
Comp 401 - Assignment 4: 
Commands, Arrays and Graphics 

Early Submission Date: Wed Sep 20, 2017  

Completion Date: Tue Sep 26, 2017  

First Late Date: Fri Sep 29, 2017 (-10%) 

Second Late Date: Tue Oct 3, 2017 (-25%) 

 
This assignment has two parts having to do with scanning and graphics. 

In the scanning part, you will classify some of the words, not into vanilla word tokens, 

but instead into command tokens. This means you will implement several new command 

token classes. These classes, like the original token classes, will be instantiated by the 

scanner bean. In addition, the bean will define an array property that contains an array of 

token objects. This part gives you more practice with concepts you have exercised in the 

previous assignment and should not take much time, except perhaps mastering arrays.  

In the graphics part, you will define a rotating moving line for extra credit, which might 

require some time-consuming debugging, though I pretty much give an algorithm for 

those who have trouble with the geometric aspects of it. 

The main class will now animate (using the refresh and sleep methods explained in the 

User Interface material) (a) the scanner by assigning different values to the editable 

String property of the scanner while it is being displayed by ObjectEditor, and (b) the line 

by making it move and rotate. 

As before, you will use the Properties, EditableProperties and Tags annotations for all of 

the bean classes. In addition, you will use the Tags annotation for the rotate line method. 

See the previous assignment for the tags to use for bean classes you have already 

implemented. In addition, you will use appropriate StructurePattern annotations for 

graphics and other bean classes – ObjectEditor will scream if you do not put these. You 

will also use tags to describe graphics shapes. 

 



User 

Interfaces 

PowerPoint 

PDF 

YouTube 

Docx 

PDF 

Drive 

  

Commands 

and Graphics 

Checks File 

lectures.ui Package 

Git (UI) 

lectures.graphics Package 

Git (Graphics) 

 

 

 

 

 

 

 

Command Classes 
Create a command token class for each of the following command names:  “Move”, 

“Say”,   “Repeat”, “Approach”,   “Pass” and “Fail”. A command token class has the same 

properties and constructor(s) as the word token class, and implements the same 

interfaces. Thus, you will essentially copy and paste the code of the word token class into 

each command class - the only difference between a command class and a word class will 

be the name of the class. If you know inheritance, you can make use of it here to avoid 

this copying – otherwise this exercise provides the motivation for inheritance. 

Tag each of these classes by the name of the associated command. Thus, put the 

following text before the class you define for the move command: 

@Tags({"Move"}) 

public class <Class Name> … { 

… 

} 

Angle brackets denote placeholders that should be replaced with actual values. 

Optional Command Classes (Extra Credit) 
If you have been doing extra credit so far and think you will have time for it at the end of 

the semester also, create token classes for also the commands:  “RotateLeftArm”, 

http://www.cs.unc.edu/~dewan/comp401/current/Lectures/UserInterface.pdf
http://youtu.be/NJpLBCXNbXc
http://www.cs.unc.edu/~dewan/comp401/current/Class%20Notes/UserInterfaceNotes.docx
http://www.cs.unc.edu/~dewan/comp401/current/Class%20Notes/UserInterfaceNotes.pdf
https://drive.google.com/file/d/0B_HEzJVvzKTVbW02OHRFdTROVVE/view?usp=sharing
http://www.cs.unc.edu/~dewan/comp401/current/assignments/4CommandsGraphics.pdf
http://www.cs.unc.edu/~dewan/comp401/current/assignments/4CommandsGraphics.pdf
http://www.cs.unc.edu/~dewan/comp401/current/Downloads/assignment4/unc_checks_401_f16_a4.xml
http://www.cs.unc.edu/~dewan/j2h/JavaTeaching/lectures.ui.index.html
https://github.com/pdewan/JavaTeaching/tree/master/src/lectures/ui
http://www.cs.unc.edu/~dewan/j2h/JavaTeaching/lectures.graphics.index.html
https://github.com/pdewan/JavaTeaching/tree/master/src/lectures/graphics


“RotateRightArm”, “Define”, “Call”, “Thread”, “Wait”, “ProceedAll”, “Sleep”, “Undo”,  

and “Redo”. You will receive a little extra credit for these token classes in this 

assignment, and additional points later for features that depend on them 

Scanner Bean Class 

Instantiating Command Classes 

Modify the setter method of the scanner to classify words into commands. After you have 

found a word (as before), check if its lowercase representation is equal to the lower case 

representation of one of the command names, and if so, create an instance of the 

associated command token class instead of the word class. Thus, if the scanned string 

contains the word “MoVE”, you would create an instance of the token class tagged 

“Move” and not an instance of the class tagged “Word”, as in the previous assignment. 

You can use the String equals() (or equalsIgnoreCase()) method to test for equality of two 

strings. If a word is not one of the predefined commands, then it should be stored in an 

instance of the word token class, as in the last assignment. 

Additional array property (Tag: Tokens) 

The setter method of the scanner bean no longer print the properties of the token objects 

it instantiates. Instead it puts the tokens (both the instances of the new command classes 

and the old token classes for the previous tokens such as words, numbers, and quoted 

strings) in a token array, first in a large array and then in a small compact one, as 

mentioned below. This array is returned as a readonly property, called Tokens, of the 

scanner bean. (Thus, this property has no setter.) The larger array is not exported as a 

property, that is, does not have a getter method. It is used as an intermediate data 

structure to create the compact array. 

More precisely, the scanner now has an additional property, which is a readonly stored 

property of type T[], where T is the interface implemented by all tokens in the previous 

assignment (Please do not rename this interface as T!).The getter method of the Tokens 

property returns an array of all token objects (instances of your token classes) created 

while scanning the String property of the scanner. There should be no empty slots in the 

array, that is, the length of the array is the number of tokens in the (editable scanner 

property storing) the scanned string. You can assume a limit (e.g. 100) on the number of 

tokens in a scanned string. This means that you can create a large array (that 

accommodates the maximum number of tokens) whose elements are copied into the 

compact array returned by the getter method of the readonly property. The large array 

could be created once when the scanner is instantiated and stored as an instance variable. 

The compact array would be created by the scanner setter method each time a new string 

is scanned; it should not be created in the getter method. (If you do not want to assume an 

arbitrary limit on the large array, you can make it the size of the scanned string – the 

number of tokens cannot exceed this number- and can create it also in the setter rather 



than the constructor.)  However, the compact array should be assigned to a global 

variable so that it can be returned by the associated getter. 

To further clarify, you want to create a "large" array because you aren't sure how many 

tokens are going to be in the compact array, therefore you won't know the size of the 

array. Once the scanner has finished adding all the Token objects to the large array, you 

will be able to find how many have been added. You then will create a compact array that 

has the exact same token objects in the large array - it will just contain less elements 

because it won't have any extra room. 

 Here's an example, assuming a large array of size 5: 

 Input: say "hello" 

 Large array: {say token, quote token , null, null, null} 

 Compact array: {say token, quote token} 

The large array is not accessible by anything outside the scanner bean class, which means 

there is no public method to return its value. The compact array is the one that is exported 

as a (readonly) property.  

As the scanner properties are objects, make sure they are not initialized to null. The 

scanned string should initially be an empty string ( “”), which means the compact array 

should initially be an array with zero elements. This will avoid null pointer exceptions in 

main. 

Do not use array lists or lists so you get practice with arrays. Imports of arrays and array 

lists will be considered illegal. 

Scanner Extra Credit 

1. Instead of printing the errors on the console, store them in a third dependent 

readonly property, called Errors, of the scanner bean. The error property should be 

reset every time a new string is scanned. You are free to also print the log of 

errors on the console. You are free to choose the type of the error property – 

String or array 

 

Rotating Line (Extra Credit) 
If you have time, do attempt this part. Several future extra credits features (such as move 

arm and leg) will be built on this feature.  

This part can be elegantly done in one step. I am breaking it into multiple steps in an 

attempt to make it easier.  



Rotating Fixed Line 

Create a class that implements a line shape that can be rotated around the Java origin (0, 

0). The upper left corner of (the bounding box of the line) is always the Java origin. The 

lower-right corner of the line is always a fixed distance from the origin and can be rotated 

based on its current angle. It should have a constructor that takes no arguments. It can 

have other constructors. 

The line should be displayable by ObjectEditor. This means it must have the line 

properties (X, Y, Height, Width) and annotation 

(StructutePatternNames.LINE_PATTERN) expected by ObjectEditor.  As the upper left 

corner is fixed, the line class does not have setters for the location of this point.  It also 

need not have setters for the Height and Width properties of a line. It should define two 

editable properties, “Radius” and “Angle”. This means it should have additional public 

methods for setting the “radius” and “angle” of the line with respect to the x-axis. These 

methods take double values determining the absolute radius and angle (in radians). The 

getters for these two properties simply return the set values. 

In addition, the class must have an instance public method to change the angle of the line 

by a certain amount. This method must take an int argument.  You are free to determine 

the appropriate scale. For example, you might decide that one int unit corresponds to 

Math.PI/32. In this case, rotating the line by 16 units adds 90 degrees  (Math.PI/2) to its 

angle. This method must call the method for setting the angle mentioned above, which 

works in radians. 

Let us call this method the rotate method. You can tag both methods and 

classes/interfaces. Use the tag “rotate” for this method. Thus, its declaration (in both the 

class and interface) will be of the form: 

@Tags({"rotate"}) 

public void <Method Name> (int units)  

Method tags should be put both in the classes and interfaces that declare them. 

Even though a line can take a location to be a Point object, you are required to define X 

and Y properties for location, as  mentioned above. 

Try to implement this class on your own before you read the remainder of this paragraph. 

ObjectEditor does not understand radius and angle of a line, so you must rotate a line by 

changing its width and height, using trigonometry.  

 One way to implement a rotatable line is given below. In addition to width and height, 

this line will have a radius (distance between endpoints) and angle (wrt to X axis). The 

constructor of the line takes these two values. The width and height will be derived from 



these values. Declare an internal instance variable that stores the current lower-right 

corner (the end point) in an instance of the class APolarPoint we saw in lectures. This 

point always has the radius and angle of the line.  It is the lower right corner only for this 

part – in the next part it is not. As we see below it is actually the storer of the width and 

height. This variable is not exported as a property to ensure ObjectEditor does not display 

it. The getter for the height and width property of the line return the x and y coordinates 

of this point, and the setters for the radius and angle of the line assign a new immutable 

instance of APolarPoint to the internal  variable, which, as mentioned above, has the 

radius and angle of the line.  There is no need to define setters for its height and width - 

all ObjectEditor needs for displaying it are the getters. There are other more elegant ways 

to implement a rotating line – so please use them if you can think of them. This approach 

requires you to do no calculations, and simply use the ones in APolarPoint. 

Moving Rotating Line 

Modify the class you defined above to allow the upper left corner of the line to be 

changed. This means you must now define setters for the line location.  The line will now 

rotate around this corner rather than the Java origin. This means that if you have followed my 

implementation technique, the position of the internal polar point does not change when you change the 

upper left corner, as the length or width of the line do not change when the line moves. You can do some 

trigonometry to figure out why this is right,  

Do not submit the code you wrote for the fixed line – instead submit code for this line. 

The previous part was created to break your task into smaller steps. 

Tagging the Line Class 

Use the tag: “RotatingLine”. As mentioned above, also specify the pattern it 

follows:StructurePatternNames.LINE_PATTERN. 

Animating Demoing Main Class 
You can implement the main class in two stages. 

Animating Scanner 

To demonstrate the scanner part of your assignment, as before the main method creates 

an instance of the scanner bean class and assigns different  values to the editable String 

property of the scanner. However, it no longer reads input from the console, neither does 

it print on the console. Instead it displays the scanner bean object using ObjectEditor and 

then assigns a series of test strings (which replace the input lines) to the editable property 

of the scanner. After each assignment, the method should refresh the ObjectEditor 

window and sleep so that the TAs can see the result of each assignment. We have seen 

this animation approach to demoing in class, and the following code illustrates it: 

http://www.cs.unc.edu/~dewan/j2h/JavaTeaching/lectures/state_properties/ABMISpreads

heetAnimatingDemoer.java.html 

http://www.cs.unc.edu/~dewan/j2h/JavaTeaching/lectures/state_properties/ABMISpreadsheetAnimatingDemoer.java.html
http://www.cs.unc.edu/~dewan/j2h/JavaTeaching/lectures/state_properties/ABMISpreadsheetAnimatingDemoer.java.html


You do not have to use the select() call (which selects the property on which you want us 

to focus) in this code but it may help us.  

Thus, your main method will make calls of the form: 

oeFrame = ObjectEditor.edit(scannerBean); 

scannerBean.setScannedString(“MoVe 050 { saY \“hi!\” } “) 

oeFrame.refresh(); 

ThreadSupport.sleep(3000); 

scannerBean.setScannedString(“RotateLeftArm  5  rotateLeftArm “) 

oeFrame.refresh(); 

ThreadSupport.sleep(3000); // 3 second delay should be enough 

Instead of reading input lines from the console, it will make several calls for different test 

strings. As we see above, a double quote within a string must be escaped with a \. You 

can use some of the same test strings as the ones you input in the previous assignment 

when you created screen shots. A test string can contain multiple commands. Make sure 

every command is included in some test string. If you do not demonstrate some feature, 

we will assume it has it has not been implemented. You do not have to test exactly two 

strings (as the example code does), you can test 1 or more, just as you could test an 

arbitrary number of strings when you created screenshots. For each string set in the 

scanner bean, ObjectEditor should show both properties of the ScannerBean (and 

properties of these properties). In particular, it should show the compact token array. The 

display of each token will not be the text printed by println() – instead it will include a 

display of all of its properties. In other words, the display will not show the toString() 

representations of the tokens – only their properties. The grader will call your 

getTokens() method to determine the classes of the tokens - it does not have to rely on the 

display. If you do not see either of the two properties, check the console for ObjectEditor 

messages and make sure you have getters for the properties you have declared in the 

annotations.  

Make sure your scanner bean getters never return the null value – this means the 

corresponding variables must be initialized to the empty string and empty array, either 

when they are declared or in the constructors. 

The main method does not have to directly animate the scanner. Define a separate 

method, tagged animateScanner(), that is called by main() and performs the animation. 



Animating Line (Extra Credit) 

After animating the scanner, your main method should instantiate the rotating line, and 

display it using ObjectEditor.  Next, it should animate the movement (using the line 

setters for X and Y) and rotation (using the line rotate() method) .  As before, make sure 

to call refresh and sleep so that the TAs can see the rotations and movements. 

Define a separate method, tagged animateLine(), that is called by main() and performs 

the line animation. 

ObjectEditor Issues 

If ObjectEditor does not refresh properly, simply print appropriate properties of the 

scanner bean and line after each sleep to show that your program works correctly. Do not 

worry about the nature of the ObjectEditor display as long as it shows all of the 

properties. Do not worry about the error messages of the following kind regarding 

complete refresh: 

W***Refreshing complete object: …. 

Do make sure there are no other kinds of errors or warnings from ObjectEditor. 

Constraints 
1. If you know inheritance, feel free to make use of it in this assignment. 

2. In this and all other assignments, your getters and setters should not create 

objects. This means that you should not move, resize, color or change other 

aspects of a shape by replacing it with a new one. Also, the setter in the scanner 

can create both the arrays. 

3. You can use the String toLowerCase()  method, as before. In addition you can use 

the Striing equalsIgnoreCase() method and the String equals() method. 

4. As also mentioned in earlier assignments, in every assignment, every public 

method of an instantiated class must be in some interface implemented by that 

class. Do not use classes as types of variable or array elements – use interfaces 

instead. Follow these two constraints in all future assignments also, even if they 

are not explicitly stated. 

5. Use the PropertyNames and EditablePropertyNames annotations (discussed in the 

User Interface lectures) for all non-graphics Bean classes in this and future 

assignments. Please note that ObjectEditor puts spaces in the middle of property 

names to “beutify” the names. Please use the property names that in the code – the 

getters and setters – which do not have spaces in them. If you get them wrong, 

they will not be displayed by ObjectEditor. 

6. Be sure to put all required tags. 



7. Use the appropriate StructurePattern annotations for the graphics and other Bean 

classes in this and future assignments. You know you have used them correctly 

when you do not get any warnings from ObjectEditor telling you of missing 

structure pattern annotations. These tags make sure you define signatures are 

written by you for getters and setters. If you define the right tags but wrong 

signatures, you will lose most of your grading points.  

8. Encapsulate all of your classes, as we discussed in lectures, in this and future 

assignments. This means you should not make any non-final variable public. 

9. Do not use any libraries I have not covered in class or authorized for this 

assignment that make your task easier, such as ArrayList or Vector. The only 

legal imports in your programs are those that begin with (a) mp or grail (these are 

considered internal imports) and (b) bus.uigen, util, shapes, java.util.Scanner, 

java.util.List,  java.util.Iterator, java.util.NoSuchElementException. Not all of 

these are needed, of course, for this assignment. 

10. You can use any Math function in this and other assignments. 

11. Make sure every command is included in some test string. 

12. As mentioned above, make sure there are not warnings or errors from 

ObjectEditor except for the one about the one about refreshing. 

13. In this and future assignments, please do not use System.exit(), even when you 

have errors, as that will halt the grader. Also when you use System.exit() after the 

animation, we sometimes do not get enough time to observe your screen. 

Submission Instructions 
 These are the same is in the previous assignment except your document need not 

contain videos or screenshots. The TAs will run the main method to see the test 

cases animate. 

 Be sure to follow the conventions for the name and package of the main class so 

that its full name is: main.Assignment4. 

Good luck! 

Controlling the width of TextFields created by ObjectEditor (For 

fun, not for credit) 
You may find that the default width of the text fields created by ObjectEditor is not 

sufficient to display the values of the properties you define in this assignment. You can 

associate the getter of a property with a ComponentWidth annotation, which takes the 

desired width (in pixels) of the text-field used to display the property, as shown below: 

@ComponentWidth (800) 

public String getHeight() { 



 return height; 

} 

The annotation above ensures that the “height” property is displayed in a text field whose 

width is 800 pixels. 

You will need to import ComponentWidth as  

         import util.annotations.ComponentWidth 

depending on the version you use. The best approach is to let Eclipse tell you what the 

import should be. All annotations are in the util.annotation package. 

 

 

 


