
COMP 401 – Recitation 8

Observer Pattern

Agenda

 Quick review of the Observer pattern

 Worked example

 Exam review (~30 minutes)

 Quiz (on your own time)

Copyright (C) 2017 Alex Blate. All Rights Reserved 2

Observer Pattern – Problem Statement

Copyright (C) 2017 Alex Blate. All Rights Reserved 3

 I have some object A whose state (properties)

changes from time to time.

 I have some other objects {B} which care about the

state of A and may wish to take actions when A

changes state, e.g.:

 Update some user interface element

 Record the change event

 Notify some other component about the change

 Etc.

Observer pattern -- Abstraction

Copyright (C) 2017 Alex Blate. All Rights Reserved 4

 The Observed object (a.k.a.
“Subject”) implements some
interface (or extends some
class) allowing other classes to
“register” their desire to receive
events from the Observed class

 The Observing objects
(Observers) implement a call-
back and register themselves
with the Observed object

 At runtime, the Observed object
will notify the Observers of state
changes or other events

Observed

(“Subject”)

Observers

Register/

Listen

Update/

Notify

State Change

Same pattern, different nouns and verbs

Copyright (C) 2017 Alex Blate. All Rights Reserved 5

 In Java:

 Observer/Observable

 PropertyChangeListener/firePropertyChange

 Action/ActionListener

 Other eventing interfaces

 In web applications

 Subscribe/Notify pattern

 (related) Publish/Subscribe/Notify

 Most user interface SDKs use a similar model

Callbacks

Copyright (C) 2017 Alex Blate. All Rights Reserved 6

 A callback, in general, is a method in one object that
is registered with and invoked by some other
object(s)

 In the present context, these are generally of the
form of update(…), onXXXAction(…),
propertyChange(…), etc.

 The callback is passed one or more parameters
informing it of, e.g.:
 The source of the event

 Metadata about the event, e.g.:

 The type of event

 Values related to the event (e.g., old value/new value, which key
was pressed, etc.)

Copyright (C) 2017 Alex Blate. All Rights Reserved 7

Example (from the exercise)
public interface Listenable {

 public void addPropertyChangeListener(PropertyChangeListener listener);

 public void removePropertyChangeListener(PropertyChangeListener listener);

}

public class AnObservableStrokedLine extends AStrokedLine implements Listenable {

 protected PropertyChangeSupportpropertyListenerSupport;
 @Override

 public void addPropertyChangeListener(PropertyChangeListener listener) {

 propertyListenerSupport.addPropertyChangeListener(listener);

 } @Override

 public void setX(int newX) {

 int old = getX();

 super.setX(newX);

 if (null != propertyListenerSupport) {

 propertyListenerSupport.

 firePropertyChange(PROPERTY_X, old, getX());

 }

}

//Elsewhere…

someLine.addPropertyChangeListener(this);

Copyright (C) 2017 Alex Blate. All Rights Reserved 8

Another Example (from the exercise)
//In some code…
JButton leftButton = new JButton("Left");
leftButton.addActionListener(
 new LineMoverAction(line, MoveDirection.LEFT, MOVE_INCR));

public class LineMoverAction implements ActionListener {

protected Line line, MoveDirection direction, int increment;

public LineMoverAction(Line line, MoveDirection direction, int increment) {}

@Override
public void actionPerformed(ActionEvent e) {

switch (direction) {

case LEFT:
line.setX(line.getX()-increment);
break;
case RIGHT:
line.setX(line.getX()+increment);
break;
….

 }
}

}

Exercise

Copyright (C) 2017 Alex Blate. All Rights Reserved 9

 Run Driver.java; the main application code is in
AppDemo1.java

 OE shows two lines, but nothing else happens. The buttons don’t do
anything either. Hmmph.

 Find POI #1 and #2 around line 49 of AppDemo1.java and swap
the comments so that we use AnObservableStrokedLine.

 What happens?

 Find POI #8 around line 67 (idem) and uncomment the subsequent
line.

 What do happens now?

 Try adding buttons to do other things, e.g.:
 Move the line up and down

 Move line2

 Check out LineMoverAction.actionPerformed() (line 30)
 Print the output from some of the getters on the ActionEvent passed to

this callback.

 Could we figure out whether the event was generated by a mouse click of
the button or a keyboard event (space) on the button?

