
COMP 401 – Fall 2017

Recitation 6: Inheritance

Agenda

Copyright (C) 2017 Alex Blate. All Rights Reserved 2

 Brief Review of Inheritance

 Examples of extending existing classes

 Exercises and Quiz

High-level

Copyright (C) 2017 Alex Blate. All Rights Reserved 3

 Classes are Abstract Data Types

 We can define a set of operations, properties, and

semantics via an Interface

 Why?

 How?

 One or more classes may then implement a

particular Interface

 Interfaces can be extended to define additional

operations

 Does extending an interface make it more or less

general/specific?

Interface Inheritance

Copyright (C) 2017 Alex Blate. All Rights Reserved 4

 Consider the Line example from the last recitation:

 Defines properties….? Semantics…?

 Suppose we would like to be able to control the

thickness of the line. What might this look like?

public interface Line {
 public int getX();
 public void setX(int newX);
 public int getY();
 public void setY(int newY);
 public int getWidth();
 public void setWidth(int newVal);
 public int getHeight() ;
 public void setHeight(int newVal);
}

StrokedLine

Copyright (C) 2017 Alex Blate. All Rights Reserved 5

 So let’s add operations to change the “Stroke” width:

public interface StrokedLine extends Line {

 double getStrokeWidth();
 void changeStrokeWidth(double width);
 Stroke getStroke();

}

Interface vs. Implementation

Copyright (C) 2017 Alex Blate. All Rights Reserved 6

 Recall that an Interface only defines a set of

methods (and possibly constants)

 To actualize an Interface we must create a concrete

implementation.

 In our example, we created:

 How can/should we implement our StrokedLine?

public class ALine implements Line {…}

AStrokedLine

Copyright (C) 2017 Alex Blate. All Rights Reserved 7

 We will derive our StrokedLine implementation

from our existing Aline implementation:

 We inherit all of the data and methods of ALine

 We implement the new functionality defined by
StrokedLine

 Is the derived class more or less general/abstract?

public class AStrokedLine extends ALine implements StrokedLine {
 protected BasicStroke stroke; @Override
 public double getStrokeWidth() {…}
 …
}

Worked Example

Copyright (C) 2017 Alex Blate. All Rights Reserved 8

Extending further…

Copyright (C) 2017 Alex Blate. All Rights Reserved 9

 Suppose we would like a line object where the line

thickness is automatically scaled as the line’s length

changes.

 What might this look like?

 Does the interface fundamentally change?

AnAutoScaledStrokedLine

Copyright (C) 2017 Alex Blate. All Rights Reserved 10

public class AnAutoScaledStrokedLine extends AStrokedLine {
 …
 @Override

public void setX(int newX) {
double oldLength = getLength();
super.setX(newX);
updateStrokeWidth(oldLength);

}

 // Assumes dimensions have already been changed
protected double updateStrokeWidth(double oldLength) {

double currentLength = getLength();
double newStrokeWidth =
 computeNewStrokeWidth(oldLength, currentLength);
setStrokeWidth(newStrokeWidth);
return getStrokeWidth();

}
…

}

Method overriding

Copyright (C) 2017 Alex Blate. All Rights Reserved 11

 We implement the behavior of
AnAutoScaledStrokedLine by overriding the

setters for the x, y, width, and height properties.

 So a call to setX() on an object of type

AnAutoScaledStrokedLine will invoke our new

code and change the line thickness.

 Question: Did I have to override the base class’s

constructor?

Worked Example

Copyright (C) 2017 Alex Blate. All Rights Reserved 12

NB: getLength() was made public solely for the convenience of being able

to display the length in ObjectEditor. Per Dr. Dewan’s conventions, I made it part
of a new interface HasLength. If I weren’t using ObjectEditor, this method

would be protected.

Q&A

Copyright (C) 2017 Alex Blate. All Rights Reserved 13

 What happens if we omit super in the new setters?

 What happens if we omit the code at POI #1 in
computeNewStrokeWidth():

 Why is this here?

 How else might we address this issue?

 Why might I have chosen to do it this particular way?

 Bonus: is there a way that the author of Aline could

have prevented me from overriding the setters?

if (getStroke() == null) {
 return 1.0;
}

