
COMP 401 – Recitation 8

Observer Pattern

Agenda

 Quick review of the Observer pattern

 Worked example

 Exam review (~30 minutes)

 Quiz (on your own time)

Copyright (C) 2017 Alex Blate. All Rights Reserved 2

Observer Pattern – Problem Statement

Copyright (C) 2017 Alex Blate. All Rights Reserved 3

 I have some object A whose state (properties)

changes from time to time.

 I have some other objects {B} which care about the

state of A and may wish to take actions when A

changes state, e.g.:

 Update some user interface element

 Record the change event

 Notify some other component about the change

 Etc.

Observer pattern -- Abstraction

Copyright (C) 2017 Alex Blate. All Rights Reserved 4

 The Observed object (a.k.a.
“Subject”) implements some
interface (or extends some
class) allowing other classes to
“register” their desire to receive
events from the Observed class

 The Observing objects
(Observers) implement a call-
back and register themselves
with the Observed object

 At runtime, the Observed object
will notify the Observers of state
changes or other events

Observed

(“Subject”)

Observers

Register/

Listen

Update/

Notify

State Change

Same pattern, different nouns and verbs

Copyright (C) 2017 Alex Blate. All Rights Reserved 5

 In Java:

 Observer/Observable

 PropertyChangeListener/firePropertyChange

 Action/ActionListener

 Other eventing interfaces

 In web applications

 Subscribe/Notify pattern

 (related) Publish/Subscribe/Notify

 Most user interface SDKs use a similar model

Callbacks

Copyright (C) 2017 Alex Blate. All Rights Reserved 6

 A callback, in general, is a method in one object that
is registered with and invoked by some other
object(s)

 In the present context, these are generally of the
form of update(…), onXXXAction(…),
propertyChange(…), etc.

 The callback is passed one or more parameters
informing it of, e.g.:
 The source of the event

 Metadata about the event, e.g.:

 The type of event

 Values related to the event (e.g., old value/new value, which key
was pressed, etc.)

Copyright (C) 2017 Alex Blate. All Rights Reserved 7

Example (from the exercise)
public interface Listenable {

 public void addPropertyChangeListener(PropertyChangeListener listener);

 public void removePropertyChangeListener(PropertyChangeListener listener);

}

public class AnObservableStrokedLine extends AStrokedLine implements Listenable {

 protected PropertyChangeSupportpropertyListenerSupport;
 @Override

 public void addPropertyChangeListener(PropertyChangeListener listener) {

 propertyListenerSupport.addPropertyChangeListener(listener);

 } @Override

 public void setX(int newX) {

 int old = getX();

 super.setX(newX);

 if (null != propertyListenerSupport) {

 propertyListenerSupport.

 firePropertyChange(PROPERTY_X, old, getX());

 }

}

//Elsewhere…

someLine.addPropertyChangeListener(this);

Copyright (C) 2017 Alex Blate. All Rights Reserved 8

Another Example (from the exercise)
//In some code…
JButton leftButton = new JButton("Left");
leftButton.addActionListener(
 new LineMoverAction(line, MoveDirection.LEFT, MOVE_INCR));

public class LineMoverAction implements ActionListener {

protected Line line, MoveDirection direction, int increment;

public LineMoverAction(Line line, MoveDirection direction, int increment) {}

@Override
public void actionPerformed(ActionEvent e) {

switch (direction) {

case LEFT:
line.setX(line.getX()-increment);
break;
case RIGHT:
line.setX(line.getX()+increment);
break;
….

 }
}

}

Exercise

Copyright (C) 2017 Alex Blate. All Rights Reserved 9

 Run Driver.java; the main application code is in
AppDemo1.java

 OE shows two lines, but nothing else happens. The buttons don’t do
anything either. Hmmph.

 Find POI #1 and #2 around line 49 of AppDemo1.java and swap
the comments so that we use AnObservableStrokedLine.

 What happens?

 Find POI #8 around line 67 (idem) and uncomment the subsequent
line.

 What do happens now?

 Try adding buttons to do other things, e.g.:
 Move the line up and down

 Move line2

 Check out LineMoverAction.actionPerformed() (line 30)
 Print the output from some of the getters on the ActionEvent passed to

this callback.

 Could we figure out whether the event was generated by a mouse click of
the button or a keyboard event (space) on the button?

