
COMP 401 Fall 2017

Recitation 10: Assertions

Assertions

Copyright (C) 2017 Alex Blate. All Rights Reserved. 2

 Executable, runtime checks of program state

 Semantics: “Assert (Condition): <Message>”

 Evaluate Condition  boolean

 If !Condition, generate an Error (halt the program)

 If Message is set, include Message in the error thusly generated

 NOT part of program logic:

 If an assertion fails, the program halts (logically, no recovery)

 Does not obviate the need for other validation logic – specifically,
the assertions, among other things, help us verify that such
validation is correct.

 Motivations:

 Ensuring program correctness, safety

 Debugging/validation

 Self-documentation

Requisite and Desirable Properties

Copyright (C) 2017 Alex Blate. All Rights Reserved. 3

 Program correctness must not depend on

assertions being enabled!

 The predicate asserted (Condition) must be executable

 The predicate is a statement that evaluates to a

boolean value, e.g.,

 0 <= j && j < array.length

 null != arg1 || this.list.size() > 0

 withdrawlAmount > 0 &&

 balance-withdrawlAmount >= MIN_BALANCE

 Compact syntax – clear and brief, minimal clutter

 Conditionally-evaluated, e.g., based on runtime settings

Assertions in Java

Copyright (C) 2017 Alex Blate. All Rights Reserved. 4

 Added to the language in Java 1.4

 Enabled by JVM option “-ea” or “-ea <package>”;
disabled with “-da” or “-da <package>”

 Syntax:
assert condition;

assert condition : message;

 Where:
 condition is a boolean expression

 message is a String expression

 Java semantics: if assertions are enabled and an
assertion is executed with a predicate that evaluates to
false, an AssertionError is thrown. If message is set,
the exception’s message includes message.

AssertionDemo

Copyright (C) 2017 Alex Blate. All Rights Reserved. 5

class BankAccount

Copyright (C) 2017 Alex Blate. All Rights Reserved. 6

Brief introduction to Pre/Postconditions

Copyright (C) 2017 Alex Blate. All Rights Reserved. 7

 Preconditions and postconditions are predicates (boolean
expressions)

 As defined by Tony Hoare in the 1970’s, for program state S, and
code C, and pre/postconditions Pre(S) and Post(S) consider:

 Pre(S)
 Evaluate(C)
 Post(S)

 We can say (loosely) that C is “correct” if and only if
 Pre(S), Evaluate(C)  Post(S)

 I.e, if Pre(S) is true and we run the code C, then Post(S) will be true
after running C

 E.g. (pseudocode); assume some number x

 y  0

 Pre(x) : x >= 0

 //Code
 y  sqrt(x)

 Post(x) : y >= 0 && (y * y == x)

Pre/Postconditions continued

Copyright (C) 2017 Alex Blate. All Rights Reserved. 8

 Pre/Postconditions are often used to define the

behavior of functions/methods

 These are often stated in the program

documentation (e.g., JavaDoc) and, in practice, may

or may not be checked at runtime

 We can interpret these as a contract whereby if the

precondition is true when the method is called, then

the postcondition will be true when the method

returns

 If the precondition is not true, the method’s behavior may

or may not be well-defined and/or the method may

generate an error or throw an exception.

Invariants

Copyright (C) 2017 Alex Blate. All Rights Reserved. 9

 An invariant is a predicate that is always true before and
after the execution of some code.

 A “class invariant” is a predicate that is always true
before and after each method invocation on a class

 The invariant may be false (transiently) during method
invocation, e.g., as the internal state of the class changes

 Ideally, the invariant will remain true even in the face of error
conditions

 We can think of a class invariant as an implicit
precondition and postcondition of all methods exposed by
the class.

 There is also a notion of a “loop invariant” which is not
explicitly covered in this course but which I strongly
encourage you to read about.

Implementation of Predicates

Copyright (C) 2017 Alex Blate. All Rights Reserved. 10

 The full predicates of pre/postconditions and invariants may or
may not be “implemented” as executable code
 Often, important parts are executed as part of the program logic,

e.g., to validate inputs

 Many predicates would be computationally-expensive to verify at
runtime (think about checking universal or existential quantification
over a large collection)

 It may be useful to implement parts or all of some predicates
as assertions to help with:
 Documenting formal correctness of code

 Debugging and/or testing

 Whether or not such predicates are implemented, it is helpful
and recommended that they be written down in non-trivial
situations (e.g., as comments or JavaDoc)
 Writing down the predicates makes you think more carefully about

what your code is trying to do

 Future users and maintainers of your code, including you, will
benefit from having the documentation.

Terminology and thinking about predicates

Copyright (C) 2017 Alex Blate. All Rights Reserved. 11

 Consider predicates P(x) and Q(x) where x is in the
domain X of possible inputs to P and Q.

 Consider the sets
 XP = { x  X : P(x) }
 XQ = { x  X : Q(x) }

 We say that a predicate P is stronger than Q if and only if
XP  XQ, i.e., the set of conditions under which P holds is
strictly a subset of those where Q holds. This could also
be stated as, “there exists some element x’  XQ s.t.
P(x’)=false

 If P is stronger than Q, then Q is weaker than P.

 What is the strongest possible predicate?

 What is the weakest possible predicate?

 What if XP  XQ and XQ  XP (consider
 P(x) = (x % 2 == 0) and Q(x) = (x % 2 == 1))

Thinking about predicates

Copyright (C) 2017 Alex Blate. All Rights Reserved. 12

 Disjunction (OR)

 Consider predicates P(x) = A(x) and Q(x) = A(x) || B(x)

 In general, what can we say about the strength of P and

Q?

 Conjunction (AND)

 Consider predicates P(x) = A(x) and R(x) = A(x) && B(x)

 In general, what can we say about the strength of P and

R?

Strength of Pre and Postconditions

Copyright (C) 2017 Alex Blate. All Rights Reserved. 13

 Do we want strong or weak preconditions?

 Do we want strong or weak postconditions?

 In general, we would like to write the weakest

precondition that implies the strongest postcondition

 If we think about invariants as being implicit pre and

postconditions, then we want the weakest possible

invariant that implies the strongest possible

invariant… this leads to a predicate that is a

necessary and sufficient condition

Threads

A very brief introduction

Copyright (C) 2017 Alex Blate. All Rights

Reserved.
14

Very High-Level

Copyright (C) 2017 Alex Blate. All Rights Reserved. 15

 A thread is a context (stack and program counter)

within a program executing some sequential code

 A program may comprise multiple threads that run

asynchronously with respect to one another –

multiple “threads” of execution within the program

 Threads logically run concurrently with their

instructions interleaved arbitrarily

 In Java, every program has at least one thread

 Almost every application you use on your computer

or mobile device is multi-threaded.

High Level – Think-abouts

Copyright (C) 2017 Alex Blate. All Rights Reserved. 16

 Why would we want multiple, asynchronous,

concurrent execution contexts within our program?

 What sorts of design practices and patterns might

this enable or enhance?

 Could multi-threading (potentially) lead to hazards?

 YES
 Will we be discussing all of these hazards? NO. Caveat

emptor (and take the Operating Systems class!)

Threads in Java

Copyright (C) 2017 Alex Blate. All Rights Reserved. 17

 java.lang.Thread is the base implementation of all

threads in Java

 Among other idioms, you can execute your code under a

separate thread by:

 Extending Thread (and generally overriding run())

 Or creating a (regular or anonymous) class that implements
Runnable

 Implementing Runnable is typically preferred. (Why?)

 Given a Runnable r, you create and run a thread by:

 Thread t = new Thread(r);

 //Later on…

 t.start();

PrinterThread/ThreadDemo

Copyright (C) 2017 Alex Blate. All Rights Reserved. 18

