
COMP 401 Fall 2017 

Recitation 10: Assertions 



Assertions 

Copyright (C) 2017 Alex Blate. All Rights Reserved. 2 

 Executable, runtime checks of program state 

 Semantics: “Assert (Condition): <Message>” 

 Evaluate Condition  boolean 

 If  !Condition, generate an Error (halt the program) 

 If Message is set, include Message in the error thusly generated 

 NOT part of program logic: 

 If an assertion fails, the program halts (logically, no recovery) 

 Does not obviate the need for other validation logic – specifically, 
the assertions, among other things, help us verify that such 
validation is correct. 

 Motivations: 

 Ensuring program correctness, safety 

 Debugging/validation 

 Self-documentation 



Requisite and Desirable Properties 

Copyright (C) 2017 Alex Blate. All Rights Reserved. 3 

 Program correctness must not depend on 

assertions being enabled! 

 The predicate asserted (Condition) must be executable 

 The predicate is a statement that evaluates to a 

boolean value, e.g., 

 0 <= j && j < array.length 

 null != arg1 || this.list.size() > 0 

 withdrawlAmount > 0 &&  

  balance-withdrawlAmount >= MIN_BALANCE 

 Compact syntax – clear and brief, minimal clutter 

 Conditionally-evaluated, e.g., based on runtime settings 



Assertions in Java 

Copyright (C) 2017 Alex Blate. All Rights Reserved. 4 

 Added to the language in Java 1.4 

 Enabled by JVM option “-ea” or “-ea <package>”; 
disabled with “-da” or “-da <package>” 

 Syntax: 
assert condition; 

assert condition : message; 

 Where: 
 condition is a boolean expression 

 message is a String expression 

 Java semantics: if assertions are enabled and an 
assertion is executed with a predicate that evaluates to 
false, an AssertionError is thrown. If message is set, 
the exception’s message includes message. 



AssertionDemo 

Copyright (C) 2017 Alex Blate. All Rights Reserved. 5 



class BankAccount 

Copyright (C) 2017 Alex Blate. All Rights Reserved. 6 



Brief introduction to Pre/Postconditions 

Copyright (C) 2017 Alex Blate. All Rights Reserved. 7 

 Preconditions and postconditions are predicates (boolean 
expressions) 

 As defined by Tony Hoare in the 1970’s, for program state S, and 
code C, and pre/postconditions Pre(S) and Post(S) consider: 
 
 Pre(S) 
 Evaluate(C) 
 Post(S) 
 

 We can say (loosely) that C is “correct” if and only if  
 Pre(S), Evaluate(C)  Post(S) 

 I.e, if Pre(S) is true and we run the code C, then Post(S) will be true 
after running C 

 E.g. (pseudocode); assume some number x 

 y  0 

 Pre(x) : x >= 0 

 //Code 
 y  sqrt(x) 

 Post(x) : y >= 0 &&  ( y * y == x) 



Pre/Postconditions continued 

Copyright (C) 2017 Alex Blate. All Rights Reserved. 8 

 Pre/Postconditions are often used to define the 

behavior of functions/methods 

 These are often stated in the program 

documentation (e.g., JavaDoc) and, in practice, may 

or may not be checked at runtime 

 We can interpret these as a contract whereby if the 

precondition is true when the method is called, then 

the postcondition will be true when the method 

returns 

 If the precondition is not true, the method’s behavior may 

or may not be well-defined and/or the method may 

generate an error or throw an exception. 



Invariants 

Copyright (C) 2017 Alex Blate. All Rights Reserved. 9 

 An invariant is a predicate that is always true before and 
after the execution of some code. 

 A “class invariant” is a predicate that is always true 
before and after each method invocation on a class 

 The invariant may be false (transiently) during method 
invocation, e.g., as the internal state of the class changes 

 Ideally, the invariant will remain true even in the face of error 
conditions 

 We can think of a class invariant as an implicit 
precondition and postcondition of all methods exposed by 
the class.  

 There is also a notion of a “loop invariant” which is not 
explicitly covered in this course but which I strongly 
encourage you to read about. 



Implementation of Predicates 

Copyright (C) 2017 Alex Blate. All Rights Reserved. 10 

 The full predicates of pre/postconditions and invariants may or 
may not be “implemented” as executable code 
 Often, important parts are executed as part of the program logic, 

e.g., to validate inputs 

 Many predicates would be computationally-expensive to verify at 
runtime (think about checking universal or existential quantification 
over a large collection) 

 It may be useful to implement parts or all of some predicates 
as assertions to help with: 
 Documenting formal correctness of code 

 Debugging and/or testing  

 Whether or not such predicates are implemented, it is helpful 
and recommended that they be written down in non-trivial 
situations (e.g., as comments or JavaDoc) 
 Writing down the predicates makes you think more carefully about 

what your code is trying to do 

 Future users and maintainers of your code, including you, will 
benefit from having the documentation. 



Terminology and thinking about predicates 

Copyright (C) 2017 Alex Blate. All Rights Reserved. 11 

 Consider predicates P(x) and Q(x) where x is in the 
domain X of possible inputs to P and Q. 

 Consider the sets  
 XP = { x  X : P(x) }  
 XQ = { x  X : Q(x) } 

 We say that a predicate P is stronger than Q if and only if 
XP  XQ, i.e., the set of conditions under which P holds is 
strictly a subset of those where Q holds. This could also 
be stated as, “there exists some element x’  XQ s.t. 
P(x’)=false  

 If P is stronger than Q, then Q is weaker than P. 

 What is the strongest possible predicate? 

 What is the weakest possible predicate? 

 What if XP  XQ and XQ  XP  (consider  
 P(x) = (x % 2 == 0) and Q(x) = (x % 2 == 1) ) 



Thinking about predicates 

Copyright (C) 2017 Alex Blate. All Rights Reserved. 12 

 Disjunction (OR) 

 Consider predicates P(x) = A(x) and Q(x) = A(x) || B(x) 

 In general, what can we say about the strength of P and 

Q? 

 Conjunction (AND) 

 Consider predicates P(x) = A(x) and R(x) = A(x) && B(x) 

 In general, what can we say about the strength of P and 

R? 



Strength of Pre and Postconditions 

Copyright (C) 2017 Alex Blate. All Rights Reserved. 13 

 Do we want strong or weak preconditions? 

 Do we want strong or weak postconditions? 

 

 In general, we would like to write the weakest 

precondition that implies the strongest postcondition  

 

 If we think about invariants as being implicit pre and 

postconditions, then we want the weakest possible 

invariant that implies the strongest possible 

invariant… this leads to a predicate that is a 

necessary and sufficient condition  

 



Threads 

A very brief introduction 

Copyright (C) 2017 Alex Blate. All Rights 

Reserved. 
14 



Very High-Level 

Copyright (C) 2017 Alex Blate. All Rights Reserved. 15 

 A thread is a context (stack and program counter) 

within a program executing some sequential code 

 A program may comprise multiple threads that run 

asynchronously with respect to one another – 

multiple “threads” of execution within the program 

 Threads logically run concurrently with their 

instructions interleaved arbitrarily 

 In Java, every program has at least one thread  

 Almost every application you use on your computer 

or mobile device is multi-threaded. 

 



High Level – Think-abouts 

Copyright (C) 2017 Alex Blate. All Rights Reserved. 16 

 Why would we want multiple, asynchronous, 

concurrent execution contexts within our program? 

 

 What sorts of design practices and patterns might 

this enable or enhance? 

 

 Could multi-threading (potentially) lead to hazards? 

   YES 
 Will we be discussing all of these hazards? NO. Caveat 

emptor (and take the Operating Systems class!) 



Threads in Java 

Copyright (C) 2017 Alex Blate. All Rights Reserved. 17 

 java.lang.Thread is the base implementation of all 

threads in Java 

 Among other idioms, you can execute your code under a 

separate thread by: 

 Extending Thread (and generally overriding run()) 

 Or creating a (regular or anonymous) class that implements 
Runnable 

 Implementing Runnable is typically preferred. (Why?) 

 Given a Runnable r, you create and run a thread by: 

 Thread t = new Thread(r); 

 //Later on… 

 t.start(); 

 



PrinterThread/ThreadDemo 

Copyright (C) 2017 Alex Blate. All Rights Reserved. 18 


