
COMP 401 – Fall 2017 

Recitation 6: Inheritance 



Agenda 
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 Brief Review of Inheritance 

 Examples of extending existing classes 

 Exercises and Quiz 

 



High-level 

Copyright (C) 2017 Alex Blate. All Rights Reserved 3 

 Classes are Abstract Data Types 

 We can define a set of operations, properties, and 

semantics via an Interface 

 Why?  

 How? 

 One or more classes may then implement a 

particular Interface 

 Interfaces can be extended to define additional 

operations  

 Does extending an interface make it more or less 

general/specific? 



Interface Inheritance 
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 Consider the Line example from the last recitation: 

 

 

 

 

 

 

 Defines properties….? Semantics…? 

 Suppose we would like to be able to control the 

thickness of the line. What might this look like? 

 

public interface Line { 
    public int getX(); 
    public void setX(int newX); 
    public int getY(); 
    public void setY(int newY); 
    public int getWidth(); 
    public void setWidth(int newVal); 
    public int getHeight() ; 
    public void setHeight(int newVal); 
} 
 



StrokedLine 
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 So let’s add operations to change the “Stroke” width: 

public interface StrokedLine extends Line { 
 
 double getStrokeWidth(); 
 void changeStrokeWidth(double width); 
 Stroke getStroke(); 
 
} 



Interface vs. Implementation 
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 Recall that an Interface only defines a set of 

methods (and possibly constants) 

 To actualize an Interface we must create a concrete 

implementation.  

 In our example, we created: 

 

 

 How can/should we implement our StrokedLine? 

 

 

public class ALine implements Line {…} 



AStrokedLine 
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 We will derive our StrokedLine implementation 

from our existing Aline implementation: 

 

 

 

 

 We inherit all of the data and methods of ALine  

 We implement the new functionality defined by 
StrokedLine 

 Is the derived class more or less general/abstract? 

public class AStrokedLine extends ALine implements StrokedLine { 
 protected BasicStroke stroke;  @Override 
 public double getStrokeWidth() {…} 
 … 
} 



Worked Example 
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Extending further… 
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 Suppose we would like a line object where the line 

thickness is automatically scaled as the line’s length 

changes. 

 

 What might this look like? 

 Does the interface fundamentally change? 

 



AnAutoScaledStrokedLine 
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public class AnAutoScaledStrokedLine extends AStrokedLine { 
    … 
    @Override 

public void setX(int newX) { 
double oldLength = getLength(); 
super.setX(newX); 
updateStrokeWidth(oldLength); 

}  
 

    // Assumes dimensions have already been changed 
protected double updateStrokeWidth(double oldLength) { 

 
double currentLength = getLength(); 
double newStrokeWidth =  
 computeNewStrokeWidth(oldLength, currentLength); 
setStrokeWidth(newStrokeWidth); 
return getStrokeWidth(); 

} 
… 

} 



Method overriding 
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 We implement the behavior of 
AnAutoScaledStrokedLine by overriding the 

setters for the x, y, width, and height properties. 

 

 So a call to setX() on an object of type 

AnAutoScaledStrokedLine will invoke our new 

code and change the line thickness. 

 

 Question: Did I have to override the base class’s 

constructor? 



Worked Example 
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NB: getLength() was made public solely for the convenience of being able 

to display the length in ObjectEditor. Per Dr. Dewan’s conventions, I made it part 
of a new interface HasLength. If I weren’t using ObjectEditor, this method 

would be protected. 



Q&A 
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 What happens if we omit super in the new setters? 

 What happens if we omit the code at POI #1 in 
computeNewStrokeWidth(): 

 

 

 

 Why is this here?  

 How else might  we address this issue? 

 Why might I have chosen to do it this particular way? 

 Bonus: is there a way that the author of Aline could 

have prevented me from overriding the setters? 

 

if (getStroke() == null) { 
 return 1.0; 
}  


