COMP 401 Fall 2017

Recitation 10: Assertions

Assertions

» Executable, runtime checks of program state

» Semantics: “Assert (Condition): <Message>"
Evaluate Condition - boolean
If !Condition, generate an Error (halt the program)

If Message is set, include Message in the error thusly generated
NOT part of program logic:

If an assertion fails, the program halts (logically, no recovery)

Does not obviate the need for other validation logic — specifically,

the assertions, among other things, help us verify that such
validation is correct.

» Motivations:

Ensuring program correctness, safety
Debugging/validation
Self-documentation

2 Copyright (C) 2017 Alex Blate. All Rights Reserved.

Requisite and Desirable Properties

» Program correctness must not depend on
assertions being enabled!

» The predicate asserted (Condition) must be executable

» The predicate is a statement that evaluates to a
boolean value, e.qg.,

0 <= 7 && J < array.length

null !'= argl || this.list.size() > O

withdrawlAmount > 0 &&
balance-withdrawlAmount >= MIN BALANCE

» Compact syntax — clear and brief, minimal clutter
» Conditionally-evaluated, e.g., based on runtime settings

3 Copyright (C) 2017 Alex Blate. All Rights Reserved.

Assertions In Java

» Added to the language in Java 1.4

» Enabled by JVM option “-ea” or “-ea <package>”;
disabled with “*-da” or “-da <package>”

» Syntax:
assert condition;
assert condition : message;

» Where:
condition IS aboolean expression
message IS a String expression
» Java semantics: if assertions are enabled and an
assertion is executed with a predicate that evaluates to

false, an AssertionError is thrown. If message is set,
the exception’s message includes message.

4 Copyright (C) 2017 Alex Blate. All Rights Reserved.

AssertionDemo

Copyright (C) 2017 Alex Blate. All Rights Reserved.

class BankAccount

5) Copyright (C) 2017 Alex Blate. All Rights Reserved.

Brief introduction to Pre/Postconditions

» Preconditions and postconditions are predicates (boolean
expressions)

» As defined by Tony Hoare in the 1970’s, for program state S, and
code C, and pre/postconditions Pre(S) and Post(S) consider:

Pre(S)
Evaluate(C)
Post(S)

» We can say (loosely) that C is “correct” if and only if
Pre(S), Evaluate(C) =2 Post(S)

» l.e, if Pre(S) is true and we run the code C, then Post(S) will be true
after running C

» E.g. (pseudocode); assume some number X
y €0
Pre(x) : x>=0

[ICode
y € sqrt(x)

Post(x) :y>=0&& (y*y==X)

7 Copyright (C) 2017 Alex Blate. All Rights Reserved.

Pre/Postconditions continued

» Pre/Postconditions are often used to define the
behavior of functions/methods

» These are often stated in the program
documentation (e.g., JavaDoc) and, in practice, may
or may not be checked at runtime

» We can interpret these as a contract whereby if the
precondition is true when the method is called, then
the postcondition will be true when the method
returns

If the precondition is not true, the method’s behavior may
or may not be well-defined and/or the method may
generate an error or throw an exception.

8 Copyright (C) 2017 Alex Blate. All Rights Reserved.

Invariants

4

An invariant is a predicate that is always true before and
after the execution of some code.

A “class invariant” is a predicate that is always true
before and after each method invocation on a class

The invariant may be false (transiently) during method
Invocation, e.g., as the internal state of the class changes

Ideally, the invariant will remain true even in the face of error
conditions
We can think of a class invariant as an implicit
precondition and postcondition of all methods exposed by
the class.

There is also a notion of a “loop invariant” which is not
explicitly covered in this course but which | strongly
encourage you to read about.

Copyright (C) 2017 Alex Blate. All Rights Reserved.

Implementation of Predicates

»The full predicates of pre/postconditions and invariants may or
may not be “implemented” as executable code

Often, important parts are executed as part of the program logic,
e.g., to validate inputs

Many predicates would be computationally-expensive to verify at
runtime (think about checking universal or existential quantification
over a large collection)

» It may be useful to implement parts or all of some predicates
as assertions to help with:
Documenting formal correctness of code
Debugging and/or testing
» Whether or not such predicates are implemented, it is helpful

and recommended that they be written down in non-trivial
situations (e.g., as comments or JavaDoc)

Writing down the predicates makes you think more carefully about
what your code is trying to do

Future users and maintainers of your code, including you, will
benefit from having the documentation.

10 Copyright (C) 2017 Alex Blate. All Rights Reserved.

Terminology and thinking about predicates

» Consider predicates P(x) and Q(xX) where x is in the
domain X of possible inputs to P and Q.

» Consider the sets
Xp={Xx e X:P(X)}
XQ_{X e X:Q(X) }
» We say that a predicate P is stronger than Q if and only if
Xp < Xo, 1.€., the set of conditions under which P holds is
strlctly 3 subset of those where Q holds. ThIS could also

be stated as, “there exists some element x’ e X S.t.
P(x’)=false

If P is stronger than Q, then Q is weaker than P.
What is the strongest possible predicate?
What is the weakest possible predicate?
What if X, & X and z Xp (consider
P(x) = (x % 8) and Q(x) = (x % 2 == 1))

11 Copyright (C) 2017 Alex Blate. All Rights Reserved.

vV VvV VvV Vv

Thinking about predicates

» Disjunction (OR)
Consider predicates P(x) = A(x) and Q(x) = A(x) || B(x)
In general, what can we say about the strength of P and
Q?

» Conjunction (AND)
Consider predicates P(x) = A(x) and R(x) = A(x) && B(x)
In general, what can we say about the strength of P and
R?

12 Copyright (C) 2017 Alex Blate. All Rights Reserved.

Strength of Pre and Postconditions

» Do we want strong or weak preconditions?
» Do we want strong or weak postconditions?

» In general, we would like to write the weakest
precondition that implies the strongest postcondition

» If we think about invariants as being implicit pre and
postconditions, then we want the weakest possible
Invariant that implies the strongest possible
iInvariant... this leads to a predicate that is a
necessary and sufficient condition

13 Copyright (C) 2017 Alex Blate. All Rights Reserved.

Threads

14

A very brief introduction

Copyright (C) 2017 Alex Blate. All Rights
Reserved.

Very High-Level

» Athread is a context (stack and program counter)
within a program executing some sequential code

» A program may comprise multiple threads that run
asynchronously with respect to one another —
multiple “threads” of execution within the program

» Threads logically run concurrently with their
Instructions interleaved arbitrarily

» In Java, every program has at least one thread

» Almost every application you use on your computer
or mobile device is multi-threaded.

15 Copyright (C) 2017 Alex Blate. All Rights Reserved.

High Level — Think-abouts

» Why would we want multiple, asynchronous,
concurrent execution contexts within our program?

» What sorts of design practices and patterns might
this enable or enhance?

» Could multi-threading (potentially) lead to hazards?

YES

» Will we be discussing all of these hazards? NO. Caveat
emptor (and take the Operating Systems class!)

16 Copyright (C) 2017 Alex Blate. All Rights Reserved.

Threads Iin Java

» java.lang.Thread IS the base implementation of all
threads in Java

» Among other idioms, you can execute your code under a

separate thread by:
Extending Thread (and generally overriding run())

Or creating a (regular or anonymous) class that implements
Runnable

» Implementing Runnable Is typically preferred. (Why?)
» Given a Runnable r, you create and run a thread by:
Thread t = new Thread(r);

//Later on..
t.start () ;

17 Copyright (C) 2017 Alex Blate. All Rights Reserved.

18

PrinterThread/ThreadDemo

Copyright (C) 2017 Alex Blate. All Rights Reserved.

