
COMP 401 – Fall 2017

Recitation 7: Factories and Lists

Agenda

Copyright (C) 2017 Alex Blate. All Rights Reserved 2

 High-level introduction to Factories

 Factory Example/Exercise

 Introduction to Lists

 List Performance Exercise

 Quiz

Recitation Source Code

Copyright (C) 2017 Alex Blate. All Rights Reserved 3

 Please download and import the project of:

 recitation7_source_project.zip

 You should see the following source files:
COMP401F17_Recitation7/src/recitations/recitation7/ALine.java

COMP401F17_Recitation7/src/recitations/recitation7/InstanceGenerator.java

COMP401F17_Recitation7/src/recitations/recitation7/Line.java

COMP401F17_Recitation7/src/recitations/recitation7/ListOfLinesDemo.java

COMP401F17_Recitation7/src/recitations/recitation7/ListPerformanceDemo.java

COMP401F17_Recitation7/src/recitations/recitation7/RandomUtils.java

COMP401F17_Recitation7/src/recitations/recitation7/Timer.java

For instance

Copyright (C) 2017 Alex Blate. All Rights Reserved 4

 I want an instance of an object of type Foo (or

something implementing Foo)

 Our current method: Instantiate some concrete
implementation of a Foo using a constructor, e.g.:

 Foo foo = new FooImpl(…);

 This requires:

 Knowing one or more specific implementations for Foo

 Knowing the semantics for their constructors

 “Locking in” our choice of implementation

 In many cases, one or more of these is undesirable.

Factory Pattern

Copyright (C) 2017 Alex Blate. All Rights Reserved 5

 Suppose we have want an instance of some Interface,
class, or derived class of type Foo

 In the Factory Pattern, we are provided (or build) a
“factory” for Foos, say FooFactory, which provides one
or more (usually, but not always) static methods that
return instances of Foo.

 NB: see also the Builder pattern which similar to but not the
same as Factory

 In this example, FooFactory might contain methods:

 FooFactory.getInstance()

 FooFactory.getInstance(int initialCapacity)

 etc.

 In some cases, it may not be possible to directly
instantiate object returned – the Factory is the only
means of obtaining an instance.

Example/Exercise

Copyright (C) 2017 Alex Blate. All Rights Reserved 6

 Have a look at InstanceGenerator

 Is it a Factory?

 For what data types is it a Factory?

 What method(s) comprise its Factory “interface”

 What concrete List implementation is returned by

getListInstance()?

 Run ListOfLinesDemo (opens a List of Lines in

OE)

 What do you see?

 Try fiddling with the code

Aside: RandomUtils

Copyright (C) 2017 Alex Blate. All Rights Reserved 7

 After building the factory, I decided to factor out the

methods that assist in generating random lines

 This content is in class RandomUtils

 Note the instantiation of static member rng, around line

21:

 public static Random rng =

 new Random(System.currentTimeMillis());

 What does the argument to the constructor do? (see also

the comments above the declaration)

 Are there cases where I might want to do something else

here?

Collections

Copyright (C) 2017 Alex Blate. All Rights Reserved 8

 I recommend that you spend a bit of time studying

the Java Collections Framework (JCF):
https://docs.oracle.com/javase/7/docs/technotes/guides/collections/index.html

 Aside from containing almost every basic data

structure you will need for general tasks, I think it is a

good example of a well-designed class-interface

hierarchy and a good exposition of Generics

https://docs.oracle.com/javase/7/docs/technotes/guides/collections/index.html
https://docs.oracle.com/javase/7/docs/technotes/guides/collections/index.html

Generics (very brief intro)

Copyright (C) 2017 Alex Blate. All Rights Reserved 9

 Java 1.5 introduced Generics, which provide a

degree of polymorphism

 Idea: I want to write a class or a method that

operates on objects, but the implementation doesn’t

really care what specific objects they are.

 You could do this by simply operating on instances of
Object; that’s how we did things for a long time.

 However, I would like to take advantage of strong

type-checking at compile time and avoid the

proliferation of type-casting

Generics (brief intro, continued)

Copyright (C) 2017 Alex Blate. All Rights Reserved 10

 Semantically, I want to declare that my class or

method operates on some type T, but I don’t care

what the actual type of T is.

 Semi-trivial example:
public <T> T getArrayElement(T[] array, int index) {

if(index >= 0 && index < array.length) {

 return array[index];

} else {

 return null;

}

 By the way, what does this do?

Lists

Copyright (C) 2017 Alex Blate. All Rights Reserved 11

 A good definition of the semantics of a list is given in the
JavaDoc for the List interface:

 “An ordered collection (also known as a sequence). The user of

this interface has precise control over where in the list each

element is inserted. The user can access elements by their

integer index (position in the list), and search for elements in

the list.”
 Source: https://docs.oracle.com/javase/7/docs/api/java/util/List.html

 There are many concrete implementations of List,

several of which are included in the Standard Platform

Libraries; the most commonly-used of these are:

 ArrayList

 LinkedList

https://docs.oracle.com/javase/7/docs/api/java/util/List.html
https://docs.oracle.com/javase/7/docs/api/java/util/List.html
https://docs.oracle.com/javase/7/docs/api/java/util/List.html

ArrayList

Copyright (C) 2017 Alex Blate. All Rights Reserved 12

 The ordered sequence is stored in an array. Said another

way, the backing store for the sequence is an array.

 The array is dynamically resized as elements are added

(and possibly removed)

 ArrayList provides constant-time random access to

elements by index (as you would expect) and

(essentially) constant-time insertion at and removal from

the end of the list.

 (Roughly) Linear-time insertion and removal at arbitrary

points in the list.

 ArrayList has a constructor that allows you to specify

its initial capacity… why might this be helpful?

Linked Lists

Copyright (C) 2017 Alex Blate. All Rights Reserved 13

 The ordered sequence is stored in a “chain” of
objects called nodes.

 Each node has a reference to the next (and possibly)
previous node, allowing sequential traversal

 Graphical Example:

 This is basically a degenerate digraph.

https://goo.gl/images/m8vBpC

Linked Lists (continued)

Copyright (C) 2017 Alex Blate. All Rights Reserved 14

 Constant-time insertion and removal at the head and

(usually) the tail of the list.

 An efficient way to implement (de)queues, stacks,

and other fun data structures where operations occur

at the ends of the list.

 Using a List Iterator, or equivalent, constant-time

insertion and removal at arbitrary locations in the list

 Linear time access to elements by index

 Node objects must be allocated (and reaped) for

each element added (or removed)

Lists

Copyright (C) 2017 Alex Blate. All Rights Reserved 15

 I have alluded to performance differences between

two list implementations.

 Consider the following operations:

 Adding N elements to a list

 Removing the first element of a list N times

 How do we think the performance of these

operations will (or won’t) differ when applied to
ArrayList and LinkedList?

List Performance Example/Exercise

Copyright (C) 2017 Alex Blate. All Rights Reserved 16

 Open up and run ListPerformanceDemo

 Try running it for different values of
TEST_SIZE_LINES

 Think about the relationship between the list size and the

time taken for each operation

 Hint: Read through the rest of the source code and

maybe play with the several methods towards the

end (this may help on the quiz )

 Exercise: Modify method runPerformanceTestForList

such that it also prints the operation rate (operations

per unit time) and time per operation for each test.

