
COMP 401 – Fall 2017

Recitation 6: Inheritance

Agenda

Copyright (C) 2017 Alex Blate. All Rights Reserved 2

 Brief Review of Inheritance

 Examples of extending existing classes

 Exercises and Quiz

High-level

Copyright (C) 2017 Alex Blate. All Rights Reserved 3

 Classes are Abstract Data Types

 We can define a set of operations, properties, and

semantics via an Interface

 Why?

 How?

 One or more classes may then implement a

particular Interface

 Interfaces can be extended to define additional

operations

 Does extending an interface make it more or less

general/specific?

Interface Inheritance

Copyright (C) 2017 Alex Blate. All Rights Reserved 4

 Consider the Line example from the last recitation:

 Defines properties….? Semantics…?

 Suppose we would like to be able to control the

thickness of the line. What might this look like?

public interface Line {
 public int getX();
 public void setX(int newX);
 public int getY();
 public void setY(int newY);
 public int getWidth();
 public void setWidth(int newVal);
 public int getHeight() ;
 public void setHeight(int newVal);
}

StrokedLine

Copyright (C) 2017 Alex Blate. All Rights Reserved 5

 So let’s add operations to change the “Stroke” width:

public interface StrokedLine extends Line {

 double getStrokeWidth();
 void changeStrokeWidth(double width);
 Stroke getStroke();

}

Interface vs. Implementation

Copyright (C) 2017 Alex Blate. All Rights Reserved 6

 Recall that an Interface only defines a set of

methods (and possibly constants)

 To actualize an Interface we must create a concrete

implementation.

 In our example, we created:

 How can/should we implement our StrokedLine?

public class ALine implements Line {…}

AStrokedLine

Copyright (C) 2017 Alex Blate. All Rights Reserved 7

 We will derive our StrokedLine implementation

from our existing Aline implementation:

 We inherit all of the data and methods of ALine

 We implement the new functionality defined by
StrokedLine

 Is the derived class more or less general/abstract?

public class AStrokedLine extends ALine implements StrokedLine {
 protected BasicStroke stroke; @Override
 public double getStrokeWidth() {…}
 …
}

Worked Example

Copyright (C) 2017 Alex Blate. All Rights Reserved 8

Extending further…

Copyright (C) 2017 Alex Blate. All Rights Reserved 9

 Suppose we would like a line object where the line

thickness is automatically scaled as the line’s length

changes.

 What might this look like?

 Does the interface fundamentally change?

AnAutoScaledStrokedLine

Copyright (C) 2017 Alex Blate. All Rights Reserved 10

public class AnAutoScaledStrokedLine extends AStrokedLine {
 …
 @Override

public void setX(int newX) {
double oldLength = getLength();
super.setX(newX);
updateStrokeWidth(oldLength);

}

 // Assumes dimensions have already been changed
protected double updateStrokeWidth(double oldLength) {

double currentLength = getLength();
double newStrokeWidth =
 computeNewStrokeWidth(oldLength, currentLength);
setStrokeWidth(newStrokeWidth);
return getStrokeWidth();

}
…

}

Method overriding

Copyright (C) 2017 Alex Blate. All Rights Reserved 11

 We implement the behavior of
AnAutoScaledStrokedLine by overriding the

setters for the x, y, width, and height properties.

 So a call to setX() on an object of type

AnAutoScaledStrokedLine will invoke our new

code and change the line thickness.

 Question: Did I have to override the base class’s

constructor?

Worked Example

Copyright (C) 2017 Alex Blate. All Rights Reserved 12

NB: getLength() was made public solely for the convenience of being able

to display the length in ObjectEditor. Per Dr. Dewan’s conventions, I made it part
of a new interface HasLength. If I weren’t using ObjectEditor, this method

would be protected.

Q&A

Copyright (C) 2017 Alex Blate. All Rights Reserved 13

 What happens if we omit super in the new setters?

 What happens if we omit the code at POI #1 in
computeNewStrokeWidth():

 Why is this here?

 How else might we address this issue?

 Why might I have chosen to do it this particular way?

 Bonus: is there a way that the author of Aline could

have prevented me from overriding the setters?

if (getStroke() == null) {
 return 1.0;
}

