CoMP 401
COMMAND OBJECTS AND UNDO

‘ Instructor: Prasun Dewan

PREREQUISITES

o Animation Threads Commands

TOPICS

o Command Object

» Object representing an action invocation such as “Do
your homework”.

o Threads

» Support non blocking action invocation.

o Undo/Redo

e Supports undoable/re-doable commands (action
Invocations)

UNDO: INITIAL STATE

Height: 1.77

Weight: ¥5.0

23.839450959205209

Initial State

UNDO INITIAL STATE

File Edit View Customize

Height: 1.77

Weight: ¥5.0
BMI: 23.839450959205209

Undo Initial State

CANNOT ALWAYS UNDO

— - T e T
ig, [AnUndoableBMISpreadsheet] E o 0

File Edit View Customize AnUndoableBMISpreadsheet Help
l. Height: 1.77
I Weight: |75.0

BMI: 23.93948099205209
e — e S

If no command executed,
undo does nothing

REDO INITIAL STATE

= = — R
[AnUndoableBMISpreadsheet] L=

|

Height:
Weight:
BMI:

177 | Undo
75.0

23.839450959205209

If no command executed,
undo does nothing

CANNOT ALWAYS REDO

T TR =
i [Anl..lndnableB]".-'lISpreadsheet] E o 0

FIIE Edit View Customize AnUndoableBMISpreadsheet Help
|

Height: 1.77
il Weight: 7a.0

BMI: 23.839430952052049
= e - = —

If no command executed,
redo does nothing

CHANGE HEIGHT

[Anundmbleﬂhﬁfmadsheeﬂmmt.Heighm o 0

ik 533~
|File Edit View Customize AnUndoableBMISpreadsheet Help
‘ Weight: [75.0 |
BMI: 18.938915683947375

Execute change height command.

CHANGE WEIGHT

[AnUndoableBMISpreadsheet](Root Weight) (el (= e
> e W — e as
|File Edit View Customize AnUndoableBMISpreadsheet Help

Height: [1.99
weight: [esp |

BMI: 16.66624580187369

Execute change weight command.

Height and bmi change.

UNDO

UNDO

TAnUndosbieBtispreadsheet] THH EIGE

.,,.
File Edit View Customize AnUndoableBMISpreadsheet Help

Height: 1.98
Weight: 7a.0
BMI: 18.9380815683947375

Weightand BMI both undone to restore state before setWeight() call

©

REDO

File Edit View Customize

Height: 1.98

Weight: 75.0
BMI: 15.938915683947375

Redo last undone command

REDO

£ ndoable S 5—-— >
| [AnUndoableEMISpreadsheet]

e

-

(=[O o]

File Edit View Customize AnUndoableBMISpreadsheet Help

Height:
Weight:
BMI:

1.99

66.0

16.66624580137369

Last undone command reexecuted

LAST COMMAND UNDO

4| [AnUndoableBMISpreadshest] ESREGE

|File Edit View Custnmize_m

Height: 1.99 Undo
Weight: [G6.0

BMI: 16.66624580137369

Redo after a redo.

CANNOT ALWAYS REDO

|2 [AUndoableBMSpreadsheet] = (O] b

File Edit View Customize AnUndoableBMISpreadsheet Help
|

Height: 1.98
| Weight: 66.0

BMI: 16.666245801873649
e S—— W I

No undo commands to redo

UNDO IMPLEMENTATION

TAnUndosbieBtispreadsheet] THH EIGE

File Edit View Customize AnUndoableBMISpreadsheet Help

Height: 1.98
Weight: 7a.0
BMI: 18.9380815683947375

Weightand BMI both undone to restore state before setWeight() call
setWeight() called with old weight.

Undoable command object remembers method and its parameters.

In the application could have multiple spreadsheets, points, ... all
sharing one undo history.

Special global undoer keeps track of command history

setWeight in undoable creates command and gives it to undoer

UNDO IN BMI

ASetWeight(Height) Command

GENERAL UNDOER INTERFACE

public interface Undoer ({
public void undo() ;
public void execute (Command command) ;
public void redo();

HISTORY UNDOER

Command 1

Command 2

Command 3

Command 4

Command 5

Command 6

Command 7

Command 8

Q)| o)

Command 9

UNDO

Command 1

Command 2

Command 3

Command 4

|

Command 5

Command 6

Command 7

Command 8

Command 9

REDO

Command 1

Command 2

Command 3

Command 4

Command 5

|

Command 6

Command 7

Command 8

Command 9

|

=]
<
=
@
-
—
=

Command 1

Command 2

Command 3

Command 4

Command 5

Command 6

Command 7

Command 8

Command 9

EXECUTE

Command 1
Command 2
Command 3

Command 4

Command 5

EXECUTE

Command 1
Command 2
Command 3
Command 4

Command 5

Command 10

(GENERAL HISTORY UNDOER

public class HistoryUndoer implements Undoer {

List<Command> historyList = new ArrayList();

int nextCommandIndex = O;
public void execute (Command c) ({
while (nextCommandIndex < historyList.size()) {
historyList.remove (nextCommandIndex); // clear redo chain

}

c.execute () ;
historyList.add(c);
nextCommandIndex++;

}
public void undo() {

if (nextCommandIndex == 0)return;

nextCommandIndex—-;

Command ¢ = historyList.get (nextCommandIndex) ;

c.undo () ;
}

public void redo () {
if (nextCommandIndex == historylist.size()) return;

Command ¢ = historylList.get (nextCommandIndex) ;

c.execute () ;
nextCommandIndex++;

UNDOABLE COMMAND

public interface Command ({
public void execute() ;
public void undo();

ASETWEIGHTCOMMAND

public class ASetWeightCommand implements Command {
BMISpreadsheet bmiSpreadsheet;
double oldWeight;
double weight;
public ASetWeightCommand (BMISpreadsheet
theBMISpreadsheet, double theWeight) {
bmiSpreadsheet = theBMISpreadsheet;
welght = theWeight;
oldWeight = bmiSpreadsheet.getWeight ()
}
public void execute () {bmiSpreadsheet.setWeight (weight) ;}
public void undo () {bmiSpreadsheet.setWeight (oldWeight) ;}

}

ASETHEIGHTCOMMAND

public class ASetHeightCommand implements Command {
BMISpreadsheet bmiSpreadsheet;
double oldHeight;
double height;
public ASetHeightCommand (BMISpreadsheet
theBMISpreadsheet, double theHeight) {
bmiSpreadsheet = theBMISpreadsheet;
height = theHeight;
oldHeight = bmiSpreadsheet.getHeight ()
}
public void execute () {bmiSpreadsheet.setHeight (height) ;}
public void undo () {bmiSpreadsheet.setHeight (oldHeight) ;}

}

Reflection could allow these

two command objects to be
combined.

UNDOABLE BMISPREADSHEET

public interface UndoableBMISpreadsheet extends

BMISpreadsheet {
public void redo();
public void wundo();

Usually user-invokable undo/redo
methods would be provided by a
global application object for all
objects 1n the application.

Here there is only one application
object so undo/redo in
UndoableBMISpreadsheet

The interface of
AnUndoableSpreadsheet and

BMiSpreadsheet would be
same 1if global object

UNDOABLE BMISPREADSHEET

public class AnUndoableBMISpreadsheet implements
UndoableBMISpreadsheet {
BMISpreadsheet bmiSpreadsheet;
Undoer undoer;
public AnUndoableBMISpreadsheet (BMISpreadsheet
theBMISpreadsheet, Undoer theUndoer) {
bmiSpreadsheet = theBMISpreadhseet;
undoer = theUndoer;
}
public double getBMI () ({
return bmiSpreadsheet.getBMI() ;
}
public double getHeight() ({
return bmiSpreadsheet.getHeight () ;
}
public double getWeight() ({
return bmiSpreadsheet.getWeight() ;

}

UNDOABLE BMISPREADSHEET

public void setHeight (double theHeight) ({
undoer.execute (new
ASetHeightCommand (bmiSpreadsheet, theHeight)) ;
}
public void setWeight (double theWeight) ({
undoer.execute (new
ASetWeightCommand (bmiSpreadsheet, theWeight)) ;
}
public void undo() {undoer.undo() ;}
public void redo() {undoer.redo() ;}

UNDOABLE BMISPREADSHEET

public void setHeight (double theHeight) ({
undoer.execute (new ASetHeightCommand (this,
theHeight)) ;
}
public void setWeight (double theWeight)
undoer.execute (new ASetWeightCompiand (this,
theWeight)) ;
}
public void undo() {undoer.undo ()
public void redo() {undoer.redojy) ;}

this would cause infinite recursion

UNDOABLE BMISPREADSHEET (REVIEW)

public interface UndoableBMISpreadsheet extends

BMISpreadsheet {
public void redo();
public void wundo();

Usually user-invokable undo/redo
methods would be provided by a
global application object for all
objects 1n the application.

Here there is only one application
object so undo/redo in
UndoableBMISpreadsheet

The interface of
AnUndoableSpreadsheet and

BMiSpreadsheet would be
same 1if global object

UNDOABLE BMISPREADSHEET (REVIEW)

public class AnUndoableBMISpreadsheet implements
UndoableBMISpreadsheet {
BMISpreadsheet bmiSpreadsheet;
Undoer undoer;
public AnUndoableBMISpreadsheet (BMISpreadsheet
theBMISpreadsheet, Undoer theUndoer) {
bmiSpreadsheet = theBMISpreadhseet;
undoer = theUndoer;
}
public double getBMI () ({
return bmiSpreadsheet.getBMI() ;
}
public double getHeight() ({
return bmiSpreadsheet.getHeight () ;
}
public double getWeight() ({
return bmiSpreadsheet.getWeight() ;

}

UNDOABLE BMISPREADSHEET (REVIEW)

public void setHeight (double theHeight) ({
undoer.execute (new
ASetHeightCommand (bmiSpreadsheet, theHeight)) ;
}
public void setWeight (double theWeight) ({
undoer.execute (new
ASetWeightCommand (bmiSpreadsheet, theWeight)) ;
}
public void undo() {undoer.undo() ;}
public void redo() {undoer.redo() ;}

UNDOABLE BMISPREADSHEET (REVIEW)

public void setHeight (double theHeight) ({
undoer.execute (new ASetHeightCommand (this,
theHeight)) ;
}
public void setWeight (double theWeight)
undoer.execute (new ASetWeightCompiand (this,
theWeight)) ;
}
public void undo() {undoer.undo ()
public void redo() {undoer.redojy) ;}

this would cause infinite recursion

INTERMEDIARY DELEGATING CLASS

ahent | ——{AnUndotleBSpreathed T [AISprendshet]

ADAPTER?

client — adapter — | adaptee

o Adapter is a class that sits between a client and ada%otee
class much like an adapter sits between two objects that
need to interact with each other.

o Methods called in adaptee through adapter.

o Degree of adaptation undefined.

» Assumed no extra functionality offered but some may be
removed.

o Methods offered to client

* Adapted name
o Adapted parameters.

PROXY

client e | PTOXY — | subject

o Proxy 1s a class that sits between a client and
subject class, offering the same interface

o Proxy 1s a stand-in for real subject.
o Methods called 1in subject through proxy methods.

o A proxy method does not change the behavior of
subject method

o A proxy can add functionality

o Like a regulated power supply, or one with a special
fuse

O

PROXIES IN EVERYDAY APPS

o Proxies adding support for:
* Logging
e Collaboration
e Cache data
» Redirect to nearest server
o Access control

o Assertions
e Undo/redo

UNDO PATTERN

ABMISpreadsheet | I ASetWeight(Height)Command

| |

AnUndoableBMISpreadsheet || AHistoryUndoer

Defi Undo and execute
meétlﬁlsgsexecutable undoable method(s)

Undoable Command(s)

|

Undoable —_—

Provides proxy undoable Chooses undo/redo
methods that instantiate command and invokes
commands, and interacts undo/execute on it

with undoer

CHANGING UNDOABLE

AnotherBMISpreadsheet l

|

! ASetWeight(Height)Command

|

AnUndoableBMISpreadsheet |gumeg AHistoryUndoer

! Undoable Command(s)

Executer €

|

Undoable

1_i

CHANGING UNDOER

AnotherBMISpreadsheet |g ASetWeight(Height)Command

| |

AnUndoableBMISpreadsheet | AlastCommandUndoer

| Executer g ! Undoable Command(s)

|

Undoable —_—

CHANGING EVERYTHING BUuT UNDOER

| ACartesianPoint _ | | A5 Camrend

| |

AnUndoablePoint | ALastCommandUndoer

| Exccuter o { Undoable Command(s)

|

Undoable —_—

GLOBAL USER INTERFACE UNDOER

| ACartesianPoint _ | | A5 Camrend
A

|

AnUndoablePoint i ALastCommandUndoer

AnUndoableBMISpreadsheet

|

AnotherBMISpreadsheet |y { ASetWeight(Height)Command

All Objects in a

Ul share a
single Undoer

O

UNDO PATTERN

ABMISpreadsheet | 1 ASetWeight(Height)Command

| |

AnUndoableBMISpreadsheet juummmg AlastCommandUndoer

| Executer g ! Undoable Command(s)

|

Undoable —_—

EXECUTING AN UNDOABLE METHOD

public void setWeight(double theWeight) ({
undoer.execute (new
ASetWeightCommand (bmiSpreadsheet, theWeight)) ;

}

ig, [AnUndoableBMISpreadsheet](Root Weight) (el (= e
File Edit View Customize AnUndoableBMISpreadsheet Help

| |
Height: 1.99

Weight: |E6[D
BMI: 16.66624580187369

Delegating setWeight() creates

command and asks undoer to
execute 1it.

EXECUTING AN UNDOABLE METHOD

public void execute (Command c) {
if (nextCommandIndex !'= historyList.size()) {
historyList.clear(); //ignore remaining undone commands
nextCommandIndex = 0;
}
c.execute () ;
historyList.add(c);

nextCommangteadeasatl. = - =
5| [AnUndoableBMISpreadsheet](RootWeight) (sl eS|

File Edit View Customize AnUndoableBMISpreadsheet Help

[Height: [1.93
|weignt: egp |

BMI: 16.66624580187369

Delegating setWeight() creates
command and asks undoer to

execute it.

Undoer calls execute() in command.

EXECUTING AN UNDOABLE METHOD

public class ASetWeightCommand implements Command {
BMISpreadsheet bmiSpreadsheet;
double oldWeight;
double weight;
public ASetWeightCommand (BMISpreadsheet
theBMISpreadsheet, double theWeight) {
bmiSpreadsheet = theBMISpreadsheet;
weight = theWeight;
oldWeight = bmiSpreadsheet.getWeight ()
}
public void execute () {bmiSpreadsheet.setWeight (weight) ;}
public void undo () {bmiSpreadsheet.setWeight (oldWeight) ;}
}

Delegating setWeight() creates
command and asks undoer to
execute 1it.

Undoer calls execute() in command.

Command asks delegate to invoke()
setWeight() with constructor
parameter value 66.0.

UNDOABLE

public void undo() {undoer.undo() ;}

[Anundmbleﬂhﬁfmadsheet]mmt.w-eight} o 0

gk z3z

Height: [1.99

Redo
BMI: 16.666245801373649

Delegating undo asks undoer to
execute undo.

UNDOER

public void undo() {
if (nextCommandIndex == 0)return;

nextCommandIndex—-—;
Command ¢ = historylList.get (nextCommandIndex) ;

c.undo () ;

[AnUndoableBMISpreadsheet]Root Weight) L= | =] ||

Height: [1.99

Redo
BMI: 16.666245801373649

Delegating undo asks undoer to
execute undo.

Undoer finds command object of
last command and calls undo
method of command object.

UNDO COMMAND

public class ASetWeightCommand implements Command {
BMISpreadsheet bmiSpreadsheet;

double oldWeight;

double weight;

public ASetWeightCommand (BMISpreadsheet
theBMISpreadsheet, double theWeight) {

2 N 4 L Jn A DMNAT Vo o PN N = .
bmiSpreads ’lg [AnUndoableBMISpreadsheet](Root Weight) (el {(= e

welght = t|[he eat view customize AnUndoableBMISpreadsheet Help
} Weight: |66.0 Redo

BMI: 16.66624580187369

public void exec
public void undo () {
} Delegating undo asks undoer to

ight (weight) ; }
(oldWeight) ;}

execute undo.

Undoer finds command object of
last command and calls undo
method of command object.

Undo method of command object
calls setWeight() method of delegate
with old value of weight: 75.0

UNDO EFFECT

— - e =1
ig_, [AnUndoableBMISpreadsheet] (= | =) b

-

File Edit View Customize AnUndoableBMISpreadsheet Help
|
| Height: 1.98
‘ Weight: [75.0
BMI: 18.938915683947375
e S——— W I

command undone.

UNDOABLE

public void redo() {undoer.redo() ;}

£ ndoable ISk s' \
| [AnUndoableEMISpreadsheet]

File Edit View Custnmize_m

Height:
Weight:
BMI:

1.99 | Undo
75.0

15.938915683947375

Delegating redo asks undoer to
execute redo.

UNDOER

public void redo() {
if (nextCommandIndex == historylList.size()) return;
Command ¢ = historylList.get (nextCommandIndex) ;
c.execute () ;
nextCommandIndex++;

— = e W=
ig_, [AnUndoableBMISpreadsheet] (= | =) b

-

File Edit View Custnmize_m

I 1|
| Height: 1.99 Undo
‘ Weight: 75.0

BMI: 15.938915683947375

Delegating redo asks undoer to
execute redo.

Undoer finds last undone command
object and calls execute method of
command object.

COMMAND

public class ASetWeightCommand implements Command {
BMISpreadsheet bmiSpreadsheet;
double oldWeight;
double weight;
public ASetWeightCommand (BMISpreadsheet
theBMISpreadsheet, double theWeight) {
bmiSpreadsheet = theBMISpreadsheet;
weight = theWeight;
oldWeight = bmiSpreadsheet.getWeight ()
}
public void execute () {bmiSpreadsheet.setWeight (weight) ;}
public void undo () {bmiSpreadsheet.setWeight (oldWeight) ;}

}
execute redo.

Undoer finds last undone command Execute method of
object and calls redo method of same command
command object. object executed

multiple times!

Redo method of command object
calls setWeight() method of delegate
with its constrictor parameter value
: 66.0

REDO EFFECT

I] z T — Ehu
| [AnUndoableEMISpreadsheet] - =

File Edit View Customize AnUndoableBMISpreadsheet Help
|

Height: 1.98
i:l Weight: 66.0

BMI: 16.666245801873649
e S—— W I

Last undone command reexecuted

EXTRA SLIDES

INHERITANCE-BASED PROXY PATTERN

1mplements

[ABMISpreadshee. BMISpreadsheet
7

1mplements

IS-A

I AnUndoableBMISpreadshe-

Subject Interface

Subject Clas’

A

1mplements

[S-A

Proxy Class l

DELEGATION-BASED PROXY PATTERN

1mplements
[ABMISpreadShe. BMISpreadsheet
7

1mplements

HAS-A

IAnUndoableBMISpreadsh-

[Subject (ilass -

1mplements

HAS-A

Proxy Class l

Subject Interface

Works for all
1mplementations of

Subject Interface
(e.g. Web Server)

INHERITANCE-BASED PROXY PATTERN

P Adding proxy

functionality to
subject class

Inheriting Proxy

Ease of coding
UOTINLIIST(] A}LIBRNPOIN

Delegating Proxy

DELEGATION BASED COMMANDS

R Undoer
AHistoryUndoer Undoer

HAS-A

v 1mplements

ASetWeightCommand > Commandl

1mplements
Command Invoker Command
Invoker Interface

HAS-A

v 1mplements

Command Class)l Command Interfac-

DELEGATION BASED COMMANDS

HAS-A

\ 4

1mplements

AShuttleAnimationCommand

—_—

Runnable l

1mplements
Command Invoker Command
Invoker Interface

HAS-A

\ 4

1mplements

Command Class

)l Command Interfac-

INHERITANCE BASED COMMANDS

 FumnabiaT)

A

IS-A

AShuttleAnimationCommand

1mplements
= Command Invoker
Interface
IS-A
Old but convenient
Command Class and inflexible way

of implementing
threads

EXTRA SLIDES

COMMAND OBJECTS IN EVERYDAY APPS

o Thread: Runnables
o Undo/Redo: Undoable Command Object

ANIMATING VS. UPDATING CLASSES

o In general, a method that performs the animation
steps and a method that changes the value of some
animating property may be in different classes:

 AnAnimatingShuttleLocation
o ALabel

METHOD PARAMETERS IN JAVA

I Variable 2 '
Objects include methods

and data Command Object
I Parameter !

Java does not allow method
parameters Method 1 | Variable 1 l

When a method m1l
wants to pass method
m2 to method m3, 1t
passedsa command
object for the method m2

When method m3 wants
to call m2 on object o, it
passes

COMMAND OBJECT

Parameterless method

that calls method to be
called.

Constructor takes

parameters of method to be
called and target.

Command Object [p, .o 1oter

| Parameter .

Parameter

Object on
which metho
1s to be calle

METHOD PARAMETERS IN JAVA

Java does not allow method parameters

Objects include methods and data

Instead of passing a method, pass a command object

Command object = method + parameters

UNDOER BMISPREADSHEET SEPARATION

o Can use BMISpreadsheet with different undoer.
o Can use undoer with different object.

o Can use undoer with multiple objects in a single
user interface.

PROXY

client e | PTOXY — | subject

o Plroxy 1s a class that sits between a client and subject
class.

o Proxy is a stand-in for real subject.
o Methods called in subject through proxy methods,

oA proxaf method does not change the behavior of subject
metho

o A proxy adds subject-independent functionality — which
1s iIndependent of specific subject.
» The interface of functionality is independent of subject
interface (undo/redo
e The implementation may not be (required subject-specific
commands)

PROXY

client e | PTOXY — | subject

o Plroxy 1s a class that sits between a client and subject
class.

o Proxy is a stand-in for real subject.
o Methods called in subject through proxy methods,

oA proxaf method does not change the behavior of subject
metho

o A proxy adds functionality — which 1s independent of
specific subject.
» The interface of functionality is independent of subject
interface (undo/redo
e The implementation may not be (required subject-specific
commands)

UNDOER/UNDOABLE SEPARATION

1mplements
[ALastCommandUnd(-

A

HAS-A

1mplements

I AnUndoableBMISpreadshe- BMISpreadsheet

1mplements
Undoer Class - M Undoer Interface

A

HAS-A

1mplements

Undoable Classl Undoable Interface

O

CHANGING THE UNDOER

e I Undoer
AHistoryUndoer Undoer

HAS-A

1mplements

IAnUndoableBMISpreadsh- BMISpreadsheet

1mplements
Undoer Class 2 M Undoer Interface

HAS-A

1mplements
[Undoable Class- Undoable Interface

O

CHANGING THE UNDOABLLE

e I Undoer
AHistoryUndoer Undoer

HAS-A

AnUndoablecartesianPoint

1mplements

1mplements
Undoer Class M Undoer Interface

HAS-A

1mplements

Undoable Class 2

Undoable Interface 2

o

MULTIPLE UNDOABLES PER UNDOER

e
AHistoryUndoer Undoer

HAS-A HAS-A

AnUndoablecartesianPoint [AnUndoableBMISpreadsh-

1mplements
Undoer Class M Undoer Interface

HAS-A HAS-A

All Objects in a
Ul share a
single Undoer

Undoable Class 2 Undoable Class.

