
Comp 401 - Assignment 8: Observer
Pattern

Early Submission Date: Wed Oct 25, 2017 (+5%)

Completion Date: Tue Nov 14, 2017

First Late Day: Fri Nov 17, 2017 (-10%)

Second Late Day: Tue Nov 21, 2017 (-25%)

In this assignment you will learn how to write observable Bean objects that are observed

by both ObjectEditor and an observer object you will write. As ObjectEditor now

observes them, there will be no need for you to explicitly call the ObjectEditor refresh()

method. In fact, you are no longer allowed to call this method, and should no longer get a

warning of the form:

 W***Refreshing complete object: ….

As mentioned in class, you should aim for efficiency by not sending coarser-grained

notifications than necessary and not creating new shapes in getters.

The following new material is relevant to this assignment. The assignment should be

trivial if you read and understand this material and may be impossible if you do not.

MVC

PowerPoint

PDF

YouTube

Mix

Docx

PDF

Drive

MVC

Checks

File

lectures.mvc.monolithic Package

Git (Monolithic)

lectures.mvc.interactor Package

Git (Interactor)

lectures.mvc Package

Git (MVC)

Component

Notifications

PowerPoint

PDF

YouTube

Docx

PDF

Drive

 lectures.mvc.properties Package

Git (Propertie)

lectures.mvc.collections PackageGit

http://www.cs.unc.edu/~dewan/comp401/current/Lectures/MVC.pptx
http://www.cs.unc.edu/~dewan/comp401/current/Lectures/MVC.pdf
http://youtu.be/ZOmFr7KnUyU
https://mix.office.com/watch/6fmpuyukt1tk
http://www.cs.unc.edu/~dewan/comp401/current/Class%20Notes/MVC.docx
http://www.cs.unc.edu/~dewan/comp401/current/Class%20Notes/MVC.pdf
https://drive.google.com/file/d/0B_HEzJVvzKTVSE9Lc1pmVFZXdzQ/view?usp=sharing
http://www.cs.unc.edu/~dewan/comp401/current/assignments/8Observer.pdf
http://www.cs.unc.edu/~dewan/comp401/current/Downloads/assignment8/unc_checks_401_f16_a8.xml
http://www.cs.unc.edu/~dewan/comp401/current/Downloads/assignment8/unc_checks_401_f16_a8.xml
http://www.cs.unc.edu/~dewan/j2h/JavaTeaching/lectures.mvc.monolithic.index.html
https://github.com/pdewan/JavaTeaching/tree/master/src/lectures/mvc/monolithic
http://www.cs.unc.edu/~dewan/j2h/JavaTeaching/lectures.mvc.interactor.index.html
https://github.com/pdewan/JavaTeaching/tree/master/src/lectures/mvc/interactor
http://www.cs.unc.edu/~dewan/j2h/JavaTeaching/lectures.mvc.index.html
https://github.com/pdewan/JavaTeaching/tree/master/src/lectures/mvc/monolithic
http://www.cs.unc.edu/~dewan/comp401/current/Lectures/MvcPropertiesCollections.pptx
http://www.cs.unc.edu/~dewan/comp401/current/Lectures/MVCPropertiesCollections.pdf
http://youtu.be/YUZF1P8Fc_Q
http://www.cs.unc.edu/~dewan/comp401/current/Class%20Notes/MVC-MultiComponents.docx
http://www.cs.unc.edu/~dewan/comp401/current/Class%20Notes/MVC.pdf
https://drive.google.com/file/d/0B_HEzJVvzKTVVUxUaWpTZ3JtRW8/view?usp=sharing
http://www.cs.unc.edu/~dewan/j2h/JavaTeaching/lectures.mvc.properties.index.html
https://github.com/pdewan/JavaTeaching/tree/master/src/lectures/mvc/properties
http://www.cs.unc.edu/~dewan/j2h/JavaTeaching/lectures.mvc.collections.index.html
http://www.cs.unc.edu/~dewan/j2h/JavaTeaching/lectures.mvc.collections.index.html

Mix (Collections)

Part 1: Observable Bean Announcing PropertyChangeEvent
Transform each of your atomic shape classes into an observable bean that announces

property change events. Study the class material to understand what this exactly means.

Some of the steps you have to take include:

1. Making sure that each atomic class implements the interface

PropertyListenerRegisterer (import util.models.PropertyListenerRegisterer);.

2. Storing each registering PropertyChangeListener in a readonly property called

PropertyChangeListeners of type List (import java,util.List).

3. Making each setter of a visible property announce an appropriate

PropertyChangeEvent (import java.beans.PropertyChangeEvent) instance to every

observer in the list.

A property is visible if ObjectEditor sees it, that is, it has not been hidden by the

@Visible annotation.

You don’t have to create new subclasses to add this functionality – you can directly

change existing classes. Try to make sure that the code you write to announce property

change events is shared by as many classes as possible – changing just the locatable and

bounded shape classes should take care of most of the changes you have to make.

As mentioned above, you can store the list of observers presented in class, but do not

reference JavaTeaching directly – your project must be self contained.

Part 2: Observing Console Scene “View” and Factory Method
Create a class, tagged “ConsoleSceneView,” that prints on the console each property

event announced by each atomic shape (such as left arm, head, right leg) in the logical

structure of the scene object. Specifically, this class:

1. Implements the java.beans.PropertyChangeListener interface.

2. Provides a parameterless constructor that registers this, the current instance, as a

listener of each atomic shape in the scene. The scene is retrieved using its factory

method.

3. Uses println() to display on the console each PropertyChangeEvent it receives

from the atomic objects being observed. You should simply pass the

PropertyChangeEvent to a println() call, do not do your own custom printing of

the event, as our tests need to process the output.

https://mix.office.com/watch/u9cji6yuvcyj
https://github.com/pdewan/JavaTeaching/tree/master/src/lectures/mvc/collections

This class is not a very interesting view because it does not really display the scene in a

meaningful way, but it does have the characteristics of such a view – hence the name.

This class is much like the view class we saw in the praxis for this material.

Like the bridge scene, this class will be a singleton, returning only one instance. In the

singletons creator factor class, define a parameterless static factory method, tagged

“consoleSceneViewFactoryMethod”, that gets and possibly creates (the first time it is called)

an instance of the console scene view class.

Part 3: Animating Demoing Main Class
To demonstrate your observable and observables, write a main class that creates a scene

object and displays an animation of it using both the console scene view and

ObjectEditor. Specifically, the main class:

1. Gets the scene object using the associated factory method.

2. Displays it using ObjectEditor.

3. Displays” it using your console scene view, which it gets using the factory method.

Just getting it will cause the constructor of the view to register itself as a listener. The

main method does not have to do anything with the returned value and need not even
assign it to a variable.

4. Creates an animation that moves an avatar, sets its text, and rotates each of its

rotatable parts (if you did extra credit). You should not call the OEFrame refresh

method in this assignment and thus should not get any warning about invoking this

method.

If you have followed all of the constraints of this and previous assignments, the avatar

should animate without the refresh method, and every change to a visible shape property

should be printed by the console view.

In particular, the animation will not work if you have moved an avatar or rotated an

avatar limb by creating new parts of the avatar, instead of directly moving or rotating

existing avatar components. As mentioned before, such a solution is inefficient and is

prohibited.

Extra Credit
You will get extra credit for rotating a limb using property notifications. The rotate()

method will now result in notifications of height and width.

Debugging Refresh Problems
 If you feel ObjectEditor is not automatically refreshing some changed observable on the

screen, please contact us after going through the following check list:

1. Is your console view printing out the event from the object you think ObjectEditor

missed?

2. Does the class of the object implement the PropertyListenerRegistarar interface?

3. If it does, do the ObjectEditor object and your console view call the registration

method defined by the interface? You can use print statements or break points to

answer this question.

4. Is the registration method adding observers to a list?

5. Is the object sending the change information to ObjectEditor and other observers

in its setters?

 ObjectEditor frame may occasionally flicker – because of the amount of work it does, it

cannot keep up with a high number of property changes.

Additional Constraints
Make sure that each class implements a single interface, which could extend multiple

interfaces. This may mean that you will create empty interfaces that do nothing else

beyond extending existing interfaces. This requirement reduces the need for casting

As mentioned above and in class, you should not be sending notifications about

composite shapes. For example, when an avatar moves, do not send an observer such as

ObjectEditor a notification about the avatar object– instead send it the new location of

each atomic shape that moved. For the graphics to update, we require you to send

notifications only about properties of atomic shapes (changes in the height or width of a

line shape, etc).

You should not be sending notifications about invisible properties - you might have to

override inherited code from your locatable superclass to do turn these notifications off,

which is ok, it implies invisible properties require special handling. If you do not follow

this rule, you will get a message of the form: “***Received notification(s) for unknown

(possibly invisible) property: x of object: avatars.AnAvatar@44a8253a. Updating

complete object.”This message implies that you do not know if the update to the screen

occurred because of some correct or incorrect notification. To convince yourself and us

that you meet the requirement of announcing changes to each atomic shape, get rid of

these warnings. Often there is no need really to have invisible properties as you can

simply not show the main panel.

You should announce changes only to those properties that ObjectEditor knows about. It

does not, of course, know about invisible properties. In addition, it does not know about

non-standard properties of atomic shapes such as angle and radius. So your setAngle()

method should call notifyAllListeners to announce changes in the known Width and

Height properties, instead of changes in the unknown Angle property.

As mentioned above, do not call the OEFrame refresh method.

Be sure to follow the constraints of the previous assignments.

Submission Instructions
 These are the same is in the previous assignment. The TAs will run the main

method to see the test cases animate.

 Be sure to follow the conventions for the name and package of the main class so

that its full name is: main.Assignment8.

Good luck!

