COMP 401 — Recitation 8

Observer Pattern




Agenda

» Quick review of the Observer pattern
» Worked example

» Exam review (~30 minutes)
» Quiz (on your own time)

2 Copyright (C) 2017 Alex Blate. All Rights Reserved



Observer Pattern — Problem Statement

» | have some object A whose state (properties)

changes from time to time.

» | have some other objects {B} which care about the
state of A and may wish to take actions when A
changes state, e.g.:

Update some user interface element

Record the change event

Notify some other component about the change
Etc.

3 Copyright (C) 2017 Alex Blate. All Rights Reserved



Observer pattern -- Abstraction

4

The Observed object (a.k.a. /State Change ™

“Subject”) implements some
Interface (or extends some Observed
class) allowing other classes to (“Subject’)
“register” their desire to receive
events from the Observed class

Update/

The Observing objects Register/ Notify
(Observers) implement a call-  Listen

back and register themselves

with the Observed object

At runtime, the Observed object
will notify the Observers of state

Observers
changes or other events

Copyright (C) 2017 Alex Blate. All Rights Reserved




Same pattern, different nouns and verbs

» In Java:
Observer/Observable

PropertyChangelListener/firePropertyChange

Action/ActionlListener

Other eventing interfaces

» In web applications
Subscribe/Notify pattern
(related) Publish/Subscribe/Notify

» Most user interface SDKs use a similar model

5 Copyright (C) 2017 Alex Blate. All Rights Reserved



Callbacks

» A callback, in general, is a method in one object that
IS registered with and invoked by some other
object(s)

» In the present context, these are generally of the
form of update(..), onXXXAction(..),
propertyChange (..), etC.

» The callback is passed one or more parameters
Informing it of, e.g.:
The source of the event

Metadata about the event, e.g.:
The type of event

Values related to the event (e.g., old value/new value, which key
was pressed, etc.)

6 Copyright (C) 2017 Alex Blate. All Rights Reserved



Example (from the exercise)

public interface Listenable {
public void| addPropertyChangeListener(PropertyChangeListener listener);
public void removePropertyChangeListener(PropertyChangeListener listener);

}

public class AnObservableStrokedLine extends AStrokedLine |[implements Listenable|{

protected PropertyChangeSupportpropertyListenerSupport;

@Override

public void addPropertyChangelListener(PropertyChangeListener listener) {
propertylListenerSupport.addPropertyChangelListener(listener);
} @Override

public void setX(int newX) {
int old = getX();
super.setX(newX);
if (null != propertyListenerSupport) {

propertylListenerSupport.
firePropertyChange(PROPERTY X, old, getX());

}
//Elsewhere..

somelLine.addPropertyChangelListener(this);

7 Copyright (C) 2017 Alex Blate. All Rights Reserved



Another Example (from the exercise)

//In some code..

JButton leftButton = new JButton("Left");

leftButtor.addActionListener(
new LineMoverAction(line, MoveDirection.LEFT, MOVE_INCR));

public class LineMoverAction| implements ActionListener |{

protected Line line, MoveDirection direction, int increment;

public LineMoverAction(Line line, MoveDirection direction, int increment) {}

@Override
public void actionPerformed(ActionEvent e) {

switch (direction) {
case LEFT:
line.setX(line.getX()-increment);
break;
case RIGHT:
line.setX(line.getX()+increment);
break;

ece @

8 Copyright (C) 2017 Alex Blate. All Rights Reserved



Exercise

4

Run Driver. java; the main application code is in
AppDemol. java

OE shows two lines, but nothing else happens. The buttons don’t do
anything either. Hmmph.

Find POI #1 and #2 around line 49 of AppDemol . java and swap
the comments so that we use AnObservableStrokedLine.

What happens?

Find POI #8 around line 67 (idem) and uncomment the subsequent
line.

What do happens now?

Try adding buttons to do other things, e.qg.:
Move the line up and down
Move 1ine?2
Check out LineMoveraAction.actionPerformed () (Iine 30)

Print the output from some of the getters on the ActionEvent passed to
this callback.

Could we figure out whether the event was generated by a mouse click of
the button or a keyboard event (space) on the button?

Copyright (C) 2017 Alex Blate. All Rights Reserved



