
COMP 401 – Fall 2017

Recitation 11: Generics, Abstract Classes, and Exceptions

Agenda

Copyright (C) 2017 Alex Blate. All Rights Reserved 2

 Deep(er) dive into Generics

 Abstract Classes/Methods in Java

 Exceptions

 Code is in 20171105_recitation11_code_project.zip

Generics (very brief intro)

Copyright (C) 2017 Alex Blate. All Rights Reserved 3

 Java 1.5 introduced Generics, which provide a

degree of polymorphism

 Idea: I want to write a class or a method that

operates on objects, but the implementation doesn’t

really care what specific objects they are.

 You could do this by simply operating on instances of
Object; that’s how we did things for a long time.

 However, I would like to take advantage of strong

type-checking at compile time and avoid the

proliferation of type-casting

Generics (brief intro, continued)

Copyright (C) 2017 Alex Blate. All Rights Reserved 4

 Semantically, I want to declare that my class or

method operates on some type T, but I don’t care

what the actual type of T is.

 Semi-trivial example:

public <T> T getArrayElement(T[] array, int index) {

if(index >= 0 && index < array.length) {

 return array[index];

} else {

 return null;

}

Syntax

Copyright (C) 2017 Alex Blate. All Rights Reserved 5

 Type Parameter

class Foo<T> { ... }

class Foo2<T,U> { ... }

<T> void bar(T p1) { ... }

<T,U> List<T> baz(U[] us) { ... }

<V extends MyType> void blah(V p1) {...}

 Where the type parameter(s) (e.g., T and U, above)
are Java identifier (typically single-character capital
letters). These identify types in the code that follows.

 Type parameters may be bounded (as in the case of
V, above), or may be unbounded.

Wildcard Parameters

Copyright (C) 2017 Alex Blate. All Rights Reserved 6

 The type parameter may also be a “wildcard” expression;
this may be used where the code:
 Doesn’t care about the type of its argument(s) and

 Doesn’t need to refer to the name of the type of its argument(s)

 Simple example:
boolean evenSize(List<?> list) {

 return (list.size() % 2) == 0;

}

 Wildcard type can also be bounded, e.g.:
boolean oddSize(List<? extends Foo> list) {

 return (list.size() % 2) == 1;

}

 For more details, see, e.g.,:
https://docs.oracle.com/javase/tutorial/java/generics/wildcards.html

https://docs.oracle.com/javase/tutorial/java/generics/wildcards.html

Type Erasure

Copyright (C) 2017 Alex Blate. All Rights Reserved 7

 Java Generics is “syntactic sugar” in that:

 It is a nicety provided by the compiler affording strong type

safety and code clarity

 It does not provide additional functional or expressive power

(any program using Generics could be correctly implemented

without Generics)

 Generics are implemented with type erasure, wherein:

 If the type parameter is unbounded, it is replaced with Object,

or if bounded, the appropriate bound

 Casts are added, as appropriate, to guarantee type safety

 (For completeness): “Bridge methods” are added to aid polymorphism

 Unlike, e.g., templates in C++, no new code is generated

for each concrete parameterized type.

Generic Classes – Simple Examples

Copyright (C) 2017 Alex Blate. All Rights Reserved 8

 Polymorphic Pair (Naïve implementation):

public class SimplePair<T> {

protected T first;

protected T second;

public SimplePair(T first, T second) {
this.first=first;
this.second=second;

}

public T getFirst() {

 return this.first;

}

public void setFirst(T first) {

 this.first = first;

}

}

Generic Classes – Simple Examples

Copyright (C) 2017 Alex Blate. All Rights Reserved 9

 Polymorphic Pair (Better Implementation):

public class GeneralPair<T, U> {

protected T first;

protected U second;

public GeneralPair(T first, U second) {
this.first=first;
this.second=second;

}

public T getFirst() {

 return this.first;

}

public void setFirst(T first) {

 this.first = first;

}

}

Generic Methods

Copyright (C) 2017 Alex Blate. All Rights Reserved 10

 Same idea as generic classes, but enclosing class

need not be generic or use the same type(s)

 Example:

 public static <T> boolean allNonNull(T[] array) {
if(array==null) {
 return true;
}

for(T a: array) {

if(null == a) {
 return false;
}

}

return true;

}

Fancier Generic Methods

Copyright (C) 2017 Alex Blate. All Rights Reserved 11

public static <T,U> List<GeneralPair<T,U>> toPairs(T[] ts, U[] us) {
//Ignore sanity-check of inputs
List<GeneralPair<T,U>> res = new ArrayList<GeneralPair<T,U>>(ts.length);
for(int i=0; i<ts.length; i++) {
 res.add(new GeneralPair<T, U>(ts[i],us[i]));
}

return res;

}

public static <T extends Comparable<T>, U extends Collection<T>>
 void addIfLargest(T element, U coll) {

for(T elt : coll) {
 if(element.compareTo(elt)<0) {
 return;
 }
}

coll.add(element);

}

Abstract classes and methods

Copyright (C) 2017 Alex Blate. All Rights Reserved 12

 An abstract class is declared with the modifier
abstract.

 An abstract method is a method declared with the
modifier abstract and without an implementation.

 Abstract classes may or may not contain abstract
methods.

 A class containing abstract methods must itself be
declared as abstract.

 Abstract classes may not be instantiated

 Abstract classes may contain non-public, non-final,
and non-static methods and data as well as non-
abstract methods (having implementations).

What’s this good for?

Copyright (C) 2017 Alex Blate. All Rights Reserved 13

 An abstract class cannot be used/instantiated
directly – a concrete implementation must be built
which extends the abstract base class.

 Why would we want abstract classes/methods when
we have interfaces?

 Typical use case: implementing a set of classes
which all use a common subset of data and/or
logic.
 E.g., AbstractMap (JCF) – implementations include
HashMap, TreeMap, and ConcurrentHashMap

 E.g., AbstractList, AbstractSequentialList

Example

Copyright (C) 2017 Alex Blate. All Rights Reserved 14

public abstract class AbstractQueue<T>
 implements SimpleQueue<T> {

public AbstractQueue() {};
public abstract void enqueue(T e);
public abstract T dequeue();
public abstract int size();
...
public boolean isEmpty() {
 return this.size() == 0;
}

public void clear() {

while (size() > 0) {
 this.dequeue();
}

}
}

Abstract classes

Copyright (C) 2017 Alex Blate. All Rights Reserved 15

 Abstract classes can (and often should) implement

one or more interfaces

 Often a good choice when implementing a family of

classes that share common (partial) implementations

and/or non-static member variables

 Interfaces should be used when a set of unrelated

classes implement a common set of semantics

 Because abstract classes are implemented via

inheritance, a given class can only extend a single

abstract base class

Error Handling: Exceptions

Copyright (C) 2017 Alex Blate. All Rights Reserved 16

 High-Level Semantics:
 Within some code, something “bad” has happened

 The code cannot continue and cannot return while fulfilling its
return semantics

 By design, the problem should not or otherwise cannot be
handled within the local scope; handling is delegated to the
caller(s)

 A caller may wish to detect and possibly handle such errors in
code it calls or may wish to delegate such handling to its
caller(s)

 Additionally, some problems may be relatively common and
result from, say, invalid data or user input while other problems
are “unexpected” and may be more serious

 We don’t want to burden callers with having to deal with every
possible error condition that could occur within our code, but
we may wish to force them to handle or explicitly not handle
certain conditions.

Exceptions

Copyright (C) 2017 Alex Blate. All Rights Reserved 17

 Semantics:

 When an error occurs within some method and the code

does not wish to or cannot handle it, an exception is

thrown

 Execution of the method halts

 The exception propagates up the stack until:

 It reaches the top, in which case the program terminates

 It reaches a stack frame where the calling code declares that it

will catch an exception matching the type of that which was

thrown.

 Exceptions should NOT be used to implement typical,

“happy path” logic, i.e., in place of returning a value.

Exceptions in Java

Copyright (C) 2017 Alex Blate. All Rights Reserved 18

 All exceptions extend parent class Throwable

 Throwable is extended by three primary exception

types/families:

 Exception – Checked exceptions

 RuntimeException – Unchecked exceptions

 Error – Unchecked, generally fatal runtime errors

 Many subclasses within each family

 Inheritance hierarchy is often used to encapsulate

the set of errors occurring within a given

package/module

Checked and Unchecked Exceptions

Copyright (C) 2017 Alex Blate. All Rights Reserved 19

 Checked exceptions:
 A method that can generate a checked exception must

declare that it throws an exception of the respective type.

 A method that calls a method that declares that it throws a
checked exception must either:

 Explicitly catch that exception and/or

 Declare that it throws an exception of the respective type

 Unchecked exceptions

 May be thrown without a throws declaration

 May also be thrown by the JVM (e.g.,
NullPointerException)

 Callers choose which, if any, unchecked exceptions they
wish to catch

Exception Generation

Copyright (C) 2017 Alex Blate. All Rights Reserved 20

 Java keyword throw – think “throw up your hands”

 Syntax example:
void foo() throws TooBigException {

 if(size > MAX_SIZE) {

 throw new TooBigException();

 }

 //Code…

}

 Example with message
 //somewhere else…

 if(!checkUsername()) {

 throw new LoginException(“Invalid Username”);

 } else if(!checkPassword()) {

 throw new LoginException(“Invalid password”);

 }

Declaring thrown checked exceptions

Copyright (C) 2017 Alex Blate. All Rights Reserved 21

 Methods that throw checked exceptions must be

declared with the “throws” modifier following the

arguments list.

 The throws list may contain one or more identifiers,

each of which must extend Throwable (and generally

extend Exception)

 Example:
void foo() throws MyCheckedException { … }

void bar() throws IOException, AuthException { … }

 The throws list is part of the method’s signature

Exception Handling

Copyright (C) 2017 Alex Blate. All Rights Reserved 22

 When calling a method that may throw one or more
exceptions, we can choose to handle such
exceptions.

 In Java, the try…catch (..finally) construct provides
such functionality.

 Semantics:
 Try to do something that may throw an exception

 If an exception of type A is thrown, execute some code X

 Else if an exception of type B is thrown, execute some
code Y

 (Optionally) Finally, execute some code Z whether or not
an exception was thrown

Syntax

Copyright (C) 2017 Alex Blate. All Rights Reserved 23

//Within some method body:

try {

 //Statements

} catch (ExceptionType1 ex) {

 //Code to deal with ExceptionType1

} [catch (ExceptionType2 ex) {

 //Code to deal with ExceptionType2

}] [finally {

 //Code to be executed whether or not an exception

 //was thrown in the try and guaranteed to be executed before

 //control leaves the try… construct.

}

//Example:

try {

 y = Integer.parseInt(s);

 this.setValue(y);

 return true;

} catch (NumberFormatException ex) {

 return false;

}

Chained Exceptions

Copyright (C) 2017 Alex Blate. All Rights Reserved 24

 Idea: I catch some exception thrown by some method I

called. Unfortunately, I can’t handle the error either. I’d

like to throw an exception that tells my caller about both

the error I’m generating as well as the cause of that error

 Java provides a lovely mechanism called exception

chaining, wherein an exception can contain an exception

of another type. E.g.:

 … } catch (ExType1 ex) {

 throw new MyExType(ex, “Damn.”);

 }

Code Examples

Copyright (C) 2017 Alex Blate. All Rights Reserved 25

 package recitations.recitation11.generics

 Simple examples of the use of generics

 Package recitations.recitation11

 [Generics and abstract classes]

AbstractQueue, SimpleQueue

 LinkedQueue, ListNode

 [Idem, continued, and exceptions]

 CheckedQueue, BoundedQueue

 BoundedQueueException, QueueEmptyException,

QueueFullException

 [Putting things together] DropTailBoundedQueue

