* 5)

I Weight: -8t

I BMI: 23.93948099205209
BMI Classification: 1

User can make mistake

1n assigning a value

STRING CONSTANTS

public
public
public
public
public

static
static
static
static
static

public interface StringBMIClassification {

String UNDER_WEIGHT = "Under Weight";
String NORMAL = "Normal";

String OVER_WEIGHT = "Over Weight";

String OBESE = "Obese";

String EXTREMELY _OBESE = "Extremely Obese";

public interface StringRace {
public static String AFRICAN_AMERICAN = "African American"”;
public static String AMERICAN_INDIAN = "American Indian";
public static String ASIAN = "Asian"”;
public static String NATIVE _HAWAIIAN = "Native Hawaiian";
public static String WHITE = "White";
public static String SOME_OTHER_RACE = "Some Other Race";

o

IMPLEMENTATION WITH STRING CONSTANTS

String race = StringRace.AFRICAN_AMERICAN;
public String getRace() {
return race;
}
public void setRace (String newVal) {
race = newVal;
}
public String getBMIClassification() {
double bmi = getBMI();
if (bmi <= MAX_UNDERWEIGHT BMI)
return StringBMIClassification.UNDER _WEIGHT;
else if (bmi <= MAX_NORMAL_BMI)
return StringBMIClassification.NORMAL;
else if (bmi <= MAX_OVERWEIGHT BMI)
return StringBMIClassification.OVER _WEIGHT;
else if (bmi <= MAX_OBESE_BMI)
return StringBMIClassification.OBESE;
else

return StringBMIClassification.EXTREMELY OBESE;

ERRORS POSSIBLE

[ABMIAndStringClassificationSpreadisheet] E=REE
Common
Height: 177
Weight: 75.0
BMI: 23.939430992052049
BMI Classification: Normal J‘H

User or programmer can
make mistake 1n
assigning a value

String type 1s space
1nefficient

STRING ISSUES

[ABMISpreadsheetWithStringConstants]* [[)]
Commaon -

Height: 7\

Race:* Aﬁ\can=hmeri}:an

Weight: 75.0

BMI: 23 92842099205209

E.II Classification:

User or programmer can String type is space

1nefficient

make mistake 1n
assigning a value

ENUM

o Like a string set, a set of named choices
o Like an 1nt set, each choice 1s a number

DECLARING AN ENUM

_ [J] EnumRace.java

package lectures.types.enums;
public enum EnumBMIClassification {
LUNDER WEIGHT,
NORMAL ,
OVER WEIGHT,
OBESE,
EXTREMELY OBESE

¥

D EumeMiGasicationjovs__ (MR

package lectures.types.enums;
public enum EnumRace {
AFRICAN AMERICAN,
AMERICAN INDIAN,
ASTAN,
NATIVE HAWATTAN,
WHITE,
SOME_OTHER RACE;

Like class or an interface, an enum 1s declared in its

own file

IMPLEMENTATION WITH STRING CONSTANTS

EnumRace race = EnumRace.AFRICAN_AMERICAN;
public EnumRace getRace() {
return race;
}
public void setRace (EnumRace newVal) {
race = newVal;
}
public EnumBMIClassification getBMIClassification() {
double bmi = getBMI();
if (bmi <= MAX_UNDERWEIGHT BMI)
return EnumBMIClassification.UNDER_WEIGHT;
else if (bmi <= MAX_NORMAL_BMI)
return EnumBMIClassification.NORMAL;
else if (bmi <= MAX_OVERWEIGHT BMI)
return EnumBMIClassification.OVER _WEIGHT;
else if (bmi <= MAX_OBESE_BMI)
return EnumBMIClassification.OBESE;
else
return EnumBMIClassification.EXTREMELY OBESE;

DISPLAYING AND EDITING ENUM

Weight:
BML:

BMI Classification:

AFRICAN_AMERICAN

75.0

23.93948099205209

NORMAL

VWeight:
BMI:
BMI Classification:

AFRICAN_AMERICAN

AFRICAN_AMERICAN
AMERICAN_INDIAN
ASIAN

WHITE
SOME_OTHER_RACE

