
Generics, Exceptions and Undo 

Command
(Three unrelated concepts)



Why use generics?
 When you write a collection (something to store data, such 

as a linked list, arraylist, table, etc), you want it to be usable 
with all kinds of data. You want it to be usable to store 
Strings, or usable to store integers.

 Usually this is done by letting the collection work with the 
Object class, which everything inherits. 

 The problem is that every time you take out an element, you 
have to cast it from Object. Also, while you want your 
collection to be usable for different types, you also want to 
limit the collection to using one type at a time (so you don’t 
accidentally put a String into a list of integers).

 “Generics” are a way for us to use “placeholder” types. The 
user chooses what they are when they first use the code, but 
then we plug that type everywhere in our methods.

 Example: the add() method of ArrayList<String> takes a 
String as a parameter.  The add() method of 
ArrayList<Integer> takes Integer as a parameter.
◦ Inside ArrayList, it is declared as ArrayList <E>, and the add method 

takes a parameter of type E



A Generic Stack
 A stack is a collection that only allows us to add to 

the end, and only remove from the end. It turns 
out, imposing these limitations on a collection is 
sometimes useful, because it determines how we 
interact with the contents.

 Class AStack uses generics. In the main method, 
we have 2 instances of AStack, one using type 
Integer and one String. Notice that the type of 
stack is determined in instantiation, so we cannot 
push an Integer into a stack with type is String.

 Like normal stack, AStack supports pop, push, and 
peek.



What are exceptions?
 Exceptions are a way for code to “bail out” when it encounters 

something unexpected. Usually, this results in the program 
crashing and printing out a trace of where the exception 
occurred.

 In Java, we can write code like “throw new Exception(“Some 
message”)”. “throw” is a keyword, and you have to throw 
something that inherits from Error or Exception (both of these 
implement “Throwable”). These classes are ways for us to 
package information about what went wrong.

◦ We can write our own exception classes to specify specific errors

 When we throw an exception, this tells Java to abort what it’s 
doing and get out of the program.

 However, we can write code that “catches” thrown exceptions. 
That is, it responds to an exception and prevents the program 
from crashing immediately. Although a lot of times, all we do 
when catching exceptions is log the error in some way and 
then crash anyway.



Exception Handling
 try-catch blocks are ways for us to handle 

exceptions. We tell Java that if any exceptions are 
thrown inside a block that we label “try”, Java should 
try to catch them with the “catch” block that follows.

 The catch block specifies what kind of exceptions it 
catches. If you want to do different things in 
response to different exceptions, you can have 
several catch blocks, one after the other.

 You can see that in the driver, the push statements 
are in a try-catch block. There are 2 catch blocks, 
the first one catches FullCollectionException and the 
second one catches all other exceptions. 



Checked and unchecked exceptions
 Most exceptions are called “checked exceptions”. That means that if your 

method throws one, it has to declare that it throws it in its header, saying 
something like “throws SomeException”. 

 Any method that calls a method that has a throws declaration must also 
have the same throws declaration, or else it must handle the exception by 
surrounding the method call in a try-catch block.

 Exceptions that inherit from RuntimeException are called “unchecked 
exceptions”. These are not required to be declared in the header.

 The idea is that checked exceptions are ones that a programmer thinks 
other programmers should be ready to deal with in some way if they want 
to use her/his code. Unchecked exceptions are ones that the programmer 
may think are unrealistic to deal with, perhaps because they result from 
the misuse of their code, or bad programming (NullPointerException is an 
unchecked exception).

 Things that inherit from Error also don’t have to be declared, but by 
convention, these are only things that should never happen (like the 
results of hardware failure). Do not inherit from Error.

 This code has a user-defined exception, FullCollectionException. It will be 
thrown when user try to push an item into a full stack. The code that 
throws the exception is in method push of AStack.



Undoable Command Class
 In the past, we have used command classes to execute method 

calls in their own threads.

 We can also use command classes to make method calls 
undoable.

 Like before, we wrap the method call inside the execute/run 
method of a command class. However, we add an undo() 
method.

◦ The undo() method should do the opposite of what the execution did, 
so it will differ depending on the method. 

 Then we create a class to manage our command history. We 
tell this “undoer” every time we want to execute a command, 
and it remembers it. Then, when we want to undo the 
command, the undoer can do this for us.

 Look at the Push and Pop undoable commands, the 
HistoryUndoer, and UndoerDriver. Notice that we don’t really 
need undoable command classes for peek() and size() since 
those do not change the stack (they are read methods)


