
COMP 401

COMMAND OBJECTS AND UNDO

Instructor: Prasun Dewan

2

PREREQUISITES

 Animation Threads Commands

3

TOPICS

 Command Object

 Object representing an action invocation such as “Do

your homework”.

 Threads

 Support non blocking action invocation.

 Undo/Redo

 Supports undoable/re-doable commands (action

invocations)

4

UNDO: INITIAL STATE

Initial State

5

UNDO INITIAL STATE

Undo Initial State

6

CANNOT ALWAYS UNDO

If no command executed,
undo does nothing

7

REDO INITIAL STATE

If no command executed,
undo does nothing

8

CANNOT ALWAYS REDO

If no command executed,
redo does nothing

9

CHANGE HEIGHT

Execute change height command.

10

CHANGE WEIGHT

Execute change weight command.

Height and bmi change.

11

UNDO

12

UNDO

Weightand BMI both undone to restore state before setWeight() call

13

REDO

Redo last undone command

14

REDO

Last undone command reexecuted

15

LAST COMMAND UNDO

Redo after a redo.

16

CANNOT ALWAYS REDO

No undo commands to redo

17

UNDO IMPLEMENTATION

Weightand BMI both undone to restore state before setWeight() call

setWeight() called with old weight.

In the application could have multiple spreadsheets, points, … all
sharing one undo history.

Undoable command object remembers method and its parameters.

Special global undoer keeps track of command history

setWeight in undoable creates command and gives it to undoer

18

UNDO IN BMI

ABMISpreadsheet

AnUndoableBMISpreadsheet AHistoryUndoer

ASetWeight(Height)Command

19

GENERAL UNDOER INTERFACE

public interface Undoer {

 public void undo();

 public void execute(Command command);

 public void redo();

}

20

HISTORY UNDOER

Command 1

Command 2

Command 3

Command 4

Command 5

Command 6

Command 7

Command 8

E

x

e

c

u

t

e

d

U

n

d

o

n

e
Command 9

21

UNDO

Command 1

Command 2

Command 3

Command 4

Command 5

Command 6

Command 7

Command 8

Command 9

22

REDO

Command 1

Command 2

Command 3

Command 4

Command 5

Command 6

Command 7

Command 8

Command 9

23

EXECUTE

Command 1

Command 2

Command 3

Command 4

Command 5

Command 6

Command 7

Command 8

Command 9

24

EXECUTE

Command 1

Command 2

Command 3

Command 4

Command 5

25

EXECUTE

Command 1

Command 2

Command 3

Command 4

Command 5

Command 10

26

GENERAL HISTORY UNDOER
public class HistoryUndoer implements Undoer {

 List<Command> historyList = new ArrayList();

 int nextCommandIndex = 0;

 public void execute (Command c) {

 while(nextCommandIndex < historyList.size()) {

 historyList.remove(nextCommandIndex); // clear redo chain

 }

 c.execute();

 historyList.add(c);

 nextCommandIndex++;

 }

 public void undo() {

 if (nextCommandIndex == 0)return;

 nextCommandIndex--;

 Command c = historyList.get(nextCommandIndex);

 c.undo();

 }

 public void redo() {

 if (nextCommandIndex == historyList.size()) return;

 Command c = historyList.get(nextCommandIndex);

 c.execute();

 nextCommandIndex++;

 }

}

27

UNDOABLE COMMAND

public interface Command {

 public void execute();

 public void undo();

}

28

ASETWEIGHTCOMMAND

public class ASetWeightCommand implements Command {

BMISpreadsheet bmiSpreadsheet;

 double oldWeight;

 double weight;

 public ASetWeightCommand (BMISpreadsheet

theBMISpreadsheet, double theWeight) {

 bmiSpreadsheet = theBMISpreadsheet;

 weight = theWeight;

 oldWeight = bmiSpreadsheet.getWeight();

}

 public void execute() {bmiSpreadsheet.setWeight(weight);}

 public void undo() {bmiSpreadsheet.setWeight(oldWeight);}

}

29

ASETHEIGHTCOMMAND

public class ASetHeightCommand implements Command {

BMISpreadsheet bmiSpreadsheet;

 double oldHeight;

 double height;

 public ASetHeightCommand (BMISpreadsheet

theBMISpreadsheet, double theHeight) {

 bmiSpreadsheet = theBMISpreadsheet;

 height = theHeight;

 oldHeight = bmiSpreadsheet.getHeight();

}

 public void execute() {bmiSpreadsheet.setHeight(height);}

 public void undo() {bmiSpreadsheet.setHeight(oldHeight);}

}

Reflection could allow these

two command objects to be

combined.

30

UNDOABLE BMISPREADSHEET

public interface UndoableBMISpreadsheet extends

BMISpreadsheet{

 public void redo();

 public void undo();

}

Usually user-invokable undo/redo
methods would be provided by a
global application object for all
objects in the application.

Here there is only one application
object so undo/redo in
UndoableBMISpreadsheet

The interface of
AnUndoableSpreadsheet and
BMiSpreadsheet would be
same if global object

31

UNDOABLE BMISPREADSHEET

public class AnUndoableBMISpreadsheet implements

UndoableBMISpreadsheet {

 BMISpreadsheet bmiSpreadsheet;

 Undoer undoer;

 public AnUndoableBMISpreadsheet (BMISpreadsheet

theBMISpreadsheet, Undoer theUndoer) {

 bmiSpreadsheet = theBMISpreadhseet;

 undoer = theUndoer;

 }

 public double getBMI() {

 return bmiSpreadsheet.getBMI();

 }

 public double getHeight() {

 return bmiSpreadsheet.getHeight();

 }

 public double getWeight() {

 return bmiSpreadsheet.getWeight();

 }

32

UNDOABLE BMISPREADSHEET

 public void setHeight(double theHeight) {

 undoer.execute(new

ASetHeightCommand(bmiSpreadsheet, theHeight));

 }

 public void setWeight(double theWeight) {

 undoer.execute(new

ASetWeightCommand(bmiSpreadsheet, theWeight));

 }

 public void undo() {undoer.undo();}

 public void redo() {undoer.redo();}

}

33

UNDOABLE BMISPREADSHEET

 public void setHeight(double theHeight) {

 undoer.execute(new ASetHeightCommand(this,

theHeight));

 }

 public void setWeight(double theWeight) {

 undoer.execute(new ASetWeightCommand(this,

theWeight));

 }

 public void undo() {undoer.undo();}

 public void redo() {undoer.redo();}

}

this would cause infinite recursion

34

UNDOABLE BMISPREADSHEET (REVIEW)

public interface UndoableBMISpreadsheet extends

BMISpreadsheet{

 public void redo();

 public void undo();

}

Usually user-invokable undo/redo
methods would be provided by a
global application object for all
objects in the application.

Here there is only one application
object so undo/redo in
UndoableBMISpreadsheet

The interface of
AnUndoableSpreadsheet and
BMiSpreadsheet would be
same if global object

35

UNDOABLE BMISPREADSHEET (REVIEW)

public class AnUndoableBMISpreadsheet implements

UndoableBMISpreadsheet {

 BMISpreadsheet bmiSpreadsheet;

 Undoer undoer;

 public AnUndoableBMISpreadsheet (BMISpreadsheet

theBMISpreadsheet, Undoer theUndoer) {

 bmiSpreadsheet = theBMISpreadhseet;

 undoer = theUndoer;

 }

 public double getBMI() {

 return bmiSpreadsheet.getBMI();

 }

 public double getHeight() {

 return bmiSpreadsheet.getHeight();

 }

 public double getWeight() {

 return bmiSpreadsheet.getWeight();

 }

36

UNDOABLE BMISPREADSHEET (REVIEW)

 public void setHeight(double theHeight) {

 undoer.execute(new

ASetHeightCommand(bmiSpreadsheet, theHeight));

 }

 public void setWeight(double theWeight) {

 undoer.execute(new

ASetWeightCommand(bmiSpreadsheet, theWeight));

 }

 public void undo() {undoer.undo();}

 public void redo() {undoer.redo();}

}

37

UNDOABLE BMISPREADSHEET (REVIEW)

 public void setHeight(double theHeight) {

 undoer.execute(new ASetHeightCommand(this,

theHeight));

 }

 public void setWeight(double theWeight) {

 undoer.execute(new ASetWeightCommand(this,

theWeight));

 }

 public void undo() {undoer.undo();}

 public void redo() {undoer.redo();}

}

this would cause infinite recursion

38

INTERMEDIARY DELEGATING CLASS

client ABMISpreadsheet AnUndoableBMISpreadheet

39

ADAPTER?

 Adapter is a class that sits between a client and adaptee
class much like an adapter sits between two objects that
need to interact with each other.

 Methods called in adaptee through adapter.
 Degree of adaptation undefined.

 Assumed no extra functionality offered but some may be
removed.

 Methods offered to client
 Adapted name
 Adapted parameters.

client adaptee adapter

40

PROXY

 Proxy is a class that sits between a client and
subject class, offering the same interface

 Proxy is a stand-in for real subject.

 Methods called in subject through proxy methods.

 A proxy method does not change the behavior of
subject method

 A proxy can add functionality

 Like a regulated power supply, or one with a special
fuse

client subject proxy

41

PROXIES IN EVERYDAY APPS

Proxies adding support for:
 Logging

 Collaboration

 Cache data

 Redirect to nearest server

 Access control

 Assertions

 Undo/redo

42

UNDO PATTERN

ABMISpreadsheet

AnUndoableBMISpreadsheet AHistoryUndoer

ASetWeight(Height)Command

Executer

Undoable Undoer

Undoable Command(s)

Undo and execute
undoable method(s)

Chooses undo/redo
command and invokes
undo/execute on it

Defines executable
methods

Provides proxy undoable
methods that instantiate
commands, and interacts
with undoer

43

CHANGING UNDOABLE

AnotherBMISpreadsheet

AnUndoableBMISpreadsheet AHistoryUndoer

ASetWeight(Height)Command

Executer

Undoable Undoer

Undoable Command(s)

44

CHANGING UNDOER

AnotherBMISpreadsheet

AnUndoableBMISpreadsheet ALastCommandUndoer

ASetWeight(Height)Command

Executer

Undoable Undoer

Undoable Command(s)

45

CHANGING EVERYTHING BUT UNDOER

ACartesianPoint

AnUndoablePoint ALastCommandUndoer

ASetX(Y)Command

Executer

Undoable Undoer

Undoable Command(s)

46

GLOBAL USER INTERFACE UNDOER

ACartesianPoint

AnUndoablePoint ALastCommandUndoer

ASetX(Y)Command

AnotherBMISpreadsheet

AnUndoableBMISpreadsheet

ASetWeight(Height)Command

All Objects in a

UI share a

single Undoer

47

UNDO PATTERN

ABMISpreadsheet

AnUndoableBMISpreadsheet ALastCommandUndoer

ASetWeight(Height)Command

Executer

Undoable Undoer

Undoable Command(s)

48

EXECUTING AN UNDOABLE METHOD

Delegating setWeight() creates
command and asks undoer to
execute it.

 public void setWeight(double theWeight) {

 undoer.execute(new

ASetWeightCommand(bmiSpreadsheet, theWeight));

 }

49

public void execute (Command c) {

 if (nextCommandIndex != historyList.size()) {

 historyList.clear(); //ignore remaining undone commands

 nextCommandIndex = 0;

 }

 c.execute();

 historyList.add(c);

 nextCommandIndex++;

 }

EXECUTING AN UNDOABLE METHOD

Delegating setWeight() creates
command and asks undoer to
execute it.

Undoer calls execute() in command.

50

EXECUTING AN UNDOABLE METHOD

Delegating setWeight() creates
command and asks undoer to
execute it.

Undoer calls execute() in command.

Command asks delegate to invoke()
setWeight() with constructor
parameter value 66.0.

public class ASetWeightCommand implements Command {

BMISpreadsheet bmiSpreadsheet;

 double oldWeight;

 double weight;

 public ASetWeightCommand (BMISpreadsheet

theBMISpreadsheet, double theWeight) {

 bmiSpreadsheet = theBMISpreadsheet;

 weight = theWeight;

 oldWeight = bmiSpreadsheet.getWeight();

}

 public void execute() {bmiSpreadsheet.setWeight(weight);}

 public void undo() {bmiSpreadsheet.setWeight(oldWeight);}

}

51

UNDOABLE

Delegating undo asks undoer to
execute undo.

public void undo() {undoer.undo();}

52

UNDOER

Delegating undo asks undoer to
execute undo.

Undoer finds command object of
last command and calls undo
method of command object.

public void undo() {

 if (nextCommandIndex == 0)return;

 nextCommandIndex--;

 Command c = historyList.get(nextCommandIndex);

 c.undo();

 }

53

public class ASetWeightCommand implements Command {

BMISpreadsheet bmiSpreadsheet;

 double oldWeight;

 double weight;

 public ASetWeightCommand (BMISpreadsheet

theBMISpreadsheet, double theWeight) {

 bmiSpreadsheet = theBMISpreadsheet;

 weight = theWeight;

 oldWeight = bmiSpreadsheet.getWeight();

}

 public void execute() {bmiSpreadsheet.setWeight(weight);}

 public void undo() {bmiSpreadsheet.setWeight(oldWeight);}

}

UNDO COMMAND

Delegating undo asks undoer to
execute undo.

Undoer finds command object of
last command and calls undo
method of command object.

Undo method of command object
calls setWeight() method of delegate
with old value of weight: 75.0

54

UNDO EFFECT

command undone.

55

UNDOABLE

Delegating redo asks undoer to
execute redo.

 public void redo() {undoer.redo();}

}

56

UNDOER

Delegating redo asks undoer to
execute redo.

Undoer finds last undone command
object and calls execute method of
command object.

public void redo() {

 if (nextCommandIndex == historyList.size()) return;

 Command c = historyList.get(nextCommandIndex);

 c.execute();

 nextCommandIndex++;

 }

57

COMMAND

Delegating redo asks undoer to
execute redo.

Undoer finds last undone command
object and calls redo method of
command object.

Redo method of command object
calls setWeight() method of delegate
with its constrictor parameter value
: 66.0

public class ASetWeightCommand implements Command {

BMISpreadsheet bmiSpreadsheet;

 double oldWeight;

 double weight;

 public ASetWeightCommand (BMISpreadsheet

theBMISpreadsheet, double theWeight) {

 bmiSpreadsheet = theBMISpreadsheet;

 weight = theWeight;

 oldWeight = bmiSpreadsheet.getWeight();

}

 public void execute() {bmiSpreadsheet.setWeight(weight);}

 public void undo() {bmiSpreadsheet.setWeight(oldWeight);}

}

Execute method of
same command
object executed
multiple times!

58

REDO EFFECT

Last undone command reexecuted

59

EXTRA SLIDES

60

INHERITANCE-BASED PROXY PATTERN

ABMISpreadsheet BMISpreadsheet
implements

AnUndoableBMISpreadsheet

IS-A
implements

Subject Class Subject Interface

Proxy Class

IS-A
implements

61

DELEGATION-BASED PROXY PATTERN

ABMISpreadsheet BMISpreadsheet
implements

AnUndoableBMISpreadsheet

HAS-A
implements

Subject Class Subject Interface

Proxy Class

HAS-A
implements

Works for all

implementations of

Subject Interface

(e.g. Web Server)

62

INHERITANCE-BASED PROXY PATTERN

Adding proxy

functionality to

subject class

Inheriting Proxy

Delegating Proxy

E
a
s
e
 o

f
co

d
in

g

M
o
d

u
la

rity
 D

istrib
u

tio
n

63

DELEGATION BASED COMMANDS

AHistoryUndoer
implements

ASetWeightCommand

HAS-A

Undoer

Command

Command Invoker

Command Class

HAS-A

Command

Invoker Interface

Command Interface

implements

implements

implements

64

DELEGATION BASED COMMANDS

Thread

AShuttleAnimationCommand

HAS-A

Runnable

Command Invoker

Command Class

HAS-A

Command

Invoker Interface

Command Interface

implements

implements

implements

65

INHERITANCE BASED COMMANDS

Thread

AShuttleAnimationCommand

IS-A

Runnable

Command Invoker

Command Class

Command and

Command Invoker

Interface

implements

IS-A

Old but convenient

and inflexible way

of implementing

threads

66

EXTRA SLIDES

67

COMMAND OBJECTS IN EVERYDAY APPS

Thread: Runnables

Undo/Redo: Undoable Command Object

68

ANIMATING VS. UPDATING CLASSES

 In general, a method that performs the animation

steps and a method that changes the value of some

animating property may be in different classes:

 AnAnimatingShuttleLocation

 ALabel

69

METHOD PARAMETERS IN JAVA

Objects include methods

and data

Java does not allow method

parameters

Command Object

Method 1 Variable 1

Parameter N

Method 2

Variable 2

70

Command Object

COMMAND OBJECT

Parameterless method

that calls method to be

called.

Parameter 1

Parameter N

Constructor takes

parameters of method to be

called and target.

Parameter 2

Object on

which method

is to be called

When a method m1

wants to pass method

m2 to method m3, it

passedsa command

object for the method m2

When method m3 wants

to call m2 on object o, it

passes

71

METHOD PARAMETERS IN JAVA

Objects include methods and data

Java does not allow method parameters

Instead of passing a method, pass a command object

Command object = method + parameters

72

UNDOER BMISPREADSHEET SEPARATION

 Can use BMISpreadsheet with different undoer.

 Can use undoer with different object.

 Can use undoer with multiple objects in a single

user interface.

73

PROXY

 Proxy is a class that sits between a client and subject
class.

 Proxy is a stand-in for real subject.
 Methods called in subject through proxy methods,
 A proxy method does not change the behavior of subject

method
 A proxy adds subject-independent functionality – which

is independent of specific subject.
 The interface of functionality is independent of subject

interface (undo/redo)
 The implementation may not be (required subject-specific

commands)

client subject proxy

74

PROXY

 Proxy is a class that sits between a client and subject
class.

 Proxy is a stand-in for real subject.
 Methods called in subject through proxy methods,
 A proxy method does not change the behavior of subject

method
 A proxy adds functionality – which is independent of

specific subject.
 The interface of functionality is independent of subject

interface (undo/redo)
 The implementation may not be (required subject-specific

commands)

client subject proxy

75

UNDOER/UNDOABLE SEPARATION

ALastCommandUndoer

BMISpreadsheet

implements

AnUndoableBMISpreadsheet

HAS-A

implements

Undoer Class Undoer Interface

Undoable Class

HAS-A

implements

Undoer

Undoable Interface

implements

76

CHANGING THE UNDOER

AHistoryUndoer

BMISpreadsheet

implements

AnUndoableBMISpreadsheet

HAS-A

implements

Undoer Class 2 Undoer Interface

Undoable Class

HAS-A

implements

Undoer

Undoable Interface

implements

77

CHANGING THE UNDOABLLE

AHistoryUndoer

Point

implements

AnUndoablecartesianPoint

HAS-A

implements

Undoer Class Undoer Interface

Undoable Class 2

HAS-A

implements

Undoer

Undoable Interface 2

implements

78

MULTIPLE UNDOABLES PER UNDOER

AHistoryUndoer
implements

AnUndoablecartesianPoint

HAS-A

Undoer Class Undoer Interface

Undoable Class 2

HAS-A

implements

Undoer

AnUndoableBMISpreadsheet

HAS-A

Undoable Class

HAS-A All Objects in a

UI share a

single Undoer

