Properties of Bezier Curves

• Invariance under affine parameter transformation

 $\sum_{i=0}^{n} \mathbf{P}_{i} \mathbf{B}_{i,n} (\mathbf{u}) = \sum_{i=0}^{n} \mathbf{P}_{i} \mathbf{B}_{i,n} ((\mathbf{u} - a)/(b - a))$

• Invariance under barycentric combinations (weighted average):

 $\sum_{i=0}^{n} (\mathcal{A} \mathbf{Q}_{i} + \mathcal{B}\mathbf{R}_{i}) \mathbf{B}_{i,n} (\mathbf{u}) = \mathcal{A} \sum_{i=0}^{n} \mathbf{Q}_{i} \mathbf{B}_{i,n} (\mathbf{u}) + \mathcal{B} \sum_{i=0}^{n} \mathbf{R}_{i} \mathbf{B}_{i,n} (\mathbf{u}),$ when $\mathcal{A} + \mathcal{B} = 1$ α

• **Pseudo-local control**: $B_{i,n}(u)$ has a max at u = i/n. If we move the control point P_i , then the curve is most affected in the region around the parameter value i/n.

,

Derivatives of Bezier Curve

• Derivative of a Bezier curve:

$$\frac{d}{du} \mathbf{P}(\mathbf{u}) = \mathbf{n} \sum_{i=0}^{i=n-1} \Delta \mathbf{P}_i \mathbf{B}_{i,n-1}(\mathbf{u}) = \mathbf{P}'(\mathbf{u}),$$

where $\Delta \mathbf{P}_i = \mathbf{P}_{i+1} - \mathbf{P}_{i.}$

P'(u) is also called the *hodograph* curve

- Higher order derivatives can also be defined in terms of lower order Bezier curves
- Based on the derivatives, we can place constraints on the control points for C¹ or G¹ continuity.

Degree Elevation

- Geometric representation of a degree n curve in terms of n+1 degree curve
 - Compute the control points $(\underline{\mathbf{P}}_i)$ of the elevated curve

$$\sum_{0}^{n+1} \underline{\mathbf{P}}_{i} \mathbf{B}_{i,n+1} (\mathbf{u}) = \sum_{i=0}^{n} \mathbf{P}_{i} \mathbf{B}_{i,n} (\mathbf{u})$$

where $\underline{\mathbf{P}}_{i} = (i/(n+1)) \mathbf{P}_{i-1} + (1 - i/(n+1)) \mathbf{P}_{i}$, where $i=0,...,n+1$

• What happens if degree elevation is applied repeatedly?

Subdividing a Bezier Curve

- Subdivision: Given a Bezier curve, $\mathbf{P}(u)$, subdivide at a parameter value u_i . Compute the control points of two Bezier curves: $\mathbf{P}_1(s)$ and $\mathbf{P}_2(t)$, so that $\mathbf{P}_1(s)$, $s \in [0,1]$ corresponds to $\mathbf{P}(u)$, $u \in [0,u_i]$, and $\mathbf{P}_2(t)$, $t \in [0,1]$ corresponds to $\mathbf{P}(u)$, $u \in [u_i,1]$.
- Subdivision can be used to truncate a curve. The control points of the subdivided curve are computed using de Casteljau's algorithm. ϵ

Subdividing a Bezier Curve

- Subdivision doesn't change the shape of a Bezier curve
- It can be used for *local* refinement: subdivide a curve and change the control point(s) of one of the subdivided curve
- The union of convex hulls of the subdivided curve is a subset of the convex hull of the original curve (i.e. the convex hulls are a better approximation of the Bezier curve).
- Asymptotically the control polygons of the subdivided curve converge to the actual curve (at a quadratic rate)
- Subdivision and convex hulls are frequently used for intersection computations